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Abstract

Background: In molecular epidemiology studies biospecimen data are collected, often with the purpose of
evaluating the synergistic role between a biomarker and another feature on an outcome. Typically, biomarker data
are collected on only a proportion of subjects eligible for study, leading to a missing data problem. Missing data
methods, however, are not customarily incorporated into analyses. Instead, complete-case (CC) analyses are
performed, which can result in biased and inefficient estimates.

Methods: Through simulations, we characterized the performance of CC methods when interaction effects are
estimated. We also investigated whether standard multiple imputation (MI) could improve estimation over CC
methods when the data are not missing at random (NMAR) and auxiliary information may or may not exist.

Results: CC analyses were shown to result in considerable bias and efficiency loss. While MI reduced bias and
increased efficiency over CC methods under specific conditions, it too resulted in biased estimates depending on
the strength of the auxiliary data available and the nature of the missingness. In particular, CC performed better
than MI when extreme values of the covariate were more likely to be missing, while MI outperformed CC when
missingness of the covariate related to both the covariate and outcome. MI always improved performance when
strong auxiliary data were available. In a real study, MI estimates of interaction effects were attenuated relative to
those from a CC approach.

Conclusions: Our findings suggest the importance of incorporating missing data methods into the analysis. If the
data are MAR, standard MI is a reasonable method. Auxiliary variables may make this assumption more reasonable
even if the data are NMAR. Under NMAR we emphasize caution when using standard MI and recommend it over
CC only when strong auxiliary data are available. MI, with the missing data mechanism specified, is an alternative
when the data are NMAR. In all cases, it is recommended to take advantage of MI’s ability to account for the
uncertainty of these assumptions.

Introduction
Recent advances in technology to measure biomarkers
have given rise to increasingly more studies in molecular
epidemiology. Consequently, many epidemiology studies
now collect data from biospecimens for the purpose of
studying the role of biomarkers in disease. Often these

investigations assess synergistic effects between the bio-
marker and another feature on an outcome. A recent
assessment of molecular epidemiology studies revealed
that 30% of such studies evaluate a gene-environment
interaction [1]. Availability of biospecimens such as
blood or tissue samples, however, is generally limited to
a subset of the subjects in the study, posing a missing
data problem. Despite this, appropriate missing data
methods are not typically being employed. In a 1995
study, Greenland and Finkle [2] attributed the underuse
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of missing data methods in epidemiology studies to their
inaccessibility and complexity. Although missing data
methods are more readily available at present, a recent
study by Klebanoff and Cole in 2008 [3] found that less
than 2% of papers published in epidemiology journals
make use of more accessible missing data methods like
multiple imputation (MI). Instead, a complete-case (CC)
analysis continues to be the most widely applied method
[1-4]. More specifically, a CC analysis excludes subjects
missing data on at least one variable considered in the
analysis. Desai et al. recently assessed the handling of
missing data specifically in molecular epidemiology stu-
dies and found that while the majority of studies had
missing data (65%) and/or excluded subjects with miss-
ing data from study entry (45%), 88% of these utilized a
CC analysis [4].
The reasons underlying why the biospecimen data are

missing matter. These may relate to observed features in
the data set and/or the unobserved values of the bio-
markers themselves. The statistical validity of CC meth-
ods (i.e., providing unbiased estimates and confidence
intervals that achieve nominal coverage), however, relies
on an assumption that the data are missing completely
at random (MCAR); i.e., that missingness is unrelated to
observed or unobserved data yielding a study sample
that is representative of the larger cohort [5,6]. See
Rubin for a more complete discussion on statistical
validity [6]. If missingness is related only to observed
variables (e.g., age), the data are considered missing at
random (MAR). If, however, the reason for missing data
is related to the unobserved values (e.g., even after con-
ditioning on age, those with higher values of the bio-
marker are more likely to be missing biomarker data),
the data are not missing at random (NMAR). CC ana-
lyses conducted on data that are not MCAR can lead to
biased and inefficient estimates.
The data are limited in what they can reveal about

missingness. Violation of the MCAR assumption can
easily be investigated through simple comparisons of
features between those with and without missing data.
Without making unverifiable assumptions, however, it is
impossible to distinguish between NMAR and MAR pat-
terns, since the nature of missingness cannot be exam-
ined for data that do not exist. Thus, one must rely on
assumptions based on biological, clinical and epidemio-
logical understandings.
Theoretically sound methods for analyzing data under

the MAR or NMAR conditions have been developed.
For the former, this includes likelihood-based methods
and standard MI [5], where MI is particularly simple to
implement and readily available. For the latter, analo-
gous methods (likelihood-based and MI-based) are avail-
able. These, however, are not as easily accessible, and
are more complex to implement; unlike under the MAR

condition, under the NMAR condition, one must model
the missing data distribution. Valid likelihood-based
methods for NMAR data include EM approaches to
obtaining maximum-likelihood estimates and similar
estimation strategies that exploit auxiliary data (defined
as additional data that can be used to improve model
performance given the missingness) [7-10]. While soft-
ware has been developed for some cases under NMAR
conditions, it has not been incorporated into main-
stream statistical packages. Thus, access to specialized
software presents a barrier to using these methods. MI,
with the missing data distribution specified (such as pat-
tern mixture models), is another alternative when the
data are NMAR [11].
In molecular epidemiology studies there is often good

reason to suspect the data are NMAR. For example, sup-
pose those who consume more vegetables are more will-
ing to provide blood samples and as a result, folate levels
are measured less frequently on those with low levels.
Furthermore, because it is not straightforward to distin-
guish between NMAR and MAR conditions, analysts may
incorrectly assume the data are MAR. Such studies may
also make auxiliary data available. A useful auxiliary vari-
able is one that either correlates with the variable for
which the data are missing, or one that correlates with
missingness, or both. An example of the former may be
the number of vegetable servings consumed, if it corre-
lates with folate levels. An example of an auxiliary vari-
able that correlates with missingness may be disease
severity, if those with more advanced disease are more
motivated to provide biospecimens. Finally, many mole-
cular epidemiology studies focus on interaction effects,
such as gene-environment effects. The bias and efficiency
loss that results specifically from estimating these effects
using a CC approach has yet to be characterized.
The goals of this paper are to characterize the perfor-

mance of CC analysis when interaction effects are being
assessed, and to discuss MI methods as a possible prac-
tical solution. We specifically investigate the conse-
quences of applying MI, which in its standard form
relies on the MAR assumption, and assess the extent
that auxiliary data can help in estimation performance
when data from a covariate are NMAR and the interest
lies in estimating an interaction effect, involving the cov-
ariate. We examine situations when the covariate and
therefore the modifying variable of interest are missing
data and evaluate the impact of the strength of the aux-
iliary information under three conditions of missingness:
large values of the covariate are more likely to be miss-
ing; extreme values of the covariate are more likely to
be missing; and missingness depends on both the cov-
ariate and the outcome. We compare MI to the com-
monly applied CC approach on simulated and real data
from a molecular epidemiology study.
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Analysis
Multiple Imputation (MI)
MI is a simulation-based method for handling missing
data. There are three main steps involved in conducting
an MI-based analysis. The first step consists of imputing
plausible values for missing data from a specified distri-
bution. To incorporate the uncertainty of the imputed
values, this is done m times to create m complete data
sets, where m typically varies between 3 and 10. The
data are analyzed separately for each of the m data sets
in step 2, with the estimates appropriately combined to
yield one summary result in step 3. The theoretical
underpinnings of the method are described in Little and
Rubin [5].
There are several approaches to specifying an appro-

priate distribution from which to draw the missing
values required in the imputation step. In general, the
strategies fall into one of two classes: the joint modeling
approach or the fully conditional specification approach
[12]. The joint modeling approach relies on specifying a
joint density for the data to derive the posterior predic-
tive distribution of the missing values [11]. The fully
conditional specification approach, on the other hand,
bypasses this step and imputes data on a variable-by-
variable basis based on a specified conditional density.
For more details on the comparison of these approaches
see Van Buuren [12]. These methods are available in
easily accessible software. SAS, for example, utilizes MI
based on the joint modeling approach via the PROC MI
and PROC MIANALYZE procedures. We provide exam-
ple code that uses the fully conditional approach imple-
mented via the ICE and MICOMBINE procedures
developed by Patrick Royston for use in STATA [13-15]
in Appendix A. Other software implementing MI can be
found in Horton and Kleinman’s comprehensive review
[16].

MI for Interaction Effects
Estimating interaction effects with MI is slightly more
complicated than estimating main effects [17]. This has
to do with the assumptions under which the data are
imputed. More specifically, MI methods that rely on
parametric assumptions such as a multivariate normal
distribution may produce reasonable results for the esti-
mation of linear relationships, but not for higher-order
relationships. There are several approaches to imputing
interaction terms. The two main approaches are to 1)
impute the variables involved in the interaction first and
then generate the product term for inclusion in the ana-
lytic model or 2) generate the product term prior to
imputation and then impute this term like one would
any other variable. These methods and others are dis-
cussed in detail by von Hippel [18]. We show example

STATA code in Appendix A that implements both
methods.

Design of Simulation Studies
We assessed the performance of CC and MI methods
for estimating interaction effects in two sets of simula-
tion studies. In the first set, we evaluated their perfor-
mance for estimating an interaction effect between two
predictors (X1, which in some cases is continuous and
in others is dichotomous, and a dichotomous predictor
X2) on a dichotomous outcome (Y). One of the predic-
tors (X1), and therefore the interaction term, is NMAR
for a proportion of the subjects. An auxiliary variable
(Z), generated as a linear function of X1 and random
noise, is also available. The second set of simulations
was performed to enhance our understanding of the
impact of the nature of missingness using a more realis-
tic set of auxiliary variables. To that end, we made use
of a real molecular epidemiology study taken from the
Long Island Breast Cancer Study Project (LIBCSP)
[19,20], a population-based case-control study of breast
cancer, where, for our purposes, the interest was in an
interaction effect between alcohol consumption and pre-
sence of a mutant allele for being a fast metabolizer of
alcohol as determined by the ADH3 genotype on breast
cancer risk. Our simulations involved one variable with
missing data (either genotype, which is dichotomous or
alcohol exposure, which is either dichotomous or ordi-
nal), a covariate of interest (either genotype or exposure)
and a dichotomous outcome (case-control status).
Table 1 describes the thirteen scenarios examined. In

the first set of simulations (Scenarios A-I) we evaluated
the impact of [1] the nature of the missingness, and [2]
the relationship between X1 and the auxiliary variable,
Z, on estimation performance. To evaluate the impact
of the nature of missingness, three conditions were con-
sidered. Under condition 1, the log odds of the probabil-
ity of missing X1 is a linear function of X1. Under
condition 2, X1 is more likely to be missing extreme
values, that is, the log odds of the probability of missing
X1 is a quadratic function of X1. Finally, under condi-
tion 3 the log odds of missingness is a linear function of
X1 given Y. If Y represented case-control status, for
example, this would allow cases and controls to differ
with respect to missingness. In our study, cases are
more likely to be missing large values of X1, and con-
trols are more likely to be missing small values of X1.
To assess the effect of the strength of the relationship
between X1 and the auxiliary variable on the results,
nonexistent, moderate and strong relationships were
considered. Moderate strength was defined as a correla-
tion between X1 and Z of 0.57 for X1 continuous and
an increase of 1 unit in Z for X1 = 1 versus 0 for X1
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dichotomous. For X1 continuous, a strong auxiliary vari-
able was one that had a correlation of 0.97 with X1. For
X1 binary, a strong relationship was defined as a 3 or 4
unit increase in the auxiliary variable when X1 was 1
versus 0. Each scenario is based on 1000 iterations with
a sample size of 1000.
Scenarios J-M comprise the second set of simulations

and are also described in Table 1. These scenarios are
informed by the real molecular epidemiology data set in
two aspects that relate to the potential utility of the set
of auxiliary variables: 1) the strength of the observed
variables in describing missingness and 2) the strength

of the observed variables in describing the variable with
missing data. To determine these relationships a “fully
observed” data set was created from the larger cohort.
To create such a data set, subjects missing at least one
of the variables of interest (case-control status, an indi-
cator for having the genotype for fast metabolism, alco-
hol exposure, their interaction, and potential
confounders of this relationship) were excluded, yielding
a fully observed data set. The actual covariate values,
and as a consequence, their inter-relationships were
maintained in the simulations to enable comparison of
methods under a more realistic and complicated set of

Table 1 Description of Scenarios Used in Two Sets of Simulation Studies.

Table Set Scenario Median %
Missing X1

Nature of
Missing

Auxiliary
Relationship

Type of
Missing
Variable

3a. Impact of Auxiliary Relationship Under Condition 1 1 A 22% Condition 1a None3 Binary

1 B 22% Condition 1a Moderate4 Binary

1 C 22% Condition 1a Strong5 Binary

3b. Impact of Auxiliary Relationship Under Condition 2 1 D 20% Condition 2b None3 Continuous

1 E 20% Condition 2b Moderate6 Continuous

1 F 20% Condition 2b Strong2 Continuous

3c. Impact of Auxiliary Relationship Under Condition 3 1 G 20% Condition 3c None3 Continuous

1 H 20% Condition 3c Moderate6 Continuous

1 I 20% Condition 3c Strong2 Continuous

4a. Impact of Conditions Under Set of Auxiliary Variables with
Varying Strength When Missing Genotype Data

2 J 21% Condition 1d Realistic7 Binary

2 K 24% Condition 3e Realistic7 Binary

4b. Impact of Conditions Under Set of Auxiliary Variables with
Varying Strength When Missing Exposure Data

2 L 21% Condition 1d Realistic7 Binary

2 M 21% Condition 2f Realistic8 Ordinal
aCondition 1: X1 is 12.2 times more likely to be missing if X1 = 1
bCondition 2: Extreme values of X1 are more likely to be missing (probability of missing is a quadratic function of X1 or the log odds of missing X1 = g0+g1 X1 +
g2 X12, where g1 = -1 and g2 = 2.)
cCondition 3: A 1-unit increase in X1 corresponds to a 7.4 times decrease in the probability of missing for controls, but a 7.4 times increase for cases
dCondition 1: Those with fast metabolizing genotype are 12.2 times more likely to be missing data on genotype. Missingness is also related to other observed
covariates (mammogram, education, race, breastfeeding oral contraceptive use, hormone therapy use, and smoking status) as informed by the real data set for
all subjects.
eCondition 3: Exposed controls with fast genotype are 7.4 times more likely to be missing genotype than those without, while exposed cases with fast genotype
are 7.4 times less likely to be missing genotype. Unexposed subjects with fast genotype are 2.7 times more likely to be missing genotype. Missingness is also
related to other observed covariates (mammogram, education, race, breastfeeding oral contraceptive use, hormone therapy use, and smoking status) as informed
by the real data set for all subjects.
fCondition 2:Extreme values of exposure are more likely to be missing (probability of missing is a quadratic function of X1 or the log odds of missing X1 = g0+g1
X1 + g2 X12, where g1 = -3 and g2 = 1.) Missingness is also related to other observed covariates (mammogram, education, race, breastfeeding oral contraceptive
use, hormone therapy use, and smoking status) as informed by the real data set for all subjects.
1Strong: Those with X1 = 1 have Z values (SD = 1), that are 3 units higher on average than those with X1 = 0
2Strong: Average correlation between X1 and Z is 0.97
3None: X1 and Z are independent variables
4Moderate: Those with X1 = 1 have Z values (SD = 1) that are 1 unit higher on average than those with X1 = 0
5Strong: Those with X1 = 1 have Z values (SD = 1) that are 4 units higher on average than those with X1 = 0
6Moderate: Average correlation between X1 and Z is 0.57
7Realistic: Auxiliary variables are informed by real data set and include all variables used to generate missing data mechanism of genotype (case-control status,
exposure, mammogram, education, race, breastfeeding behavior, oral contraceptive use, hormone therapy use, and smoking status) as well as those that relate to
genotype (exposure, race, breastfeeding behavior), a subset of the former.
8Realistic: Auxiliary variables are informed by real data set and include all variables used to generate missing data mechanism of exposure (case-control status,
genotype, mammogram, education, race, breastfeeding behavior, oral contraceptive use, hormone therapy use, and smoking status) as well as those that relate
to exposure (genotype, education, race, oral contraceptive use, hormone therapy use, and smoking status), a subset of the former.
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auxiliary variables. New outcomes representing case-
control status were generated as a function of genotype,
alcohol exposure and their interaction.
Missingness was induced for genotype (Scenarios J-K)

as well as for alcohol exposure (Scenarios L-M). This
allowed assessment of methods under a realistic set of
auxiliary variables under condition 2 (Scenario M: where
extreme values of alcohol exposure are more likely to be
missing), which only applies to variables with more than
2 levels and allowed comparison of methods under dif-
ferent sets of realistic auxiliary variables for condition 1.
More specifically, there were fewer variables that corre-
lated with genotype than with alcohol exposure with
varying magnitudes of strength. We therefore compared
methods across two sets of available auxiliary data for
condition 1 (Scenarios J and L). Missingness was
induced under three conditions analogous to the ones
described above. In the first, the log odds of the prob-
ability of missing the variable (either genotype or expo-
sure) is a linear function of the variable, as well as the
following observed variables: the other covariate of
interest (either exposure or genotype), ever having had a
mammogram, education, race, having breast fed for at
least 6 months, ever having been exposed to oral contra-
ceptives, ever having been exposed to hormone therapy
and smoking status. The second condition (Scenario M)
specifies the log odds of the probability of missing alco-
hol exposure to be a non-linear function of exposure so
that missingness is more likely for extreme exposures
(none or high). Additionally, it is also a linear function
of the observed variables mentioned above including
genotype. Finally, the third condition specifies different
missing data mechanisms conditional on genotype,
exposure and case-control status (Scenario K). It speci-
fies that exposed controls are 7.4 times more likely to
be missing genotype if they have the fast metabolizing
genotype, whereas exposed cases are 7.4 times less likely
to be missing genotype if they have the fast metabolizing
genotype and, unexposed subjects with the fast metabo-
lizing genotype are 2.7 times more likely to be missing
data on genotype. The log odds of the probability of
missing genotype is also linearly related to the other
observed variables considered above. The relationship
between missingness and the observed variables is
informed from the fully observed data set. Each scenario
is based on 1000 iterations with a sample size of 2058,
the size of the fully observed data set.
Three different models are presented: [1] the full

model, which is the model fit on the complete data; [2]
the CC model; and [3] the MI-based model, where the
missing values of X1 were imputed as a function of X2,
Y and the auxiliary variable, Z for the first set of simula-
tions and as a function of the other covariate of interest
(either exposure or genotype), ever having had a

mammogram, education, race, having breast fed for at
least 6 months, ever having been exposed to oral contra-
ceptives, ever having been exposed to hormone therapy
and smoking status for the second set. To produce opti-
mal results, we set m = 10 as opposed to the more typi-
cal m = 5, although we found negligible differences
when comparing the two. For each scenario, the data
were analyzed using a logistic regression model with Y
(case-control status) as the outcome and X1 (genotype),
X2 (alcohol exposure) and their interaction as predic-
tors. Average point estimates, average model-based stan-
dard errors (SE), average biases, mean squared errors
(MSE), mean squared errors relative to CC (RelMSE),
and percentage coverage with 95% confidence intervals
were calculated for X1 given X2 = 0, X1 given X2 = 1,
and their interaction. The comparison of MI to CC
using the RelMSE statistic is critical, as a comparison of
MI to the method currently used in practice (CC) is
more relevant than its comparison to an optimal
method. For an ideal reference, however, the full model
is presented.
Table 2 describes the observed relationships between

the potential auxiliary variables and the variable with
missing data in the real data set. Candidate auxiliary
variables for genotype (Scenarios J and K) include three
variables that are highly correlated with genotype in the
fully observed data set: alcohol exposure, race, and hav-
ing breastfed for at least 6 months. For every increase in
level of average alcohol exposure, a subject is 10% less
likely to have the fast-metabolizing gene. Similarly those
who have breastfed are roughly 30% less likely to have
the fast metabolizing gene than those who have not. On
the other hand, African American subjects have a 4-fold
increased risk of having the fast metabolizing gene rela-
tive to Caucasians. There are a larger number of auxili-
ary variables for alcohol exposure (defined as alcohol
consumer versus non-consumer), relevant for Scenarios
L and M. These variables include race, where African
Americans are less likely than Caucasians to be consu-
mers, and where a higher education, use of oral contra-
ceptives, hormone therapy and smoking exposure are all
associated with a higher probability of alcohol exposure.
Having the fast metabolizing, gene, however, corre-
sponds to a 30% decreased risk in alcohol exposure.

Example Data Set
As an illustration of these methods, we compared a pre-
viously published CC analysis of the gene-environment
interaction of interest to one based on MI methods
using data from the LIBCSP [19]. This particular analy-
sis was undertaken to address a possible interaction
effect between alcohol consumption and ADH3 geno-
type on breast cancer risk. Details of the overall study
design are provided in prior publications [19,20]. In-
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person interviews were completed for 1,508 cases (82.1%
of eligible cases) and 1,556 controls (62.8% of eligible
controls). Seventy-three percent of both cases and con-
trols who completed an interview donated a blood sam-
ple. As the CC approach adjusted for potential
confounders, it further excluded those who were missing
at least one variable and resulted in a data set of 1,008
cases and 1,055 controls. As previously published [19],
subjects were more likely to donate blood if they were
white, non-smokers, ever consumed alcohol, ever used
hormone replacement therapy, breast-fed for six months
or more, or ever had a mammogram.

Results
The impact of the strength of the auxiliary variable for
the three conditions generated under the first set of
simulations, where approximately 20% of the data are
missing, is shown in Table 3. For each condition, the
first set of simulations examines three scenarios corre-
sponding to non-informative, moderate, and strong aux-
iliary variables. These studies are supplemented by the
second set of simulations shown in Table 4, which

compares the methods under a more realistic and com-
plicated set of auxiliary variables. Like the first set,
roughly 20% of the data are missing. For completeness,
estimates are presented for X1 given each level of X2
(denoted going forward as X1|X2) and their interaction.
Performance, however, is based solely on estimation of
X1|X2 = 0 and the interaction as their sum yields the
estimate of X1|X2 = 1.
Characterization of Performance of CC Analysis
In the first set of simulations (Table 3) under condition
1 (Scenarios A-C: where X1 is 12.2 times more likely to
be missing for X1 = 1 than for X1 = 0), CC overesti-
mated the interaction effect and gave average estimates
of 1.7-2.0 when the true parameter was 1.5. In addition,
CC analyses yielded large standard error estimates (ran-
ging from 4.9 to 12.7), likely due to small cell counts
when X1 is binary, missing for about 20% of subjects,
and the proportion with X1 = 1 is small (0.2). In the
second set of simulations, however, under an analogous
condition 1 (Scenarios J and L: where genotype is 12.2
times more likely to be missing for those with the geno-
type of interest and missingness additionally relates to a

Table 2 Description of Relationship Between Variable with Missing Data (Genotype or Exposure) and Set of Auxiliary
Variables.

Variable with Missing Data: Genotype
(Scenarios J and K)

Exposure
(Scenario L-N)

Auxiliary Variables OR P-value OR P-value

Level of average alcohol exposure 0.90 P = 0.06 NA NA

Race P < 0.001 P < 0.001

Reference (Caucasian) 1.00 1.00

African American 4.14 0.43

Other 3.60 0.24

Breastfed for at least 6 months P < 0.001

Reference (No) 1.00

Yes 0.68

Education P < 0.001

Reference (less than high school) 1.00

Completed high school and some college 1.52

College graduate or more 1.68

Use of oral contraceptives P = 0.005

Reference (No) 1.00

Yes 1.32

Use of hormone therapy P = 0.018

Reference (No) 1.00

Yes 1.29

Smoking Status P < 0.001

Reference (Never smoked) 1.00

Past smoker 1.63

Current smoker 1.67

Genotype NA NA P = 0.001

Reference (No mutation) 1.00

Has mutation 0.73

Desai et al. Epidemiologic Perspectives & Innovations 2011, 8:5
http://www.epi-perspectives.com/content/8/1/5

Page 6 of 17



Table 3 Impact of Auxiliary Relationship Under Conditions 1, 2, and 3.

a.condition 1

Scenario Variable Method Mean b Mean SE Mean Bias MSE RelMSE Coverage

A: No Auxiliary

X1 (X2 = 0)
(True effect = 1.0)

Full 0.998 0.211 -0.002 0.043 0.403 95.2 (93.9,96.5)

CC 0.999 0.323 -0.001 0.106 1.000 95.3 (94.0,96.6)

MI 1.106 0.321 0.106 0.101 0.951 95.4 (94.1,96.7)

X1 (X2 = 1)
(True effect = 2.5)

Full 2.542 0.378 0.042 0.161 0.031 95.2 (94.0,96.6)

CC 2.890 11.419 0.390 5.271 1.000 95.7 (94.4,97.0)

MI 2.330 0.615 -0.170 0.317 0.060 92.8 (91.2,94.4)

Interaction (True effect = 1.5) Full 1.544 0.434 0.044 0.195 0.037 96.0 (94.8,97.2)

CC 1.891 11.500 0.391 5.321 1.000 96.4 (95.2,97.6)

MI 1.223 0.690 -0.277 0.382 0.072 94.6 (93.2,96.0)

B: Moderate
Auxiliary

X1 (X2 = 0)
(True effect = 1.0)

Full 0.986 0.211 -0.014 0.043 0.410 96.1 (94.9,97.3)

CC 0.984 0.323 -0.016 0.105 1.000 95.7 (94.4,97.0)

MI 1.157 0.312 0.157 0.110 1.039 94.9 (93.5,96.3)

X1 (X2 = 1) (True effect = 2.5) Full 2.53 0.376 0.03 0.149 0.066 95.9 (94.7,97.1)

CC 2.698 4.867 0.198 2.28 1.000 96.1 (94.9,97.3)

MI 2.438 0.600 -0.062 0.251 0.110 96.3 (95.1,97.5)

Interaction (True effect = 1.5) Full 1.544 0.432 0.044 0.195 0.080 95.7 (94.4,97.0)

CC 1.714 4.949 0.214 2.437 1.000 96.8 (95.7,97.9)

MI 1.281 0.671 -0.219 0.317 0.130 96.7 (95.6,97.8)

C: Strong Auxiliary

X1 (X2 = 0) (True effect = 1.0) Full 0.997 0.211 -0.003 0.046 0.403 95.4 (94.1,96.7)

CC 0.999 0.324 -0.001 0.113 1.000 94.4 (93.0,95.8)

MI 1.027 0.223 0.027 0.051 0.447 95.3 (94.0,96.6)

X1 (X2 = 1)
True effect = 2.5)

Full 2.546 0.378 0.046 0.158 0.027 96 (94.8,97.2)

CC 2.968 12.65 0.468 5.941 1.000 96.9 (95.8,98.0)

MI 2.555 0.407 0.055 0.176 0.030 96.5 (95.0,97.4)

Interaction (True effect = 1.5) Full 1.549 0.434 0.049 0.200 0.034 96.1 (94.9,97.3)

CC 1.969 12.730 0.469 5.971 1.000 96.6 (95.5,97.7)

MI 1.528 0.462 0.028 0.205 0.034 96.2 (95.0,97.4)

b. Condition 2

Scenario Variable Method Mean b Mean SE Mean Bias MSE RelMSE Coverage

D: No Auxiliary

X1 (X2 = 0) (True effect = 1.0) Full 1.008 0.108 0.008 0.011 0.496 95.6 (94.3,96.9)

CC 1.013 0.146 0.013 0.023 1.000 93.8 (92.3,95.3)

MI 1.090 0.145 0.090 0.029 1.254 92.0 (90.3,93.7)

X1 (X2 = 1) (True effect = 2.5) Full 2.551 0.280 0.051 0.083 0.869 95.6 (94.3,96.9)

CC 2.550 0.299 0.050 0.096 1.000 95.4 (94.1,96.7)

MI 2.357 0.293 -0.143 0.085 0.888 93.1 (91.5,94.7)

Interaction (True effect = 1.5) Full 1.543 0.300 0.043 0.093 0.804 94.9 (93.5,96.3)

CC 1.537 0.333 0.037 0.116 1.000 95.5 (94.2,96.8)

MI 1.267 0.325 -0.233 0.126 1.084 90.2 (88.4,92.0)

Desai et al. Epidemiologic Perspectives & Innovations 2011, 8:5
http://www.epi-perspectives.com/content/8/1/5

Page 7 of 17



Table 3 Impact of Auxiliary Relationship Under Conditions 1, 2, and 3. (Continued)

E: Moderate
Auxiliary

X1 (X2 = 0)
(True effect = 1.0)

Full 1.011 0.108 0.010 0.012 0.533 95.4 (94.1,96.7)

CC 1.009 0.146 0.009 0.023 1.000 94.5 (93.1,95.9)

MI 1.163 0.142 0.163 0.046 2.039 81.4 (79.0,83.8)

X1 (X2 = 1)
(True effect = 2.5)

Full 2.558 0.280 0.058 0.090 0.911 94.2 (92.8,95.6)

CC 2.555 0.298 0.055 0.099 1.000 94.5 (93.5,96.3)

MI 2.571 0.296 0.071 0.085 0.855 96.7 (95.6,97.8)

Interaction
(True effect = 1.5)

Full 1.547 0.300 0.047 0.103 0.845 94.9 (93.5,96.3)

CC 1.545 0.333 0.045 0.122 1.000 94.7 (93.3,96.1)

MI 1.408 0.328 -0.092 0.102 0.832 95.1 (93.8,96.4)

F: Strong
Auxiliary

X1 (X2 = 0) (True effect = 1.0) Full 1.002 0.108 0.002 0.012 0.518 94.5 (93.1,95.9)

CC 1.004 0.146 0.004 0.024 1.000 94.2 (92.8,95.6)

MI 1.053 0.114 0.053 0.016 0.693 93.0 (91.4,94.6)

X1 (X2 = 1) (True effect = 2.5) Full 2.530 0.278 0.030 0.079 0.860 95.2 (93.9,96.5)

CC 2.530 0.297 0.030 0.092 1.000 95.0 (93.6,96.4)

MI 2.573 0.280 0.073 0.084 0.908 95.7 (93.8,96.4)

Interaction (True effect = 1.5) Full 1.527 0.298 0.027 0.092 0.788 95.0 (93.6,96.4)

CC 1.526 0.331 0.026 0.117 1.000 94.9 (93.5,96.3)

MI 1.520 0.303 0.020 0.092 0.791 95.1 (93.8,96.4)

c. Condition 3

Scenario Variable Method Mean b Mean SE Mean Bias MSE RelMSE Coverage

G: No Auxiliary

X1 (X2 = 0) (True effect = 1.0) Full 1.006 0.108 0.006 0.011 0.066 96.2 (95.0,97.4)

CC 0.608 0.119 -0.392 0.168 1.000 10.2 (8.3,12.1)

MI 0.680 0.119 -0.320 0.116 0.691 23.9 (21.3,26.5)

X1 (X2 = 1)
(True effect = 2.5)

Full 2.549 0.279 0.049 0.085 0.693 94.6 (93.2,96.0)

CC 2.322 0.288 -0.178 0.122 1.000 85.3 (83.1,87.5)

MI 1.974 0.274 -0.526 0.324 2.654 49.9 (46.8,53.0)

Interaction (True effect = 1.5) Full 1.543 0.299 0.043 0.097 0.640 95.1 (93.8,96.4)

CC 1.714 0.312 0.214 0.152 1.000 92.3 (90.6,94.0)

MI 1.294 0.297 -0.206 0.093 0.609 93.5 (92.0,95.0)

H: Moderate
Auxiliary

X1 (X2 = 0) (True effect = 1.0) Full 1.003 0.108 0.004 0.012 0.073 94.5 (93.1,95.9)

CC 0.610 0.119 -0.390 0.167 1.000 11.9 (9.9,13.9)

MI 0.793 0.116 -0.207 0.057 0.340 54.4 (51.3,57.5)

X1 (X2 = 1) (True effect = 2.5) Full 2.535 0.277 0.035 0.085 0.657 93.5 (92.0,95.0)

CC 2.309 0.287 -0.191 0.129 1.000 85.1 (82.9,87.3)

MI 2.222 0.279 -0.278 0.141 1.093 80.9 (78.5,83.3)

Interaction (True effect = 1.5) Full 1.531 0.298 0.031 0.096 0.658 94.3 (92.9,95.7)

CC 1.699 0.310 0.198 0.146 1.000 91.4 (89.7,93.1)

MI 1.428 0.301 -0.072 0.074 0.508 95.4 (94.1,96.7)
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set of observed variables), CC analysis performed better
with respect to bias and efficiency. Although it still suf-
fered from a loss in efficiency, the loss was much less
dramatic than in the first set. Differences in how the
data were generated between the sets contribute to the
varying performance of CC under these similar condi-
tions. In the first set of simulations the sample size (N =
1000) is half that of the second set (N = 2058). Addi-
tionally, the proportion of those with the genotype (or
with X1 = 1) is 0.20 in the first set compared to 0.4 in
the second set, where the latter proportion is deter-
mined by the real data set. Finally, in the second set,
missingness also relates to additional observed variables.
The performance of CC was comparable however
between the two sets of simulations under conditions 2
and 3. Under condition 2, where extreme values of the
variable are more likely to be missing, CC yielded
approximately unbiased estimates on average for both
sets of simulations but suffered a loss in efficiency; hav-
ing the complete data set (full model) resulted in MSEs
that were reduced by 50% for estimating X1|X2 = 0 and
by 15-20% for the interaction effect. Under condition 3,
CC performed the worst, underestimating the effect of
X1|X2 = 0 in the first set of simulations (Scenarios G-I)
yielding MSEs that were 14-15 times that of the full
model and overstating the interaction effect in both sets
of simulations, with MSEs that were approximately 1.5
and 20 times larger than that of the full model in the
first and second set of simulations, respectively.
Performance of MI Relative to CC
Under all conditions shown in Table 3, when auxiliary
information is strong (Scenarios C, F, and I), MI per-
formed well and outperformed CC. Under condition 1
even when there is no auxiliary information, MI outper-
formed CC for both parameters, where the RelMSE sta-
tistic for the interaction effect showed a 93%
improvement in estimation. Much of this improvement,
however, is due to the inflated standard errors that CC

provided due to small cell counts that occur in the pre-
sence of missingness when X1 is binary and the propor-
tion with X1 = 1 is small. Under condition 1 in the
second set (Scenarios J and L), however, CC was super-
ior to MI. In both sets of simulations, MI underesti-
mated the interaction effect and in the second, it
provided poor coverage probabilities for the interaction
effect, resulting in MSEs that were 3 and 2 times that of
CC for Scenarios J and L, respectively. Under condition
2, MI needed a strong auxiliary variable to compete
with CC. CC did not yield biased results, but suffered a
loss in efficiency. With moderate to weak auxiliary
information, MI underestimated the interaction effect
and overestimated the effect of X1|X2 = 0. Overall it
performed worse than CC and had an MSE that was 1.3
times greater than that of CC for X1|X2 = 0 in both
sets of simulations and an MSE for the interaction that
was 1.1 and 4.4 times greater in the first and second
sets of simulations. The second set of simulations sug-
gested that even under a realistic set of auxiliary vari-
ables, MI did not improve estimation over CC under
this condition, where MI underestimated interaction
effects. In both sets of simulations, MI improved perfor-
mance over CC under condition 3. When there is no
auxiliary data, MI and CC both underestimated X1|X2
= 0, but while CC overestimated the interaction effect,
MI underestimated it. MI had a superior MSE statistic
for both X1|X2 = 0 and the interaction. In the second
set of simulations (Scenario K), these findings were sup-
ported. MI outperformed CC where CC overstated the
interaction effect. MI performed well with good cover-
age probabilities and provided an MSE for the interac-
tion effect that was 93% improved over that of CC.
Illustration on Real Data Set
The results from analysis of the LIBCSP evaluating an
interaction effect between alcohol consumption and the
ADH3 genotype on breast cancer risk are presented in
Table 5. Adjusted odds ratios (ORs) from the previously

Table 3 Impact of Auxiliary Relationship Under Conditions 1, 2, and 3. (Continued)

I: Strong Auxiliary

X1 (X2 = 0) (True effect = 1.0) Full 0.999 0.108 -0.001 0.012 0.069 95.4 (94.1,96.7)

CC 0.603 0.118 -0.397 0.172 1.000 11.1 (9.2,13.0)

MI 0.986 0.109 -0.014 0.012 0.072 94.8 (93.4,96.2)

X1 (X2 = 1) (True effect = 2.5) Full 2.533 0.277 0.033 0.081 0.635 95.0 (93.6,96.4)

CC 2.303 0.287 -0.197 0.128 1.000 84.2 (81.9,86.5)

MI 2.533 0.278 0.033 0.081 0.628 95.2 (93.9,96.5)

Interaction (True effect = 1.5) Full 1.533 0.298 0.033 0.091 0.638 95.3 (94.0,96.6)

CC 1.700 0.310 0.200 0.142 1.000 92.8 (91.2,94.4)

MI 1.547 0.299 0.047 0.091 0.640 95.8 (94.6,97.0)

Results From Fitting Full, Complete-Case, and Multiple Imputation Models to 1000 Simulated Data Sets With a Sample Size of 1000 Where the Covariate of
Interest and as a Result the Interaction Term Were Missing for Approximately 20% of Subjects.
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Table 4 Impact of Nature of Missingness With Auxiliary Relationship Based on Data from LIBSCP.

a. Subjects Missing Data on Genotype Under Conditions 1 and 3

Scenario Variable Method Mean
b

Mean
SE

Mean
Bias

MSE RelMSE Coverage

J:
Condition

1

Effect of Fast Metabolizing Genotype For Unexposed
(True effect = 1.0)

Full 1.001 0.155 0.001 0.025 0.738 95.1 (93.8,96.4)

CC 0.999 0.182 -0.001 0.033 1.000 94.3 (92.9,95.7)

MI 0.989 0.182 -0.011 0.032 0.954 95.0 (93.6,96.4)

Effect of Fast Metabolizing Genotype For Exposed
(True effect = 2.5)

Full 2.508 0.157 0.008 0.025 0.664 94.3 (92.9,95.7)

CC 2.519 0.197 0.019 0.037 1.000 96.4 (95.2,97.6)

MI 2.090 0.193 -0.410 0.190 5.144 42.4 (39.3,45.5)

Interaction Effect
(True effect = 1.5)

Full 1.507 0.220 0.007 0.049 0.684 94.7 (93.3,96.1)

CC 1.520 0.268 0.020 0.072 1.000 95.5 (94.2,96.8)

MI 1.101 0.265 -0.399 0.211 2.945 70.0 (67.2,72.8)

K:
Condition

3

Effect of Fast Metabolizing Genotype For Unexposed
(True effect = 1.0)

Full 1.003 0.155 0.003 0.022 0.666 96.1 (94.9,97.3)

CC 1.000 0.185 0.0002 0.034 1.000 95.6 (94.3,96.9)

MI 1.004 0.191 0.004 0.032 0.978 95.6 (94.3,96.9)

Effect of Fast Metabolizing Genotype For Exposed
(True effect = 2.5)

Full 2.509 0.157 0.010 0.024 0.024 95.9 (94.7,97.1)

CC 3.463 0.233 0.963 0.983 1.000 0.2 (-0.1,0.5)

MI 2.611 0.274 0.111 0.041 0.042 99.8 (99.5,100.1)

Interaction Effect
(True effect = 1.5)

Full 1.507 0.220 0.007 0.048 0.047 95.9 (94.7,97.1)

CC 2.463 0.298 0.963 1.012 1.000 9.5 (7.7,11.3)

MI 1.608 0.340 0.108 0.074 0.073 99.2 (98.6,99.8)

b. Subjects Missing Data on Alcohol Exposure Under Conditions 1 and 2

Scenario Variable Method Mean
b

Mean
SE

Mean
Bias

MSE RelMSE Coverage

L:
Condition

1

Effect of Fast Metabolizing Genotype For Unexposed
(True effect = 1.0)

Full 1.016 0.155 0.016 0.025 0.962 94.7 (93.3,96.1)

CC 1.015 0.158 0.015 0.026 1.000 95.4 (94.1,96.7)

MI 1.308 0.150 0.308 0.115 4.502 45.6 (42.5,48.7)

Effect of Fast Metabolizing Genotype For Exposed
(True effect = 2.5)

Full 2.504 0.156 0.004 0.022 0.737 96.2 (95.0,97.4)

CC 2.503 0.189 0.003 0.039 1.000 94.1 (92.6,95.6)

MI 2.449 0.183 -0.051 0.026 0.835 96.9 (95.8,98.0)

Interaction Effect
(True effect = 1.5)

Full 1.488 0.220 -0.012 0.048 0.845 95.2 (93.9,96.5)

CC 1.487 0.247 -0.013 0.056 1.000 96.4 (95.2,97.6)

MI 1.141 0.247 -0.359 0.172 3.055 71.1 (68.3,73.9)

M:
Condition

2

Effect of Alcohol Exposure for Those without Fast Genotype
(True effect = 0.5)

Full 0.499 0.075 -0.001 0.006 0.622 95.5 (94.2,96.8)

CC 0.501 0.095 0.001 0.009 1.000 94.6 (93.2,96.0)

MI 0.560 0.095 0.060 0.012 1.348 91.4 (89.7,93.1)
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published CC analysis, an MI-based analysis, and the
percentage change in the beta coefficients or log-ORs
for the interaction effect are shown. Both analyses
involved fitting a logistic regression model adjusting for
potential confounders (age at diagnosis; education; race;
caloric intake; smoking status; and BMI). To impute
values for genotype, these confounders as well as any
variables related to missingness were used. These possi-
ble auxiliary variables included: having ever breastfed;
having ever used hormone replacement therapy; having
ever used oral contraceptives; ever having a mammo-
gram; income level; and having benign breast disease.
Terry et al. previously reported a two-fold association
(OR = 2.3, 95% CI 1.3-4.0) for moderate alcohol con-
sumption (15-30 g/day) for fast metabolizers using a CC
approach. MI resulted in a 39% reduction in the coeffi-
cient (OR = 1.7, 95% 1.0-2.8) [19]. MI yielded parameter
estimates that were smaller and closer to the null than
those obtained by CC, where the percentage change in

the beta coefficients ranged from 17% to > 100%, and
the median percentage change was 31%.

Conclusions
Studies of molecular epidemiology often involve collect-
ing data on biomarkers. Issues with missing data arise
when data are not fully observed for all subjects
included in a study. The most common approach to
analyzing these data is CC analysis [1-4], which has the
advantage of computational ease but can result in esti-
mates that are biased and inefficient. Using missing data
methods in analyses, therefore, needs to become more
customary. Standard MI is simple to implement and
accessible but not recommended when the data are sus-
pected to be NMAR. For example, while Taylor and col-
leagues promote using MI to reduce non-response bias
in epidemiologic studies, they recommend doing so only
when the MAR assumption is likely to hold [21]. In
molecular epidemiology studies, however, one may

Table 4 Impact of Nature of Missingness With Auxiliary Relationship Based on Data from LIBSCP. (Continued)

Effect of Alcohol Exposure for Those without Fast Genotype
(True effect = 2.0)

Full 2.008 0.176 0.008 0.032 0.780 94.4 (93.0,95.8)

CC 2.006 0.202 0.006 0.041 1.000 95.1 (93.8,96.4)

MI 1.621 0.199 -0.379 0.169 4.183 50.5 (47.4,53.6)

Interaction Effect (True effect = 1.5) Full 1.509 0.192 0.009 0.037 0.743 95.2 (93.9,96.5)

CC 1.505 0.223 0.005 0.050 1.000 95.6 (94.3,96.9)

MI 1.061 0.217 -0.439 0.219 4.392 44.5 (41.4,47.6)

Results From Fitting Full, Complete-Case, and Multiple Imputation Models to 1000 Simulated Data Sets With a Sample Size of 2058 Where the Covariate of
Interest and as a Result the Interaction Term Were Missing for Approximately 20% of Subjects.

Table 5 Results From Fitting Complete-Case and Multiple Imputation Models to Data from the Long Island Breast
Cancer Study Project [19] Assessing the Effect of a Gene-Environment Interaction where m = 10

Genotype/Alcohol Status ORaCC
N = 2,063
(95% CI)

ORaMI

N = 3,064;m =10
(95% CI)

% Change in bCoefficient

Slow-Intermediate/Non-alcohol consumer 1.00 1.00

Fast/Non-alcohol consumer 1.18
(0.88, 1.58)

1.14
(0.88, 1.48)

22.11%

Slow-Intermediate/< 15 grams 1.16
(0.89, 1.50)

1.11
(0.89, 1.39)

25.38%

Fast/< 15 grams 0.92
(0.69, 1.23)

0.95
(0.75, 1.20)

30.89%

Slow-Intermediate/15-30 grams 1.49
(0.99, 2.25)

1.27
(0.89, 1.82)

40.23%

Fast/15-30 grams 2.32
(1.35, 4.01)

1.68
(1.03, 2.75)

38.68%

Slow-Intermediate/30+ grams 0.72
(0.43, 1.21)

0.77
(0.49, 1.19)

17.40%

Fast/30+ grams 0.98
(0.52, 1.87)

0.86
(0.47, 1.56)

> 100%

CC = Complete Case; CI = Confidence Interval; MI = Multiple Imputation;OR = Odds Ratio
aEstimates are adjusted for age at diagnosis, education, race, caloric intake, smoking status and body mass index
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Table 6 Impact of Percentage Missing Under Conditions 1, 2, and 3.

a. Condition 1a

Scenario Variable* Method Mean b Mean SE Mean Bias MSE RelMSE Coverage

A1: 20% missing

X1 (X2 = 0) (True effect = 1.0) Full 1.002 0.211 0.002 0.044 0.543 95.0 (93.6,96.4)

CC 1.000 0.284 -0.000 0.081 1.000 95.8 (94.6,97.0)

MI 1.062 0.230 0.062 0.052 0.644 95.9 (94.7,97.1)

X1 (X2 = 1) (True effect = 2.5) Full 2.549 0.378 0.049 0.166 0.068 95.4 (94.1,96.7)

CC 2.713 4.822 0.213 2.436 1.000 97.0 (95.9,98.1)

MI 2.543 0.426 0.043 0.178 0.072 96.8 (95.7,97.9)

Interaction (True effect = 1.5) Full 1.547 0.434 0.047 0.204 0.082 95.7 (94.4,97.0)

CC 1.713 4.894 0.213 2.503 1.000 96.7 (95.6,97.8)

MI 1.482 0.483 -0.018 0.205 0.082 96.1 (94.9,97.3)

A2: 30% missing

X1 (X2 = 0) (True effect = 1.0) Full 1.003 0.211 0.003 0.044 0.358 94.6 (93.2,96.0)

CC 0.992 0.345 -0.008 0.122 1.000 95.0 (93.6,96.4)

MI 1.095 0.245 0.095 0.065 0.531 94.9 (93.5,96.3)

X1 (X2 = 1) (True effect = 2.5) Full 2.558 0.379 0.058 0.146 0.014 97.2 (96.2,98.2)

CC 3.288 25.207 0.788 10.689 1.000 98.5 (97.7,99.3)

MI 2.557 0.462 0.057 0.178 0.017 98.3 (97.5,99.1)

Interaction (True effect = 1.5) Full 1.555 0.435 0.055 0.195 0.018 96.1 (94.9,97.3)

CC 2.295 25.290 0.795 10.904 0.018 96.1 (94.9,97.3)

MI 1.462 0.515 -0.038 0.219 0.020 97.8 (96.9,98.7)

A3: 40% missing

X1 (X2 = 0) (True effect = 1.0) Full 1.020 0.211 0.020 0.045 0.258 95.6 (94.3,96.8)

CC 0.991 0.411 -0.009 0.175 1.000 95.5 (94.2,96.8)

MI 1.137 0.263 0.137 0.083 0.474 94.1 (92.6,95.6)

X1 (X2 = 1) (True effect = 2.5) Full 2.540 0.377 0.040 0.140 0.006 96.6 (95.5,97.7)

CC 4.121 64.794 1.621 23.920 1.000 96.5 (95.4,97.6)

MI 2.536 0.489 0.036 0.177 0.007 97.5 (96.5,98.5)

Interaction
(True effect = 1.5)

Full 1.520 0.433 0.020 0.191 0.008 96.0 (94.8,97.2)

CC 3.131 64.890 1.631 24.283 1.000 97.0 (95.9,98.1)

MI 1.399 0.538 -0.101 0.220 0.009 97.2 (96.2,98.2)

b. Condition 2b

Scenario Variable Method Mean b Mean SE Mean Bias MSE RelMSE Coverage

A4: 20% missing

X1 (X2 = 0) (True effect = 1.0) Full 1.007 0.108 0.007 0.012 0.590 95.5 (94.2,96.8)

CC 1.010 0.147 0.010 0.021 1.000 95.9 (94.7,97.1)

MI 1.059 0.115 0.059 0.017 0.820 92.5 (90.9,94.1)

X1 (X2 = 1) (True effect = 2.5) Full 2.552 0.279 0.052 0.089 0.909 93.7 (92.2,95.2)

CC 2.548 0.298 0.048 0.098 1.000 93.4 (91.9,94.9)

MI 2.593 0.281 0.093 0.095 0.966 94.5 (93.1,95.9)

Interaction
(True effect = 1.5)

Full 1.544 0.300 0.044 0.102 0.872 93.6 (92.1,95.1)

CC 1.538 0.332 0.038 0.117 1.000 94.0 (92.5,95.5)

MI 1.534 0.304 0.034 0.101 0.863 94.0 (92.5,95.5)

A5: 30% missing

X1 (X2 = 0) (True effect = 1.0) Full 1.003 0.108 0.003 0.012 0.437 94.5 (93.1,95.9)

CC 1.008 0.168 0.008 0.027 1.000 94.6 (93.2,96.0)

MI 1.079 0.118 0.079 0.020 0.741 92.4 (90.8,94.0)

X1 (X2 = 1) (True effect = 2.5) Full 2.532 0.277 0.032 0.078 0.798 95.7 (94.4,97.0)

CC 2.529 0.317 0.029 0.098 1.000 96.2 (95.0,97.4)

MI 2.612 0.284 0.112 0.091 0.928 95.6 (94.3,96.9)
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Table 6 Impact of Percentage Missing Under Conditions 1, 2, and 3. (Continued)

Interaction
(True effect = 1.5)

Full 1.529 0.297 0.029 0.091 0.731 95.4 (94.1,96.7)

CC 1.521 0.359 0.021 0.125 1.000 94.8 (93.4,96.2)

MI 1.533 0.308 0.033 0.093 0.743 95.4 (94.1,96.7)

A6: 40% missing

X1 (X2 = 0) (True effect = 1.0) Full 1.005 0.108 0.005 0.011 0.330 95.8 (94.6,97.0)

CC 1.007 0.197 0.007 0.035 1.000 95.9 (94.7,97.1)

MI 1.109 0.123 0.109 0.026 0.749 87.5 (85.5,89.5)

X1 (X2 = 1) (True effect = 2.5) Full 2.551 0.279 0.051 0.081 0.620 95.7 (94.4,97.0)

CC 2.563 0.355 0.063 0.131 1.000 96.2 (95.0,97.4)

MI 2.675 0.295 0.175 0.112 0.852 94.3 (92.9,95.7)

Interaction
(True effect = 1.5)

Full 1.547 0.300 0.047 0.094 0.563 95.1 (93.8,96.4)

CC 1.557 0.406 0.057 0.168 1.000 95.3 (94.0,96.6)

MI 1.565 0.319 0.065 0.098 0.588 96.9 (95.8,98.0)

c. Condition 3c

Scenario Variable Method Mean b Mean SE Mean Bias MSE RelMSE Coverage

A7: 20% missing

X1 (X2 = 0) (True effect = 1.0) Full 1.012 0.108 0.012 0.012 0.076 94.7 (93.3,96.1)

CC 0.616 0.119 -0.384 0.162 1.000 11.9 (9.9,13.9)

MI 0.999 0.109 -0.001 0.012 0.077 94.3 (92.9,95.7)

X1 (X2 = 1) (True effect = 2.5) Full 2.549 0.279 0.049 0.080 0.667 96.1 (94.9,97.3)

CC 2.320 0.289 -0.180 0.120 1.000 87.1 (85.0,89.2)

MI 2.551 0.280 0.051 0.080 0.666 96.2 (95.0,97.4)

Interaction
(True effect = 1.5)

Full 1.537 0.300 0.037 0.091 0.635 96.1 (94.9,97.3)

CC 1.704 0.313 0.204 0.143 1.000 92.6 (91.0,94.2)

MI 1.552 0.301 0.052 0.092 0.642 95.7 (94.4,97.0)

A8: 30% missing

X1 (X2 = 0) (True effect = 1.0) Full 1.006 0.108 0.006 0.012 0.027 95.0 (93.6,96.4)

CC 0.331 0.127 -0.669 0.466 1.000 0.3 (0,0.6)

MI 0.983 0.110 -0.017 0.013 0.028 95.0 (93.6,96.4)

X1 (X2 = 1) (True effect = 2.5) Full 2.528 0.277 0.028 0.075 0.179 95.8 (94.6,97.0)

CC 1.927 0.299 -0.573 0.419 1.000 48.6 (45.5,51.7)

MI 2.492 0.277 -0.008 0.072 0.171 95.6 (94.3,96.9)

Interaction
(True effect = 1.5)

Full 1.522 0.297 0.022 0.084 0.743 96.0 (94.8,97.2)

CC 1.596 0.325 0.096 0.113 1.000 95.7 (94.4,97.0)

MI 1.509 0.298 0.009 0.081 0.713 96.1 (94.9,97.3)

A9: 40% missing

X1 (X2 = 0) (True effect = 1.0) Full 1.007 0.108 0.007 0.011 0.012 95.8 (94.6,97.0)

CC 0.027 0.139 -0.973 0.966 1.000 0.0 (0.0,0.0)

MI 0.968 0.110 -0.032 0.013 0.013 94.1 (92.6,95.6)

X1 (X2 = 1) (True effect = 2.5) Full 2.537 0.277 0.037 0.079 0.092 95.6 (94.3,96.9)

CC 1.627 0.312 -0.873 0.864 1.000 23.1 (20.5,25.7)

MI 2.461 0.276 -0.039 0.073 0.085 95.4 (94.1,96.7)

Interaction
(True effect = 1.5)

Full 1.531 0.298 0.031 0.089 0.683 96.1 (94.9,97.3)

CC 1.600 0.342 0.100 0.130 1.000 95.2 (93.9,96.5)

MI 1.493 0.297 -0.007 0.081 0.627 96.9 (95.8,98.0)

Results From Fitting Full, Complete-Case, and Multiple Imputation Models to 1000 Simulated Data Sets With a Sample Size of 1000 Where the Covariate of
Interest and as a Result the Interaction Term Were Missing for Some Subjects and the Auxiliary Information Was Strong.
aCondition 1: X1 is 7.4 times more likely to be missing if X1 = 1, where X1 is binary
bCondition 2: Extreme values of X1 are more likely to be missing (probability of missing is a quadratic function of X1 or the log odds of missing X1 = g 0+g 1 X1
+ g 2 X12, where g 1 = -1 and g 2 = 2), where X1 is continuous
cCondition 3: A 1-unit increase in X1 corresponds to a 7.4 times decrease in the probability of missing for controls, but a 7.4 times increase for cases, where X1 is
continuous
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suspect that the data are NMAR or one may incorrectly
assume the data are MAR. In addition, many molecular
epidemiology studies evaluate interaction effects, for
which the bias and inefficiency of CC estimates have
not been fully characterized. Our goal, therefore, was to
characterize the performance under CC and to investi-
gate standard MI, a method that is nearly as easy to
implement and as accessible as CC, specifically in the
context of assessing interaction effects when one of the
predictors is NMAR.

Characterization of Performance of CC Analysis
Biased and inefficient estimates from the CC approach
were observed in our simulation studies, indicating a
strong need for missing data methods. The extent to
which they were observed, however, varied by the nature
of missingness. When missingness is a function of the
covariate only and not of the outcome (as in conditions
1 and 2) the performance of CC methods largely suf-
fered in terms of efficiency loss. This loss in efficiency
increased as the percentage missing increased from 20-
40% (results shown in Table 6: Appendix B). Specifically,
for condition 1, the MSE from the CC analysis was 12
times that of the full model when only 20% are missing
and 125 times that of the full model when 40% are
missing. For condition 2, the MSE of CC relative to the
full model increased from 1.15 (when 20% are missing)
to 1.78 (when 40% are missing). When missingness is a
function of both the covariate and outcome (as in con-
dition 3), the bias from CC was the most dramatic
where it underestimated the effect of X1|X2 = 0 and
overestimated the interaction effect.
Comparison of MI and CC Approaches in the Simulation
Studies
Differences between MI and CC analyses varied by both
the nature of the missingness and the strength of auxili-
ary information. Under all conditions, when auxiliary
information is strong, MI outperformed CC. Interest-
ingly, however, under certain conditions MI gave results
that were more misleading than CC. Specifically, when
large values of the covariate are more likely to be miss-
ing under a realistic set of auxiliary variables, MI was
more biased than CC and underestimated interaction
effects. Also, when extreme values are more likely to be
missing and auxiliary information is not strong, MI was
more misleading than CC. MI was superior to CC, how-
ever, when missingness relates to both the covariate and
the outcome even under moderate and realistic sets of
auxiliary variables, where CC overestimated interaction
effects.
Application of MI and CC Approaches to LIBCSP
In the LIBCSP example, data were not MCAR as blood
donation was related to a variety of observed factors
[19]. We suspected that the data may be NMAR as

having the genotype for fast metabolism was related to
alcohol intake, and alcohol intake was associated with
providing a blood sample. If after conditioning on alco-
hol intake, data on metabolism status were more likely
to be missing for fast metabolizers (i.e., if other unmea-
sured features related to metabolism correlated with
missingness) the data would be NMAR. While inference
was similar between the two analytic approaches (the
overall interaction effect was not statistically significant
by either method) and consistent with previous findings
[22,23], MI estimates were attenuated toward the null
relative to CC. If missing genotype were related to
observed features only, we would have more faith in the
MI-based results as they rely on a more flexible assump-
tion about the missingness than the CC method, which
relies on an assumption shown to be violated in this
case. Based on the findings of our simulation study,
however, if genotype is also more likely to be missing
for fast metabolizers (condition 1), we may be more
likely to believe our CC results. If, however, missing
genotype were to additionally relate to both genotype
values and case-control status (condition 3), we may be
more likely to believe the MI results. It makes sense in
cases when CC and MI results are discrepant to present
both analyses. The analysis that corresponds to the most
plausible set of assumptions should serve as the primary
analysis. Furthermore, a more comprehensive sensitivity
analysis that presents results by varying assumptions
about missingness can be performed using MI and is
discussed in greater detail below.
MI, the MAR Assumption, and Its Relationship to Auxiliary
Variables
The intuition behind why MI performed well when aux-
iliary data were strong has to do with the MAR assump-
tion. Assuming the data are MAR is equivalent to
assuming that the information needed to impute the
missing values can be found in the observed data. This
is a more reasonable assumption when the data include
auxiliary information that is strongly related to the
unobserved data. Thus, even if one were to suspect the
data are NMAR, the presence of strong auxiliary infor-
mation may allow one to proceed with methods that
assume MAR.
Our simulation study is limited in that it does not

provide a precise definition for the strength of the rela-
tionship necessary for one to assume MAR. In our
simulations, for X1 continuous, a strong auxiliary vari-
able was one that had a correlation of 0.97 with X1. For
X1 binary, a strong relationship was defined as a 3 or 4
unit increase in the auxiliary variable when X1 was 1
versus 0. Although extreme and perhaps not likely out-
side of longitudinal studies, we felt it was important to
study the extremes (no association and strong associa-
tion) in addition to a moderate association (in our
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study, a correlation of 0.57 for X1 continuous and an
increase of 1 unit in Z for X1 = 1 versus 0 for X1
dichotomous). To enhance our understanding, we sup-
plemented the first set of simulations with another set
based on the real molecular epidemiology data set that
maintained the actual relationships between the variable
with missing data and other observed data. Table 2
shows the relationship on the fully observed data
between the variable missing data and observed vari-
ables. Not surprisingly, these relationships were altered
in the observed data sets, with some variables not
appearing to correlate as they did in the complete data,
demonstrating the challenge of assessing good auxiliary
variables from an observed data set. We therefore
recommend coupling observations from the data with a
priori knowledge when making assumptions about aux-
iliary relationships. Below we give specific guidelines to
use in practice.
Practical Considerations
For detailed guidelines, we refer the reader to a recent
study on the handling of missing data for molecular epi-
demiology studies, where Desai and colleagues provide
greater details on the steps involved in a data analysis in
the presence of missing data [4]. Below we emphasize
some key points.
Making Plausible Assumptions The first step when
doing an analysis in the presence of missing data is to
consider plausible assumptions about the missing data
mechanism or reasons why the data may be missing. As
the data themselves can only indicate whether the
MCAR assumption should be ruled out, this will largely
involve drawing on strong a priori knowledge. If there is
no evidence that the MCAR assumption is violated
(through a simple comparison of features between those
with and without the missing variable(s)) and if based
on clinical understandings, there is no reason to suspect
the data are NMAR, MCAR may be assumed. As men-
tioned above, assuming the data are MAR is equivalent
to assuming what needs to be learned about the missing
data can be gleaned from the observed data. Thus, even
if the data are NMAR, the presence of a strong auxiliary
variable may make the MAR assumption reasonable.
Similarly, even if MAR is more plausible than NMAR,
one needs to consider which auxiliary variables allow
this assumption to reasonably hold.
Choosing Appropriate Analytic Tools A CC analysis
should be performed in all cases. Additional tools, how-
ever, should be used and may serve as the primary ana-
lysis depending on the assumptions that are most likely.
If the proportion missing is small (say less than 10%), a
CC analysis should suffice. If the proportion missing is
larger and there is evidence the data are not MCAR,
one should incorporate a missing data method in addi-
tion to performing a CC analysis. If MAR is plausible or

NMAR is suspected in the presence of strong auxiliary
variables, standard MI is a reasonable choice. Otherwise,
as we saw in the simulation study, standard MI can be
misleading and under certain conditions, worse than CC
methods. MI, with the missing data mechanism expli-
citly specified, such as pattern mixture models or selec-
tion models, is an appropriate choice in these situations
and is discussed in greater detail in other sources [11].
Such an approach requires making explicit assumptions
about the nature of missingness.
Making Use of Auxiliary Variables As mentioned
above, the choice of which auxiliary variables to include
plays an important role in estimation performance of
MI and the MAR assumption. In simulation studies
described by Collins et al. [24], where this very issue
was assessed for the MAR case, being more inclusive
even when doubtful of the usefulness of some auxiliary
variables resulted in increased efficiency and reduced
bias.
Performing a Sensitivity Analysis A nice feature of MI
is its ability to incorporate the uncertainty of assump-
tions into the results, where the assumptions may
involve the missing data mechanism (NMAR and MAR)
as well as which auxiliary variables to include. One
should perform a sensitivity analysis that involves pre-
senting results using different subsets of auxiliary vari-
ables in the MI analysis, or in the case where MI is used
after explicitly modeling the missing data mechanism,
findings resulting from various assumptions of the miss-
ing data mechanism that should include multiple models
under the NMAR mechanism. This will give a sense of
the robustness of the results. The CC analysis should be
included among these. If results across analyses differ,
the investigator must decide which sets of assumptions
are most plausible. Additionally, one can average over
the resulting findings to provide one summary result
that accounts for the uncertainty of the assumptions
involving the missing data mechanism and/or choice of
auxiliary variables.
Summary In summary, molecular epidemiology studies
face a particularly challenging missing data problem in
that the majority of these studies will be missing data
on the key variable of interest, the biomarker. While it
may seem sensible to study only those with the mea-
sured biomarker, we argue the importance of including
those who would be eligible for study despite the miss-
ing biomarker. At the very least, we urge comparison of
features between those with and without missing data
and strongly encourage the incorporation of missing
data methods into the analysis when it is warranted.
More specifically, if these comparisons indicate the data
are not MCAR, and MAR seems plausible, we highly
recommend use of standard MI. Even in cases where
the data are MCAR, one can benefit in efficiency from
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MI. If it is likely that the data are NMAR and one can
assume the strong presence of auxiliary information,
standard MI may still be a reasonable estimation-enhan-
cing tool. Otherwise, MI that models the missing data
mechanism is a possibility. In all cases, a useful feature
of MI is that it allows for incorporation of uncertainty
of the missing data mechanism into the results.

APPENDIX A: STATA Code for Implementing MI
/* case is a binary indicator for case/control status, x1
and x2 are binary variables, where x1 is missing data on
20% of subjects and is NMAR and z is a continuous
auxiliary variable */
/*Read in data set where data were generated under

condition 1*/

insheet using “~/scen1.csv”,
clear
/* Method 1 for Imputing Interaction Effects: Gener-
ate interaction term first and then impute */

/*Create Interaction term*/

gen theint = x1*x2

/*Use ICE to fit imputation model and create 10
imputed data sets*/

ice case x1 x2 theint z, saving(simimpute.dta) m (10)
replace

/*Read in data set containing all 10 imputed data
sets*/

use simimpute.dta, clear

/*Use MICOMBINE to fit the desired scientific model
and combine results across 10 data sets*/

micombine logit case x1 x2 theint
/* Method 2 for Imputing Interaction Effects: Impute
first then create interaction term as is done in pas-
sive imputation */

/*Create Interaction term*/

gen theint = x1*x2

/*Use ICE to fit imputation model and create 10
imputed data sets*/
/* Use passive option to implement Method 2 for

imputing interaction term */

ice case x1 x2 theint z, saving (simimpute.dta) m
(10) passive (theint:x1*x2) replace

/*Read in data set containing all 10 imputed data
sets*/

use simimpute.dta, clear

/*Use MICOMBINE to fit the desired model and com-
bine results across 10 data sets*/

micombine logit case x1 x2 theint
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