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Abstract

This paper describes how to fit an additive Poisson model using standard software. It is illustrated with SAS code,
but can be similarly used for other software packages.

Most epidemiological researchers analyze their data
using multiplicative models, such as the Cox’ Propor-
tional Hazard Model, or logistic regression. These mod-
els assume that the risk (or the incidence, or the odds)
of a disease will be multiplied by a factor when a parti-
cular exposure is present. This implies that the effect of
two different exposures on the risk will be multiplica-
tive. For instance, if a first exposure increases a baseline
risk of 1 with 30% to 1.3, and another exposure doubles
the risk to 2, the risk in those with both exposures will
be 1.3*2 = 2,6. In some situations, however, additive
models, in which risk differences from different expo-
sures are added together, might be more appropriate. In
the example given above, in an additive model the first
exposure will add a risk of 0.3 to the baseline risk of 1,
and the second one will add a risk of 1. Subjects having
both exposures will under the additive model have a
risk of 1+0.3+1 = 2.3.
Note that the term “additive models” is also used for a

type of statistical models where non-parametric terms
are added to the linear predictor of a model (generalized
additive models [1]). This type of models is not an addi-
tive model in the sense that we use this term here.
An example of a situation where an additive model is

more appropriate, is when additive effects are thought
to agree more with the underlying causal mechanism
[2]. For instance, when looking at numbers of deaths, it
is not logical to assume that safety policies aimed at pre-
vention of highway accidents will prevent more deaths
in those with a high cardiovascular risk than in those
with a low cardiovascular risk, which is what a multipli-
cative model would imply. Also, with continuous vari-
ables a multiplicative model implies an exponential

relation between dose and response, where a linear rela-
tion might in many cases be more adequate. This is for
instance the case in ecological analysis, where the expo-
sure in the model is the frequency of exposure in a
population. In that case it is logical to assume that the
consequences of exposure will increase linearly with the
frequency of exposure. Lastly, for public health, absolute
risk differences are more important than relative differ-
ences, and additive models directly estimate those abso-
lute differences that one is interested in.
Spiegelman and Hertzmark [3] descibed the SAS state-

ments for fitting additive models in the case of binomial
data. Here we describe how to fit an additive Poisson
model in the case of counts with person time denomina-
tors. In contrast to the application Spiegelman and
Hertzmark dealt with, fitting an additive Poisson model
requires more changes to the statements used for fitting
a multiplicative Poisson model than only changing the
link = log to link = identity, which we observed that
some readers of their paper have been doing. Although
we use SAS GENMOD code for illustration, the princi-
ple can be applied generally in modules for generalized
linear models in other statistical software packages, and
to other SAS procedure that allow users to specify error
distributions and the link functions, such as GAM or
GLIMMIX.
In order to understand the code, we first explain

the mathematical background of the statements that
are needed, both for the multiplicative and the additive
Poisson model. Next, we will illustrate the fitting of the
additive model by running the code on an example.
Lastly, we will briefly discuss the fitting problems that
can occur using additive models.

SAS statements
The SAS statements needed to fit multiplicative Poisson
models are:
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Proc Genmod data = datasetname;
Model ncases = var1 var2 .../link = log dist = Poisson

offset = logpy;
Run;
Here ncases is the variable containing the number of

cases, logpy is the variable containing the log of the per-
son-time associated with these cases and var1 var2 ...
are the independent variables in the model.
The explanation of these statements, and especially of

the offset variable, is the following:
The multiplicative Poisson model for incidence is:

I e= + +( )  1 21 2var var  (1)

Here I is the incidence rate, and a and b are regres-
sion coefficients.
However, in PROC GENMOD with distribution=Pois-

son (and in similar modules in other software packages)
the dependent variable is not an incidence rates, but a
Poisson variable, i.e. a count. So it does not model the
incidence, but the number of cases. Therefore one first
has to rewrite (1) in terms of number of cases, using:

I
c
py

I c py= ⇔ ( ) = ( ) − ( )log log log (2)

where c is the number of cases, and py the person
time.
Taking the log on both sides of equation (1) and using

(2) yields:

log log var var .....c py( ) = ( ) + + +  1 21 2

This model then is fitted in PROC GENMOD, where
the log on the left side of the equation is represented by
link = log, and the term log(py) has to be included as an
offset: an offset is data-item that is included in the
model, and which can differ for each data-record. It can
be seen as a variable for which the regression coefficient
is constrained to be 1.
In the case of an additive Poisson model, the model to

be fitted is:

I
c
py

= = + +  1 21 2var var ..... (3)

A rewrite into a model for c yields in this case:

c py py py py= + + +  1 21 2var var ..... (4)

In GENMOD statements the model therefore will be:
Proc Genmod data = datasetname;
Model ncases = py py*var1 py*var2 .../link = identity

dist = Poisson noint;
Run;

Here the noint means that no intercept is fitted, as the
intercept of model (3) is represented by the coefficient
of the py-term. Similarly, in (3) is given by the regres-
sion coefficient for py*var1.
Similar statements are needed for an additive model

for the SMR, replacing person-time with expected cases,
as has been described before [4].

Example
To illustrate the model, we fitted an additive Poisson
model on 1993-2007 hospital admission data for coron-
ary heart disease in the Dutch population aged 50 to 85,
and related them to smoking rates. In such an ecological
setting, incidence of smoking will be linearly related to
the number of smokers in the population, and therefore
an additive Poisson model is required to fit these data.
The number of hospital admissions and population data
were taken from the public database of Statistics Neth-
erlands (statline.cbs.nl), stratified by gender and 5-year
age group. Population numbers were divided by 10,000
in order to let our coefficients represent incidence per
10,000. Smoking rates (percentages) were taken from
the trend publication of STIVORO (the Dutch expert
centre on tobacco control) [5], and were given for the
ages 50-64 and 65 and over. We also added a time
trend to the model in order not to ascribe time trends
to smoking effects, and entered age as categorical vari-
able (using 5-year age categories) in order to capture
any non-linear effects of age.
The SAS code used was:
proc genmod;
class age (ref = first)/param = ref;
model coronary_heart_disease = npop npop*year

npop*smokeperc npop*age npop*sex/noint link = iden-
tity dist = poisson lrci dscale;
run;
We added a scale factor to accommodate the over-dis-

persion in these data (option dscale), and the option
“lrci” that provides likelihood ratio confidence intervals,
which are more reliable than Wald intervals as they do
not depend on estimates of standard errors. We also
parameterized age as 0/1 dummy variables (option
param = ref), using the lowest age (50-54) as the refer-
ence category (option ref = first).
The SAS output of this model is shown in table 1.
Here the regression coefficient for npop represents the

baseline incidence fitted by the model, that is the inci-
dence (per 10.000 person-years) in 1993, in a non-smok-
ing male population aged 50-54. The coefficient of 0.977
for npop*smokeperc indicates that, according to this
analysis, an increase of the percentage of smokers with
1 percent will yield approximately 1 extra hospital
admission for CHD per 10.000 person-years. We would
like to stress that we include this example to illustrate
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the use of additive regression, and therefore kept the
model simple, too simple to be realistic. We therefore
discourage the drawing of any subject matter conclusion
from these results.

Non convergence
A common problem with the additive Poisson model is
that the model algorithm fails because for some records
the estimated number of cases becomes negative. It is
possible to work around this by using the programming
statements of PROC GENMOD to reprogramming the
fitting algorithm, changing negative fitted values into
small positive values before calculating their contribution
to the deviance. However, this is not recommended, as
failure to fit to model generally indicates that the model
does not fit the data. For instance, in epidemiology the
relation between incidence and age is often non-linear.
Including a linear age term in this situation automatically
leads to fitted values that are too low at young age, and,
given that the risks at low age are already low, they then
easily become negative. Modeling age in a more realistic
way (e.g. using polynomial terms or exp(age) as covariate)
might yield a model that fits the data better, and does not
cause errors.
Similarly, the additive model assumes that all variables

add a constant amount to the incidence rate, irrespec-
tive of the baseline risk (i.e. the risk the person has
because of his/her other risk factors). If in reality the
extra risk is lower in those with a low “baseline” risk,
then this assumption will fit too large a risk difference
in those with low baseline risk, and this might also lead
to expected negative risks. In this case a multiplicative
model might fit the data better. If a multiplicative effect
is only observed for one or two factors, while effects of
other factors are additive, one might try adding interac-
tion-terms of these factors. Alternatively, one could use
an additive multiplicative hazard model [6], where part

of the covariates have an additive effect on the baseline
hazard, while others have a multiplicative effect.
Careful modeling, starting with fitting a simple model

and extending the model gradually is recommended
when fitting problems occur, in order to find the aspects
of the data that causes the problem. Also, when the likeli-
hood from subsequent iterations is still increasing at the
moment the maximum number of iterations has been
reached, increasing the maximum number of iterations
can help. If this is not the case, using a less restrictive
convergence criterion could help (either CONVH or
CONVERGE, dependent on which convergence criteria
is not satisfied).
In our example, we used profile likelihood confidence

bounds for our parameters, as they require fewer assump-
tions than Wald confidence intervals. In additive models,
parameters can be close to the boundary of the parameter
space. In such cases, the assumption of a symmetric confi-
dence interval implied by the Wald interval may be unrea-
listic. Using the profile-likelihood interval, however, is not
always the remedy, as they might fail to converge in situa-
tions close to the boundary of the parameter space.
Although the fitting problems with additive models

are often regarded as a drawback of these models, one
can also regard them as an advantage, as it prevents fit-
ting of models that do not fit the data, and encourages
critical reflection on the way data should be modeled.
Hopefully, therefore, this contribution will promote use
of additive models in epidemiology, especially as abso-
lute rate differences are often more relevant for public
health then rate ratio’s.
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Table 1 Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate Standard Error 95% Confidence Limits Wald Chi-Square Pr > ChiSq

Intercept 0 0.0000 0.0000 0.0000 0.0000

npop 1 149.7511 20.5746 109.4631 190.0986 52.98 <.0001

npop*year 1 -0.9299 0.3403 -1.5973 -0.2637 7.47 0.0063

npop*smokeperc 1 0.9771 0.5512 -0.1011 2.0589 3.14 0.0763

npop*age 57 1 28.8675 3.2461 22.5631 35.2959 79.08 <.0001

npop*age 62 1 73.0960 4.2089 64.9437 81.4464 301.61 <.0001

npop*age 67 1 137.7084 8.5150 121.0384 154.4137 261.55 <.0001

npop*age 72 1 177.6408 9.0233 159.9900 195.3591 387.58 <.0001

npop*age 77 1 183.7507 9.5126 165.1688 202.4576 373.13 <.0001

npop*age 82 1 154.4523 9.9867 134.9989 174.1502 239.19 <.0001

Npop*sex 1 -135.249 5.2618 -145.558 -124.933 660.70 <.0001

Scale 0 10.1166 10.1166
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