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Abstract

Excess Years of Life Lost due to exposure is an important measure of health impact complementary
to rate or risk statistics. | show that the total excess Years of Life Lost due to exposure can be
estimated unbiasedly by calculating the corresponding excess Years of Potential Life Lost given
conditions that describe study validity (like exchangeability of exposed and unexposed) and
assuming that exposure is never preventive. | further demonstrate that the excess Years of Life
Lost conditional on age at death cannot be estimated unbiasedly by a calculation of conditional
excess Years of Potential Life Lost without adopting speculative causal models that cannot be
tested empirically. Furthermore, | point out by example that the excess Years of Life Lost for a
specific cause of death, like lung cancer, cannot be identified from epidemiologic data without
assuming non-testable assumptions about the causal mechanism as to how exposure produces
death. Hence, excess Years of Life Lost estimated from life tables or regression models, as
presented by some authors for lung cancer or after stratification for age, are potentially biased.
These points were already made by Robins and Greenland 1991 reasoning on an abstract level. In
addition, | demonstrate by adequate life table examples designed to critically discuss the Years of
Potential Life Lost analysis published by Park et al. 2002 that the potential biases involved may be
fairly extreme. Although statistics conveying information about the advancement of disease onset
are helpful in exposure impact analysis and especially worthwhile in exposure impact
communication, | believe that attention should be drawn to the difficulties involved and that
epidemiologists should always be aware of these conceptual limits of the Years of Potential Life Lost
method when applying it as a regular tool in cohort analysis.

Introduction occurred in a population. This information is used to
The most common epidemiological exposure-disease  measure the effect of exposure on disease by comparisons
effect measures are based on exposure or disease fre-  of such statistics. Although these measures have been
quency statistics, like risks or odds. Such frequency statis-  proven by practice and theory to be useful for this pur-

tics focus on the question whether an exposure or disease ~ pose, these frequency statistics are unable to reflect all
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causal effects of exposure in general (Greenland and Rob-
ins 1988 [3], Robins and Greenland 1989 [4]). One rea-
son stems from the fundamental fact that exposure and
disease are processes in time. In particular, if time plays a
major role in the link between exposure and disease
which is certainly true for long-term exposures and
chronic diseases, the question when a disease occurs
becomes of paramount relevance. It is important to note,
although not widely recognised, that the temporal shift of
the onset of disease caused by exposure falls beyond the
grasp of conventional statistics based on risks or odds, at
least in part. And this shortcoming is even true, albeit per-
haps counter-intuitive at first glance, when time-depend-
ent incidence rates are analysed by applying sophisticated
time-related statistical procedures like Cox modelling
with or without adjustment for time-dependent covariates
(Rothman and Greenland 1998 [5], Greenland 1999 [6],
Morfeld and Piekarski 2001 [7]). An illustrative example
of a Cox analysis in which the true probability of causa-
tion can not be derived correctly from the hazard ratio
estimate due to an incompletely reflected temporal shift
of the disease onset is given as an endnote (see endnote

1).

Therefore, alternative measures that focus more directly
on the time-shift of events or the time-shift of frequency
statistics would be most welcome. One such approach
aims at Years of Life Lost (YLL). Interestingly, even in the
title of one of the very first articles about Years of Life Lost,
Dempsey [8] expressed the opinion that important
aspects are missed by frequency statistics that could be
well covered by Years of Life Lost methodology. An over-
view of different explications of the concept of Years of
Potential Life Lost (YPLL) was given by Gardner and San-
born 1990 [9]. Moreover, the authors presented a unifying
conceptual framework for all these explications of YPLL.
In the past the method of Years of Potential Life Lost was
mainly used to describe the impact of different causes of
death on the survival of a population. This concept was
developed further trying to estimate the health effects of
specific exposures like smoking (Quellet et al. 1979 [10],
Centers for Disease Control 1989 [11]). For this purpose,
excess Years of Potential Life Lost due to exposure (e-
YPLL) were calculated in two steps: first, for each age
group the number of excess deaths among the exposed
was multiplied by the expected remaining years of life at
age at death, given no exposure, and second, these prod-
ucts were summed over all age categories.

Recently, this approach was extended by Park et al. 2002
[2] from SMR-based calculations to YPLL-estimates based
on Poisson regression models. The authors illustrated the
method with the Colorado Plateau Uranium Miners
Cohort (Lundin et al. 1971 [12]) estimating Years of Life
Lost per years worked as a uranium miner, in particular
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focusing on premature lung cancer deaths. A further appli-
cation was published by Bailer et al. 2003 [13] in an anal-
ysis of occupational fatal injuries.

However, in a letter to the editor, Morfeld 2003 [14]
claimed that the proposed method of estimating excess
Years of Life Lost due to exposure is potentially biased in
certain settings. The arguments presented were based on
the fundamental but abstract article written by Robins and
Greenland 1991 [1] who investigated the estimability of
expected Years of Life Lost due to a hazardous substance.
The critique raised in Morfeld 2003 [14] focused on the
unavoidable non-identifiability of the true excess Years of
Life Lost due to exposure after conditioning on age. How-
ever, the train of thoughts was presented in a rather con-
densed way, and obviously, the arguments were not easy
to digest (compare the response by Park et al. 2003 [15])

Here I try to explain the reasoning in detail. I expand the
critique demonstrating additionally that the e-YPLL
method is unjustified when applied to specific causes of
death like lung cancer - the main topic of Park et al. 2002
[2]. First, a general framework of causal thinking in epide-
miology is developed. This provides a background to ana-
lyse the validity of estimation procedures. In the second
Chapter the most elementary setting is used to introduce
the concepts of excess Years of Life Lost (e-YLL), Years of
Potential Life Lost (YPLL) and excess Years of Potential
Life Lost (e-YPLL). Then I show that e-YPLL is an unbiased
estimator of e-YLL when considering all causes of death.
In the third Chapter I prove the potential bias of the e-
YPLL estimator when conditioning on age. The proof is
given in an elementary setting. Moreover, I illustrate this
bias by a realistic life table example. The next Chapter
deals with the potential bias of e-YPLL when applied to
specific causes of death. This potential distortion is proved
in a simple epidemiological setting and demonstrated by
a realistic life table calculation. All life tables presented are
designed to discuss the analysis published by Park et al.
2002 [2]: their potentially biased applications of the Years
of Potential Life Lost method specific for lung cancer or
conditioned on periods of age. These tables are provided
in pdf-format as Additional files 1, 2 and 3. They are based
on two spreadsheets that are available as Additional files
4 and 5. The final Chapter deals with generalized scenar-
ios, alternative estimation procedures and a brief discus-
sion of the counterfactual approach to causality, even
including a hint at its important link to ontological con-
cepts in quantum mechanics.

To summarize, the main focus of this paper is first, on a
new and simple proof of the potential bias of the e-YPLL
method, and second, on an illustration of the degree of
potential bias involved by realistic life table examples.
These examples are constructed to critically discuss the e-
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YPLL analysis of a cohort of US uranium miners presented
by Park et al. 2002 [2]. The demonstrated limitation of the
e-YPLL approach was first proven rigorously in Jamie Rob-
ins's and Sander Greenland's 1991 [1] breakthrough arti-
cle on the estimability of expected years of life lost due to
a hazardous exposure. My didactic intention is to prove
and illustrate the problems involved on a much simpler
level of argumentation.

Analysis

I. Causal concepts: setting out a cohort gold standard
The aim of this paper is to scrutinise the validity of an
exposure effect statistic. Therefore, a gold standard is
needed against which the statistic can be evaluated to
identify and to measure potential biases. A comprehen-
sive cohort investigation is the most natural and purpose-
ful epidemiologic approach towards causality when
leaving aside all practical obstacles linked to this study
design (Rothman and Greenland 1998 [5]). To approxi-
mate the theoretical gold standard I suppose such a cohort
study as being free of selection biases, information errors,
losses to follow up, and inferential problems. However, to
define an optimal study scenario, I need to assure addi-
tionally that contrasts between response statistics of dif-
ferently exposed sub-cohorts measure correctly the true
effect of exposure. This "no confounding" assumption can
be visualised by exchangeable sub-cohorts, the most ele-
mentary one consisting of only one subject each.

These differently exposed but exchangeable subjects are
assumed to be like ideal twins: if exposure status had been
interchanged between both twins the health response of
the subject exposed to exposure level A would have been
exactly the response of his/her twin exposed to level B and
vice versa. This scenario of totally exchangeable twins is at
the bottom of the so called "counterfactual" approach to
causality (Lewis 1973 [8], Rubin 1974 [18], Maldonado
and Greenland 2002 [23]). It idealises the experimental
approach often applied in science by carefully preparing
test objects as similary as possible. The aim of this prepa-
ration is to measure the effect of an independent variable
on a dependent variable in a series of experiments as
unconfounded as possible. A mathematical outline of this
approach was developed by Neyman 1923 [16] and even
extended to non-experimental studies by Simon and
Rescher 1966 [17], Rubin 1974 [18] and Holland 1986
[19]. Overviews are given by Rosenbaum 1995 [20] and
Pearl 2000 [21]. In addition, Robins 1997 [22] applied
the counterfactual approach to conceptualise and analyse
scenarios with interdependent exposure variables,
response variables and other covariates that develop in
time. I will come back to a critical discussion of this fun-
damental approach to causality within the Discussion sec-
tion. At the moment it is sufficient to understand that the
gold standard for epidemiology is set out here as an ideal
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cohort study where exposure levels are allocated to n-
tuples of exchangeable subjects.

Hence, a gold standard scenario with a binary point expo-
sure assumes that each exposed subject has an ideal unex-
posed twin so that the exposed sub-cohort consists of all
the exposed twins and the unexposed sub-cohort com-
prises all the unexposed twins. Each causal comparison
between the sub-cohorts is based on the pairwise compar-
ison of the differently exposed but perfectly exchangeable
twins, at least indirectly (Maldonado and Greenland 2002
[23]). Obviously, even randomisation of exposure is
unnecessary to gain an unbiased estimate of the exposure
effect in such a gold standard study.

Note that the sub-cohort of unexposed twins constitutes
an ideal reference population. It is ideal with respect to 1)
being an optimal reference group to define the response of
the exposed cohort had it not been exposed (comparison
on the group level). Over and above this optimality crite-
rion, the reference is ideal with respect to 2) being an opti-
mal reference on the individual level: the response of each
exposed subject can be compared to the response of his/
her twin. Note that optimality criterion 2) entails optimal-
ity criterion 1). Whereas an external reference population
as often chosen in concrete epidemiological studies
(Rothman and Greenland 1998 [5], Breslow and Day
1987 [24]) can be supposed to fulfil criterion 1), at least
approximately, the optimality criterion 2) will not be
guaranteed. The reason is that the external reference pop-
ulation cannot provide an unexposed control partner on
the individual level. Thus, statistics like SMRs tailored for
analysis of such data do not rely on individual level com-
parison information. It is important to note that these sta-
tistics, due to their definition, could not make use of such
information even if it were available. Chapter 2 demon-
strates that the e-YPLL method can be applied unbiasedly
given optimality criterion 2) when applied to all causes of
deaths and without any stratification. Chapters 3 and 4
show that e-YPLL stratified on age or specified for certain
endpoints, like lung cancer, may be potentially biased
even if criterion 2) is assumed. This is so because e-YPLL
ignores the information about individual matching. How-
ever, this information is crucial as I will demonstrate in
Chapters 3 and 4. It follows that a stratified or specified
version of e-YPLL is potentially biased if it is used to ana-
lyse cohort studies in comparison to an external reference
population.

2. Years of Life Lost in an ideal study

2.1 Elementary situation with one pair of twins only

In this section I define excess Years of Life Lost (e-YLL) and
excess Years of Potential Life Lost (e-YPLL). Then I analyse
their relationship in the most simple setting of an ideal
study: a pair-matched cohort study with binary point
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YPLL(1)
b(1) t(1) d(1) pd(1)
twin 1
exposed
twin 2
unexposed
b(2) t(2) d(2)
time since birth / yr
Figure |

Two exchangeable twins | and 2. Birth at b(l) = b(2); alloca-
tion of exposure at t(l) = t(2): twin | exposed, twin 2 unex-
posed; death at d(I) < d(2) ; excess years of life lost due to
exposure e-YLL = d(2) - d(I); potential death time under no
exposure pd(1) = d(2); pd(2) = d(2). Years of potential life
lost YPLL(i) = pd(i) - d(i), i = 1,2; excess years of potential life
lost e-YPLL = I(pd(l) - d(1))-0(pd(2)-d(2)) = e-YLL.

exposure and a death process as outcome. The cohort is
assumed to consist of only two subjects, both being differ-
ently exposed but totally exchangeable twins. Figure 1
illustrates the scenario.

Both twins (1 and 2) were born on the same day, b(1) =
b(2). For simplicity I rescale the time axis and set b(1) =
b(2) = 0. Thus, time is identical with age throughout this
paper. The point exposure was allocated at an age of t(1)
=1(2) > b(1) = b(2) = 0: twin 1 was exposed, twin 2 was
never exposed. The twins died at ages d(1) > t(1) and d(2)
> t(2), respectively, and deaths are understood as deter-
ministic responses on the individual level. I assume the
exposed twin dies earlier or at the same date as the unex-
posed control twin, d(1) < d(2). Since both subjects are
perfectly exchangeable exposure was neutral or detrimen-
tal but not preventive. Exposure caused an advancement
of death by d(2) - d(1) years. Thus, the true excess Years of
Life Lost due to exposure are e-YLL = d(2) - d(1).

Next, I introduce potential death times pd(i), i = 1, 2. If
both subjects had been unexposed, I would have expected
them to die at pd(i) when relying upon the sub-set of the
reference population surviving at least to d(i). Since the
ideal reference population consists of the unexposed sub-
ject only, it immediately follows pd(1) = d(2) and pd(2)
=d(2). For this reason I set pd(1) and d(2) equal in Figure
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1. In general, methods like those proposed by BEIR IV
1988 [25] may be applied to the life table of the reference
population to estimate pd(i).

I now calculate life expectancy at age at death, YPLL(d(i)),
based on the reference population. These Years of Poten-
tial Life Lost are defined as YPLL(d(i)) = pd(i) - d(i).
Hence, YPLL(d(1)) equals pd(1) - d(1) =d(2) - d(1) = e-
YLL in this elementary setting. Obviously I have
YPLL(d(2)) = 0. Note that the identity of YPLL(d(1)) and
e-YLL relies on the elementary scenario and on the
exchangeability condition (together with other usual con-
ditions necessary for study validity).

Next, the effect estimate based on YPLL is introduced. The
effect estimate of exposure on health is defined as the
excess Years of Potential Life Lost, e-YPLL, which is the
sum of excess deaths among the exposed (i.e., the
observed exposed deaths minus the expected exposed
deaths) times Years of Potential Life Lost at age at death,
where the summation runs over all death times t (Park et
al. 2002 [2]):

e-YPLL = £ (observed(t) - expected(t)) YPLL(t).

Since the number of events is discrete this can always be
understood as

e-YPLL = X observed(d(i)) YPLL(d(i)) - ¥ expected(d(j))
YPLL(d(j)),

where the first sum is running over all death times d(i)
among the exposed twins and the second sum is running
over all death times d(j) among the unexposed twins.

The number of expected deaths among the exposed at age
t, expected(t), is calculated as the product of the risk
among the unexposed at t and the number of exposed at
t. This definition is analogous to the calculation of
exposed cases in an SMR analysis (Breslow and Day 1987
[24]):

baseline risk at t = # unexposed events at t / # unexposed
twins at t

expected(t) = (baseline risk at t) (# exposed twins at t).

If there are no unexposed twins at age t, I define
expected(t) to be zero.

Two risk sets are given in the simple scenario discussed
here: one exposed death occurs at d(1) and one unex-
posed death at d(2). At d(1) two subjects are under risk:
one exposed, the other unexposed. Since the unexposed
subject does not die at d(1) we get expected (d(1)) = (0/

Page 4 of 19

(page number not for citation purposes)



Epidemiologic Perspectives & Innovations 2004, 1:5

1) (1) cases among the one (1) exposed at d(1). At d(2)
no exposed but one unexposed subject is under risk. Since
the unexposed dies at d(2) this leads to expected(d(2)) =
(1/1) (0) cases among the zero (0) exposed at d(2).
Because one exposed death is observed at d(1) and zero
exposed deaths at d(2), i.e., observed(d(1)) = 1 and
observed(d(2)) = 0), it follows that

eYPLL =
YPLL(d(2))

(1 - (o/1)1) YPLL(d(1)) + (0 - (1/1)0)

= YPLL(d(1)) = e-YLL.

Of course, using the second representation of e-YPLL
given above one also gets

e-YPLL = 1(d(2) - d(1)) - 0(0) = d(2) - d(1) = e-YLL.

Hence, e-YPLL measures e-YLL unbiasedly, given the ele-
mentary scenario and the exchangeability condition
(together with other usual conditions necessary for study
validity).

2.2 Scenario with two pairs of twins

I have proven that e-YPLL is identical to e-YLL in an ele-
mentary setting of a cohort consisting of two exchangea-
ble subjects given appropriate conditions. But does this
hold if the cohort consists of two or more pairs of
exchangeable twins? For didactic reasons I will study a
cohort of two pairs of twins first. If we assume that expo-
sure is never preventive, we are left with only two princi-
pal scenarios when investigating the situation with two
pairs of twins. Indexing the pairs with a and b, the first
principal scenario supposes the death times of the four
subjects to be ordered as d,(1) < d,(2) < dy(1) < dy(2).
Obviously

e-YLL = d,(2) - d,(1) + dy(2) - dy(1).

Now I will calculate the Years of Potential Life Lost under
this scenario 1. For the sake of clarity, I add a second argu-
ment to the YPLL function denoting the pair under con-
sideration (a or b). To simplify the notation of YPLL, 1
drop the letter d that is superfluous since we analyse a sce-
nario without censoring (all subjects die under observa-
tion) (i.e., YPLL(a,1) = YPLL(d,(1))). The same simplified
notation is used to denote observed and expected num-
bers of cases. Following Gardner and Sanborn 1990 [9]
and using the ideal unexposed twins as the reference pop-
ulation the Years of Potential Life Lost at d,(1) are given as

YPLL (a,1) = d,(2) - d,(1) + 0.5 (dy(2) - d,(2)).
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This follows because all unexposed subjects survive at
least to d,(1) and half of the unexposed subjects survive at
least to d,(2). Analogous considerations yield

YPLL (a,2) = dy(2) - d,(2)

YPLL (b,1) = dy(2) - d,(1)

YPLL (b,2) = 0.

The observed cases among the exposed are

observed (a,1) =1

observed (b,1) = 1

and the expected, based on the unexposed, are given as
expected(a,2) = (1/2)(1) = 0.5

expected(b,2) = (1/1)(0) = 0.

Finally, this leads to

e-YPLL =d,(2) - d,(1) + 0.5 (d,(2) - d,(2)) -

-0.5 (dy(2) - d,(2)) +

+dy(2) - dy(1)

=e-YLL.

Therefore, the equality of e-YPLL and e-YLL is proven for
scenario 1. Next, I will investigate the other principal sce-
nario. In contrast to scenario 1 the second principal sce-
nario assumes the ordering d,(1) < d(1) <d,(2) < dy(2).
Given this scenario 2 we have

e-YLL = d,(2) - d,(1) + dp(2) - d,(1)

and

YPLL(a,1) =d,(2) - d,(1) + 0.5(dp(2) - d,(2))

YPLL(a,2) = dy,(2) - d,(2)

YPLL(b,1) =d,(2) - dy,(1) + 0.5(d(2) - d,(2))

YPLL(b,2) = 0.

Moreover, it follows

expected(a,2) = (1/2)0=0
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expected(b,2) = (1/1)0 = 0.
Therefore,

e-YPLL = (1)YPLL(a,1) + (1)YPLL(b,1) - (0)YPLL(a,2) -
(0)YPLL(b,2)

=d,(2) - dy(1) +dy(2) - dp(1) + dy(2) - da(2)
=d,(2)-d,(1) + dy(2) - dy(1) = e-YLL.

If we assume exposure to be never preventive all possible
configurations of the death times of both twins can be
mapped onto these two principal scenarios by renaming
the subjects accordingly. Thus e-YPLL = e-YLL is always
valid in such an ideal study with two pairs of twins,
although e-YPLL does not use the individual matching
information.

It is important to note the following: the true excess Years
of Life Lost can be calculated for each single pair as
"observed cases times potential years of life lost" minus
"expected cases times potential years of life lost" only in
scenario 1. This calculation is obviously invalid under sce-
nario 2. Only the total e-YPLL equals the total e-YLL in
both scenarios. Thus, scenario 2 indicates that we have to
be careful when a specified version of e-YPLL is applied to
estimate the excess Years of Life Lost given specific condi-
tions. Such an analysis is possible without bias if first,
optimality criterion 2 is fulfilled as introduced in the last
paragraph of Chapter 1, and second, if this individual
matching information is used in the analysis. However,
this kind of application is not justified if only criterion 1
holds. T will deal with this important issue of potential
biases in Chapters 3 and 4.

2.3 Scenario with n pairs of twins

A general proof of e-YPLL = e-YLL can be constructed
using the principle of mathematical induction. Hence,
this Chapter is a little bit technical. However, it may be
skipped on first reading because it is not necessary to
understand this proof to follow the arguments on poten-
tial biases developed in Chapters 3 and 4.

For the sake of clarity I introduce an additional functional
argument denoting the number of pairs in the study: e-
YLL(n) denotes the total excess Years of Life Lost due to
exposure in a study with n pairs of twins. To start the
inductive argument let us assume that e-YPLL = e-YLL has
already been proven to be valid in all studies with n pairs
of twins: e-YPLL(n) = e-YLL(n). This is the so called induc-
tion assumption. Now I add another pair of twins to the
study and ask whether e-YPLL(n+1) = e-YLL(n+1). If [ can
prove this equality then it follows from the principle of
mathematical induction that e-YPLL = e-YLL in all studies.

http://www.epi-perspectives.com/content/1/1/5

This extension is true because I already have demonstrated
that e-YPLL = e-YLL if n = 1 (start of induction).

To simplify the argument I now suppose the additional
pair to have an unexposed twin with minimal survival
among the unexposed n+1 subjects in the extended study.
This simplication can always be assumed without any loss
of generality for the following reason. If the added pair is
not the one with the minimal death time among the unex-
posed I focus on a pair that fulfils that condition. Of
course, such a pair always exists. Let us denote this pair
with x and the death times of its twins with d,(1) and
d,(2) accordingly. Regarding the other n pairs we know
that e-YPLL(n) = e-YLL(n) due to the induction assump-
tion. Hence it suffices to show that e-YPLL(n+1) = e-
YLL(n+1) holds in the scenario with the added pair being
pair x. This will prove the equation e-YPLL = e-YLL con-
vincingly for all studies with n+1 pairs.

Since we assume throughout that exposure is never pre-
ventive we know that d (1) < d,(2). This means that the
survival function of the exposed is the same in the
extended study group with n+1 pairs as in the study group
with n pairs, given we restrict the analysis to all exposed
subjects with age at death greater than or equal to d,(2).
Moreover, because d,(2) is minimal among the death
times of all unexposed subjects the survival function of
the unexposed is unchanged too. It follows that the Years
of Potential Life Lost (i.e., conditional life expectancy) cal-
culated from the unexposed reference population remains
the same for all exposed subjects with age at death greater
than or equal to d,(2). In addition, the expected number
of cases among the exposed calculated from the unex-
posed remains unchanged. Therefore, the difference
between e-YPLL(n+1) and e-YPLL(n) can only stem from
events occurring before d,(2). In the next step I will calcu-
late the change in e-YPLL caused by these events occurring
before d,(2).

I assume that k of the n exposed in the study with n pairs
may die before d,(2), 0 <k <n. Thus, there are n+1 - (k+1)
=n - k exposed subjects of the extended study group under
risk at d (2), and it follows expected(x,2)=(n-k)/(n+1).
The factor 1/(n+1) is to apply since the first event among
the n+1 unexposed subjects occurs at d,(2). The amount
of change in e-YPLL due to the additionally expected
deaths at d,(2) is therefore given by -[(n-k)/
(n+1)]YPLL(x,2). This is the first kind of contribution to
the change in e-YPLL I have to consider. The second kind
of contribution stems from the new exposed case dying at
d,(1). This amount of change is simply the same as the
Potential Years of Life Lost for this case: YPLL(x,1) = d,(2)
-d,(1) + [n/(n+1)]YPLL(x,2) where n/(n+1) is the proba-
bility to survive d,(2) given the unexposed reference pop-
ulation. The third kind of contribution to the difference
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n years n years
A N

da(1) dv(1)
twins1
exposed

scenariol

da(2) dy(2)
twins2
unexposed

da(1) do(1)
twins1
exposed

scenario 2

dv(2) da(2)
twins2 1
unexposed

Figure 2

Two scenarios of different exposure effects in two pairs of
twins. The pairs are indexed by a and b. As before, d (1),

d, (1) are death times of the exposed and d,(2), d,(2) are
death times of the unexposed twins. Scenario | assumes
causal effects of the same degree in both pairs, d,(2) - d,(1) =
dy(2) - dp(l) = n years. Scenario 2 supposes no effect in pair
b, dy(1) - d,(2) = 0 years, and a large one in pair a, d,(I) -
d,(2) = 2n years.

between e-YPLL(n+1) and e-YPLL(n) stems from the k
exposed cases dying before d,(2). Their potential survival
is shortened after introducing the new additional death at
d,(2). Note that the reference-based probability to die at
d,(2) is 1/(n+1) for each of these exposed cases. Therefore,
the Years of Potential Life Lost is reduced for each of these
cases by the amount [1/(n+1)]YPLL(x,2). This sums to [k/
(n+1)]YPLL(x,2) for all k exposed cases dying before
d,(2). Now I can calculate how e-YPLL changes when the
pair x is added to the n pairs:

e-YPLL(n+1) = e-YPLL(n) + d(2) - d (1) +

+ [n/(n+1) - (n-k)/(n+1) - k/(n+1)] YPLL(x,2)

= e-YPLL(n) + d,(2) - d(1)

- e-YLL(n) + d,(2) - d,(1)

=e-YLL(n+1).

The second to last equation follows from the induction
assumption. The last equality is based on the obvious fact
that the true excess Years of Life Lost increases by d,(2) -

d,(1) if the pair x is added to the n pairs I started with.
Hence, I have proven that e-YPLL equals e-YLL in all ideal
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studies consisting of pairs of exchangeable twins given
that exposure is never preventive. Note that the measures
are always calculated with respect to deaths from all
causes. It is remarkable that the equality e-YPLL = e-YLL
holds although e-YPLL does not make use of the individ-
ual matching information.

3. Non-identifiability of e-YLL conditional on age at death
I have shown in Chapter 2 that the total e-YLL of the
whole study group can be measured accurately by the total
e-YPLL provided the assumptions of an ideal study hold
including optimality criterion 2 (cf. last paragraph of
Chapter 1) and provided the analysed response is death
from all causes. However, this identity of e-YLL and e-
YPLL no longer holds if I am interested in e-YLL condi-
tional on age at death. To see why consider the scenarios
illustrated in Figure 2.

In both scenarios (Fig. 2) the total e-YLL's are identical
and thus, are also the total e-YPLL's. However, the e-YLL
conditional on age at death varies with the scenarios: the
Years of Life Lost due to exposure at d,(1) are smaller in
scenario 1 than in scenario 2 whereas it is vice versa at
di,(1). Irrespective of the scenario, the e-YPLL are always
calculated in the same way. Therefore, we get in both sce-
narios the same e-YPLL at d,(1) as well as the same e-YPLL
at dy(1). Note that the calculation of e-YPLL does not
make any use of the individual matching information.

Hence, the true excess Years of Life Lost conditional on
age at death are not identifiable without having access to
a perfect control twin or without supposing a specific
mechanism for how exposure causes death. Note that cri-
terion 1 alone - as defined in the last paragraph of Chap-
ter 1 and hopefully fulfilled in usual cohort data — does
not render the excess Years of Life Lost stratified on age at
death identifiable. Consequently, estimates based on e-
YPLL conditional on age at death are potentially biased in
all usual settings.

Next, I analyse a theoretical birth cohort of 100,000 men
to demonstrate this potential bias