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Abstract
Excess Years of Life Lost due to exposure is an important measure of health impact complementary
to rate or risk statistics. I show that the total excess Years of Life Lost due to exposure can be
estimated unbiasedly by calculating the corresponding excess Years of Potential Life Lost given
conditions that describe study validity (like exchangeability of exposed and unexposed) and
assuming that exposure is never preventive. I further demonstrate that the excess Years of Life
Lost conditional on age at death cannot be estimated unbiasedly by a calculation of conditional
excess Years of Potential Life Lost without adopting speculative causal models that cannot be
tested empirically. Furthermore, I point out by example that the excess Years of Life Lost for a
specific cause of death, like lung cancer, cannot be identified from epidemiologic data without
assuming non-testable assumptions about the causal mechanism as to how exposure produces
death. Hence, excess Years of Life Lost estimated from life tables or regression models, as
presented by some authors for lung cancer or after stratification for age, are potentially biased.
These points were already made by Robins and Greenland 1991 reasoning on an abstract level. In
addition, I demonstrate by adequate life table examples designed to critically discuss the Years of
Potential Life Lost analysis published by Park et al. 2002 that the potential biases involved may be
fairly extreme. Although statistics conveying information about the advancement of disease onset
are helpful in exposure impact analysis and especially worthwhile in exposure impact
communication, I believe that attention should be drawn to the difficulties involved and that
epidemiologists should always be aware of these conceptual limits of the Years of Potential Life Lost
method when applying it as a regular tool in cohort analysis.

Introduction
The most common epidemiological exposure-disease
effect measures are based on exposure or disease fre-
quency statistics, like risks or odds. Such frequency statis-
tics focus on the question whether an exposure or disease

occurred in a population. This information is used to
measure the effect of exposure on disease by comparisons
of such statistics. Although these measures have been
proven by practice and theory to be useful for this pur-
pose, these frequency statistics are unable to reflect all
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causal effects of exposure in general (Greenland and Rob-
ins 1988 [3], Robins and Greenland 1989 [4]). One rea-
son stems from the fundamental fact that exposure and
disease are processes in time. In particular, if time plays a
major role in the link between exposure and disease
which is certainly true for long-term exposures and
chronic diseases, the question when a disease occurs
becomes of paramount relevance. It is important to note,
although not widely recognised, that the temporal shift of
the onset of disease caused by exposure falls beyond the
grasp of conventional statistics based on risks or odds, at
least in part. And this shortcoming is even true, albeit per-
haps counter-intuitive at first glance, when time-depend-
ent incidence rates are analysed by applying sophisticated
time-related statistical procedures like Cox modelling
with or without adjustment for time-dependent covariates
(Rothman and Greenland 1998 [5], Greenland 1999 [6],
Morfeld and Piekarski 2001 [7]). An illustrative example
of a Cox analysis in which the true probability of causa-
tion can not be derived correctly from the hazard ratio
estimate due to an incompletely reflected temporal shift
of the disease onset is given as an endnote (see endnote
1).

Therefore, alternative measures that focus more directly
on the time-shift of events or the time-shift of frequency
statistics would be most welcome. One such approach
aims at Years of Life Lost (YLL). Interestingly, even in the
title of one of the very first articles about Years of Life Lost,
Dempsey [8] expressed the opinion that important
aspects are missed by frequency statistics that could be
well covered by Years of Life Lost methodology. An over-
view of different explications of the concept of Years of
Potential Life Lost (YPLL) was given by Gardner and San-
born 1990 [9]. Moreover, the authors presented a unifying
conceptual framework for all these explications of YPLL.
In the past the method of Years of Potential Life Lost was
mainly used to describe the impact of different causes of
death on the survival of a population. This concept was
developed further trying to estimate the health effects of
specific exposures like smoking (Quellet et al. 1979 [10],
Centers for Disease Control 1989 [11]). For this purpose,
excess Years of Potential Life Lost due to exposure (e-
YPLL) were calculated in two steps: first, for each age
group the number of excess deaths among the exposed
was multiplied by the expected remaining years of life at
age at death, given no exposure, and second, these prod-
ucts were summed over all age categories.

Recently, this approach was extended by Park et al. 2002
[2] from SMR-based calculations to YPLL-estimates based
on Poisson regression models. The authors illustrated the
method with the Colorado Plateau Uranium Miners
Cohort (Lundin et al. 1971 [12]) estimating Years of Life
Lost per years worked as a uranium miner, in particular

focusing on premature lung cancer deaths. A further appli-
cation was published by Bailer et al. 2003 [13] in an anal-
ysis of occupational fatal injuries.

However, in a letter to the editor, Morfeld 2003 [14]
claimed that the proposed method of estimating excess
Years of Life Lost due to exposure is potentially biased in
certain settings. The arguments presented were based on
the fundamental but abstract article written by Robins and
Greenland 1991 [1] who investigated the estimability of
expected Years of Life Lost due to a hazardous substance.
The critique raised in Morfeld 2003 [14] focused on the
unavoidable non-identifiability of the true excess Years of
Life Lost due to exposure after conditioning on age. How-
ever, the train of thoughts was presented in a rather con-
densed way, and obviously, the arguments were not easy
to digest (compare the response by Park et al. 2003 [15])

Here I try to explain the reasoning in detail. I expand the
critique demonstrating additionally that the e-YPLL
method is unjustified when applied to specific causes of
death like lung cancer – the main topic of Park et al. 2002
[2]. First, a general framework of causal thinking in epide-
miology is developed. This provides a background to ana-
lyse the validity of estimation procedures. In the second
Chapter the most elementary setting is used to introduce
the concepts of excess Years of Life Lost (e-YLL), Years of
Potential Life Lost (YPLL) and excess Years of Potential
Life Lost (e-YPLL). Then I show that e-YPLL is an unbiased
estimator of e-YLL when considering all causes of death.
In the third Chapter I prove the potential bias of the e-
YPLL estimator when conditioning on age. The proof is
given in an elementary setting. Moreover, I illustrate this
bias by a realistic life table example. The next Chapter
deals with the potential bias of e-YPLL when applied to
specific causes of death. This potential distortion is proved
in a simple epidemiological setting and demonstrated by
a realistic life table calculation. All life tables presented are
designed to discuss the analysis published by Park et al.
2002 [2]: their potentially biased applications of the Years
of Potential Life Lost method specific for lung cancer or
conditioned on periods of age. These tables are provided
in pdf-format as Additional files 1, 2 and 3. They are based
on two spreadsheets that are available as Additional files
4 and 5. The final Chapter deals with generalized scenar-
ios, alternative estimation procedures and a brief discus-
sion of the counterfactual approach to causality, even
including a hint at its important link to ontological con-
cepts in quantum mechanics.

To summarize, the main focus of this paper is first, on a
new and simple proof of the potential bias of the e-YPLL
method, and second, on an illustration of the degree of
potential bias involved by realistic life table examples.
These examples are constructed to critically discuss the e-
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YPLL analysis of a cohort of US uranium miners presented
by Park et al. 2002 [2]. The demonstrated limitation of the
e-YPLL approach was first proven rigorously in Jamie Rob-
ins's and Sander Greenland's 1991 [1] breakthrough arti-
cle on the estimability of expected years of life lost due to
a hazardous exposure. My didactic intention is to prove
and illustrate the problems involved on a much simpler
level of argumentation.

Analysis
1. Causal concepts: setting out a cohort gold standard
The aim of this paper is to scrutinise the validity of an
exposure effect statistic. Therefore, a gold standard is
needed against which the statistic can be evaluated to
identify and to measure potential biases. A comprehen-
sive cohort investigation is the most natural and purpose-
ful epidemiologic approach towards causality when
leaving aside all practical obstacles linked to this study
design (Rothman and Greenland 1998 [5]). To approxi-
mate the theoretical gold standard I suppose such a cohort
study as being free of selection biases, information errors,
losses to follow up, and inferential problems. However, to
define an optimal study scenario, I need to assure addi-
tionally that contrasts between response statistics of dif-
ferently exposed sub-cohorts measure correctly the true
effect of exposure. This "no confounding" assumption can
be visualised by exchangeable sub-cohorts, the most ele-
mentary one consisting of only one subject each.

These differently exposed but exchangeable subjects are
assumed to be like ideal twins: if exposure status had been
interchanged between both twins the health response of
the subject exposed to exposure level A would have been
exactly the response of his/her twin exposed to level B and
vice versa. This scenario of totally exchangeable twins is at
the bottom of the so called "counterfactual" approach to
causality (Lewis 1973 [8], Rubin 1974 [18], Maldonado
and Greenland 2002 [23]). It idealises the experimental
approach often applied in science by carefully preparing
test objects as similary as possible. The aim of this prepa-
ration is to measure the effect of an independent variable
on a dependent variable in a series of experiments as
unconfounded as possible. A mathematical outline of this
approach was developed by Neyman 1923 [16] and even
extended to non-experimental studies by Simon and
Rescher 1966 [17], Rubin 1974 [18] and Holland 1986
[19]. Overviews are given by Rosenbaum 1995 [20] and
Pearl 2000 [21]. In addition, Robins 1997 [22] applied
the counterfactual approach to conceptualise and analyse
scenarios with interdependent exposure variables,
response variables and other covariates that develop in
time. I will come back to a critical discussion of this fun-
damental approach to causality within the Discussion sec-
tion. At the moment it is sufficient to understand that the
gold standard for epidemiology is set out here as an ideal

cohort study where exposure levels are allocated to n-
tuples of exchangeable subjects.

Hence, a gold standard scenario with a binary point expo-
sure assumes that each exposed subject has an ideal unex-
posed twin so that the exposed sub-cohort consists of all
the exposed twins and the unexposed sub-cohort com-
prises all the unexposed twins. Each causal comparison
between the sub-cohorts is based on the pairwise compar-
ison of the differently exposed but perfectly exchangeable
twins, at least indirectly (Maldonado and Greenland 2002
[23]). Obviously, even randomisation of exposure is
unnecessary to gain an unbiased estimate of the exposure
effect in such a gold standard study.

Note that the sub-cohort of unexposed twins constitutes
an ideal reference population. It is ideal with respect to 1)
being an optimal reference group to define the response of
the exposed cohort had it not been exposed (comparison
on the group level). Over and above this optimality crite-
rion, the reference is ideal with respect to 2) being an opti-
mal reference on the individual level: the response of each
exposed subject can be compared to the response of his/
her twin. Note that optimality criterion 2) entails optimal-
ity criterion 1). Whereas an external reference population
as often chosen in concrete epidemiological studies
(Rothman and Greenland 1998 [5], Breslow and Day
1987 [24]) can be supposed to fulfil criterion 1), at least
approximately, the optimality criterion 2) will not be
guaranteed. The reason is that the external reference pop-
ulation cannot provide an unexposed control partner on
the individual level. Thus, statistics like SMRs tailored for
analysis of such data do not rely on individual level com-
parison information. It is important to note that these sta-
tistics, due to their definition, could not make use of such
information even if it were available. Chapter 2 demon-
strates that the e-YPLL method can be applied unbiasedly
given optimality criterion 2) when applied to all causes of
deaths and without any stratification. Chapters 3 and 4
show that e-YPLL stratified on age or specified for certain
endpoints, like lung cancer, may be potentially biased
even if criterion 2) is assumed. This is so because e-YPLL
ignores the information about individual matching. How-
ever, this information is crucial as I will demonstrate in
Chapters 3 and 4. It follows that a stratified or specified
version of e-YPLL is potentially biased if it is used to ana-
lyse cohort studies in comparison to an external reference
population.

2. Years of Life Lost in an ideal study
2.1 Elementary situation with one pair of twins only
In this section I define excess Years of Life Lost (e-YLL) and
excess Years of Potential Life Lost (e-YPLL). Then I analyse
their relationship in the most simple setting of an ideal
study: a pair-matched cohort study with binary point
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exposure and a death process as outcome. The cohort is
assumed to consist of only two subjects, both being differ-
ently exposed but totally exchangeable twins. Figure 1
illustrates the scenario.

Both twins (1 and 2) were born on the same day, b(1) =
b(2). For simplicity I rescale the time axis and set b(1) =
b(2) = 0. Thus, time is identical with age throughout this
paper. The point exposure was allocated at an age of t(1)
= t(2) > b(1) = b(2) = 0: twin 1 was exposed, twin 2 was
never exposed. The twins died at ages d(1) > t(1) and d(2)
> t(2), respectively, and deaths are understood as deter-
ministic responses on the individual level. I assume the
exposed twin dies earlier or at the same date as the unex-
posed control twin, d(1) ≤ d(2). Since both subjects are
perfectly exchangeable exposure was neutral or detrimen-
tal but not preventive. Exposure caused an advancement
of death by d(2) - d(1) years. Thus, the true excess Years of
Life Lost due to exposure are e-YLL = d(2) - d(1).

Next, I introduce potential death times pd(i), i = 1, 2. If
both subjects had been unexposed, I would have expected
them to die at pd(i) when relying upon the sub-set of the
reference population surviving at least to d(i). Since the
ideal reference population consists of the unexposed sub-
ject only, it immediately follows pd(1) = d(2) and pd(2)
= d(2). For this reason I set pd(1) and d(2) equal in Figure

1. In general, methods like those proposed by BEIR IV
1988 [25] may be applied to the life table of the reference
population to estimate pd(i).

I now calculate life expectancy at age at death, YPLL(d(i)),
based on the reference population. These Years of Poten-
tial Life Lost are defined as YPLL(d(i)) = pd(i) - d(i).
Hence, YPLL(d(1)) equals pd(1) - d(1) = d(2) - d(1) = e-
YLL in this elementary setting. Obviously I have
YPLL(d(2)) = 0. Note that the identity of YPLL(d(1)) and
e-YLL relies on the elementary scenario and on the
exchangeability condition (together with other usual con-
ditions necessary for study validity).

Next, the effect estimate based on YPLL is introduced. The
effect estimate of exposure on health is defined as the
excess Years of Potential Life Lost, e-YPLL, which is the
sum of excess deaths among the exposed (i.e., the
observed exposed deaths minus the expected exposed
deaths) times Years of Potential Life Lost at age at death,
where the summation runs over all death times t (Park et
al. 2002 [2]):

e-YPLL = Σ (observed(t) - expected(t)) YPLL(t).

Since the number of events is discrete this can always be
understood as

e-YPLL = Σ observed(d(i)) YPLL(d(i)) - Σ expected(d(j))
YPLL(d(j)),

where the first sum is running over all death times d(i)
among the exposed twins and the second sum is running
over all death times d(j) among the unexposed twins.

The number of expected deaths among the exposed at age
t, expected(t), is calculated as the product of the risk
among the unexposed at t and the number of exposed at
t. This definition is analogous to the calculation of
exposed cases in an SMR analysis (Breslow and Day 1987
[24]):

baseline risk at t = # unexposed events at t / # unexposed
twins at t

expected(t) = (baseline risk at t) (# exposed twins at t).

If there are no unexposed twins at age t, I define
expected(t) to be zero.

Two risk sets are given in the simple scenario discussed
here: one exposed death occurs at d(1) and one unex-
posed death at d(2). At d(1) two subjects are under risk:
one exposed, the other unexposed. Since the unexposed
subject does not die at d(1) we get expected (d(1)) = (0/

Two exchangeable twins 1 and 2Figure 1
Two exchangeable twins 1 and 2. Birth at b(1) = b(2); alloca-
tion of exposure at t(1) = t(2): twin 1 exposed, twin 2 unex-
posed; death at d(1) ≤ d(2) ; excess years of life lost due to 
exposure e-YLL = d(2) - d(1); potential death time under no 
exposure pd(1) = d(2); pd(2) = d(2). Years of potential life 
lost YPLL(i) = pd(i) - d(i), i = 1,2; excess years of potential life 
lost e-YPLL = 1(pd(1) - d(1))-0(pd(2)-d(2)) = e-YLL.

  b(1)                 t(1)                 d(1)           pd(1)

twin 1 
exposed 

twin 2 
unexposed 

   
b(2)     t(2)             d(2)

time since birth / yr 

YPLL(1) 
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1) (1) cases among the one (1) exposed at d(1). At d(2)
no exposed but one unexposed subject is under risk. Since
the unexposed dies at d(2) this leads to expected(d(2)) =
(1/1) (0) cases among the zero (0) exposed at d(2).
Because one exposed death is observed at d(1) and zero
exposed deaths at d(2), i.e., observed(d(1)) = 1 and
observed(d(2)) = 0), it follows that

e-YPLL = (1 - (0/1)1) YPLL(d(1)) + (0 - (1/1)0)
YPLL(d(2))

= YPLL(d(1)) = e-YLL.

Of course, using the second representation of e-YPLL
given above one also gets

e-YPLL = 1(d(2) - d(1)) - 0(0) = d(2) - d(1) = e-YLL.

Hence, e-YPLL measures e-YLL unbiasedly, given the ele-
mentary scenario and the exchangeability condition
(together with other usual conditions necessary for study
validity).

2.2 Scenario with two pairs of twins
I have proven that e-YPLL is identical to e-YLL in an ele-
mentary setting of a cohort consisting of two exchangea-
ble subjects given appropriate conditions. But does this
hold if the cohort consists of two or more pairs of
exchangeable twins? For didactic reasons I will study a
cohort of two pairs of twins first. If we assume that expo-
sure is never preventive, we are left with only two princi-
pal scenarios when investigating the situation with two
pairs of twins. Indexing the pairs with a and b, the first
principal scenario supposes the death times of the four
subjects to be ordered as da(1) ≤ da(2) ≤ db(1) ≤ db(2).
Obviously

e-YLL = da(2) - da(1) + db(2) - db(1).

Now I will calculate the Years of Potential Life Lost under
this scenario 1. For the sake of clarity, I add a second argu-
ment to the YPLL function denoting the pair under con-
sideration (a or b). To simplify the notation of YPLL, I
drop the letter d that is superfluous since we analyse a sce-
nario without censoring (all subjects die under observa-
tion) (i.e., YPLL(a,1) = YPLL(da(1))). The same simplified
notation is used to denote observed and expected num-
bers of cases. Following Gardner and Sanborn 1990 [9]
and using the ideal unexposed twins as the reference pop-
ulation the Years of Potential Life Lost at da(1) are given as

YPLL (a,1) = da(2) - da(1) + 0.5 (db(2) - da(2)).

This follows because all unexposed subjects survive at
least to da(1) and half of the unexposed subjects survive at
least to da(2). Analogous considerations yield

YPLL (a,2) = db(2) - da(2)

YPLL (b,1) = db(2) - db(1)

YPLL (b,2) = 0.

The observed cases among the exposed are

observed (a,1) = 1

observed (b,1) = 1

and the expected, based on the unexposed, are given as

expected(a,2) = (1/2)(1) = 0.5

expected(b,2) = (1/1)(0) = 0.

Finally, this leads to

e-YPLL = da(2) - da(1) + 0.5 (db(2) - da(2)) -

- 0.5 (db(2) - da(2)) +

+ db(2) - db(1)

= e-YLL.

Therefore, the equality of e-YPLL and e-YLL is proven for
scenario 1. Next, I will investigate the other principal sce-
nario. In contrast to scenario 1 the second principal sce-
nario assumes the ordering da(1) ≤ db(1) ≤ da(2) ≤ db(2).

Given this scenario 2 we have

e-YLL = da(2) - da(1) + db(2) - db(1)

and

YPLL(a,1) = da(2) - da(1) + 0.5(db(2) - da(2))

YPLL(a,2) = db(2) - da(2)

YPLL(b,1) = da(2) - db(1) + 0.5(db(2) - da(2))

YPLL(b,2) = 0.

Moreover, it follows

expected(a,2) = (1/2)0 = 0
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expected(b,2) = (1/1)0 = 0.

Therefore,

e-YPLL = (1)YPLL(a,1) + (1)YPLL(b,1) - (0)YPLL(a,2) -
(0)YPLL(b,2)

= da(2) - da(1) + da(2) - db(1) + db(2) - da(2)

= da(2) - da(1) + db(2) - db(1) = e-YLL.

If we assume exposure to be never preventive all possible
configurations of the death times of both twins can be
mapped onto these two principal scenarios by renaming
the subjects accordingly. Thus e-YPLL = e-YLL is always
valid in such an ideal study with two pairs of twins,
although e-YPLL does not use the individual matching
information.

It is important to note the following: the true excess Years
of Life Lost can be calculated for each single pair as
"observed cases times potential years of life lost" minus
"expected cases times potential years of life lost" only in
scenario 1. This calculation is obviously invalid under sce-
nario 2. Only the total e-YPLL equals the total e-YLL in
both scenarios. Thus, scenario 2 indicates that we have to
be careful when a specified version of e-YPLL is applied to
estimate the excess Years of Life Lost given specific condi-
tions. Such an analysis is possible without bias if first,
optimality criterion 2 is fulfilled as introduced in the last
paragraph of Chapter 1, and second, if this individual
matching information is used in the analysis. However,
this kind of application is not justified if only criterion 1
holds. I will deal with this important issue of potential
biases in Chapters 3 and 4.

2.3 Scenario with n pairs of twins
A general proof of e-YPLL = e-YLL can be constructed
using the principle of mathematical induction. Hence,
this Chapter is a little bit technical. However, it may be
skipped on first reading because it is not necessary to
understand this proof to follow the arguments on poten-
tial biases developed in Chapters 3 and 4.

For the sake of clarity I introduce an additional functional
argument denoting the number of pairs in the study: e-
YLL(n) denotes the total excess Years of Life Lost due to
exposure in a study with n pairs of twins. To start the
inductive argument let us assume that e-YPLL = e-YLL has
already been proven to be valid in all studies with n pairs
of twins: e-YPLL(n) = e-YLL(n). This is the so called induc-
tion assumption. Now I add another pair of twins to the
study and ask whether e-YPLL(n+1) = e-YLL(n+1). If I can
prove this equality then it follows from the principle of
mathematical induction that e-YPLL = e-YLL in all studies.

This extension is true because I already have demonstrated
that e-YPLL = e-YLL if n = 1 (start of induction).

To simplify the argument I now suppose the additional
pair to have an unexposed twin with minimal survival
among the unexposed n+1 subjects in the extended study.
This simplication can always be assumed without any loss
of generality for the following reason. If the added pair is
not the one with the minimal death time among the unex-
posed I focus on a pair that fulfils that condition. Of
course, such a pair always exists. Let us denote this pair
with x and the death times of its twins with dx(1) and
dx(2) accordingly. Regarding the other n pairs we know
that e-YPLL(n) = e-YLL(n) due to the induction assump-
tion. Hence it suffices to show that e-YPLL(n+1) = e-
YLL(n+1) holds in the scenario with the added pair being
pair x. This will prove the equation e-YPLL = e-YLL con-
vincingly for all studies with n+1 pairs.

Since we assume throughout that exposure is never pre-
ventive we know that dx(1) ≤ dx(2). This means that the
survival function of the exposed is the same in the
extended study group with n+1 pairs as in the study group
with n pairs, given we restrict the analysis to all exposed
subjects with age at death greater than or equal to dx(2).
Moreover, because dx(2) is minimal among the death
times of all unexposed subjects the survival function of
the unexposed is unchanged too. It follows that the Years
of Potential Life Lost (i.e., conditional life expectancy) cal-
culated from the unexposed reference population remains
the same for all exposed subjects with age at death greater
than or equal to dx(2). In addition, the expected number
of cases among the exposed calculated from the unex-
posed remains unchanged. Therefore, the difference
between e-YPLL(n+1) and e-YPLL(n) can only stem from
events occurring before dx(2). In the next step I will calcu-
late the change in e-YPLL caused by these events occurring
before dx(2).

I assume that k of the n exposed in the study with n pairs
may die before dx(2), 0 ≤ k ≤ n. Thus, there are n+1 - (k+1)
= n - k exposed subjects of the extended study group under
risk at dx(2), and it follows expected(x,2)=(n-k)/(n+1).
The factor 1/(n+1) is to apply since the first event among
the n+1 unexposed subjects occurs at dx(2). The amount
of change in e-YPLL due to the additionally expected
deaths at dx(2) is therefore given by -[(n-k)/
(n+1)]YPLL(x,2). This is the first kind of contribution to
the change in e-YPLL I have to consider. The second kind
of contribution stems from the new exposed case dying at
dx(1). This amount of change is simply the same as the
Potential Years of Life Lost for this case: YPLL(x,1) = dx(2)
- dx(1) + [n/(n+1)]YPLL(x,2) where n/(n+1) is the proba-
bility to survive dx(2) given the unexposed reference pop-
ulation. The third kind of contribution to the difference
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between e-YPLL(n+1) and e-YPLL(n) stems from the k
exposed cases dying before dx(2). Their potential survival
is shortened after introducing the new additional death at
dx(2). Note that the reference-based probability to die at
dx(2) is 1/(n+1) for each of these exposed cases. Therefore,
the Years of Potential Life Lost is reduced for each of these
cases by the amount [1/(n+1)]YPLL(x,2). This sums to [k/
(n+1)]YPLL(x,2) for all k exposed cases dying before
dx(2). Now I can calculate how e-YPLL changes when the
pair x is added to the n pairs:

e-YPLL(n+1) = e-YPLL(n) + dx(2) - dx(1) +

+ [n/(n+1) - (n-k)/(n+1) - k/(n+1)] YPLL(x,2)

= e-YPLL(n) + dx(2) - dx(1)

= e-YLL(n) + dx(2) - dx(1)

= e-YLL(n+1).

The second to last equation follows from the induction
assumption. The last equality is based on the obvious fact
that the true excess Years of Life Lost increases by dx(2) -
dx(1) if the pair x is added to the n pairs I started with.
Hence, I have proven that e-YPLL equals e-YLL in all ideal

studies consisting of pairs of exchangeable twins given
that exposure is never preventive. Note that the measures
are always calculated with respect to deaths from all
causes. It is remarkable that the equality e-YPLL = e-YLL
holds although e-YPLL does not make use of the individ-
ual matching information.

3. Non-identifiability of e-YLL conditional on age at death
I have shown in Chapter 2 that the total e-YLL of the
whole study group can be measured accurately by the total
e-YPLL provided the assumptions of an ideal study hold
including optimality criterion 2 (cf. last paragraph of
Chapter 1) and provided the analysed response is death
from all causes. However, this identity of e-YLL and e-
YPLL no longer holds if I am interested in e-YLL condi-
tional on age at death. To see why consider the scenarios
illustrated in Figure 2.

In both scenarios (Fig. 2) the total e-YLL's are identical
and thus, are also the total e-YPLL's. However, the e-YLL
conditional on age at death varies with the scenarios: the
Years of Life Lost due to exposure at da(1) are smaller in
scenario 1 than in scenario 2 whereas it is vice versa at
db(1). Irrespective of the scenario, the e-YPLL are always
calculated in the same way. Therefore, we get in both sce-
narios the same e-YPLL at da(1) as well as the same e-YPLL
at db(1). Note that the calculation of e-YPLL does not
make any use of the individual matching information.

Hence, the true excess Years of Life Lost conditional on
age at death are not identifiable without having access to
a perfect control twin or without supposing a specific
mechanism for how exposure causes death. Note that cri-
terion 1 alone – as defined in the last paragraph of Chap-
ter 1 and hopefully fulfilled in usual cohort data – does
not render the excess Years of Life Lost stratified on age at
death identifiable. Consequently, estimates based on e-
YPLL conditional on age at death are potentially biased in
all usual settings.

Next, I analyse a theoretical birth cohort of 100,000 men
to demonstrate this potential bias by a realistic life table
example (Table 1, see Additional file 1). I assume the
death rates of the male US population as tabulated in
BEIR IV 1988 [25] as reference rates. The example is
restricted to the unexposed men surviving at least to an
age of 30 years.

Life expectation at death is calculated from the size of the
unexposed population and the number of unexposed
deaths, presuming that all deaths occur at the midpoint of
age categories. Numbers of exposed deaths include a cer-
tain advancement of age at death without changing the
totals. Excess deaths are calculated as the difference
between the number of exposed deaths and the expected

Two scenarios of different exposure effects in two pairs of twinsFigure 2
Two scenarios of different exposure effects in two pairs of 
twins. The pairs are indexed by a and b. As before, da(1), 
db(1) are death times of the exposed and da(2), db(2) are 
death times of the unexposed twins. Scenario 1 assumes 
causal effects of the same degree in both pairs, da(2) - da(1) = 
db(2) - db(1) = n years. Scenario 2 supposes no effect in pair 
b, db(1) - db(2) = 0 years, and a large one in pair a, da(1) - 
da(2) = 2n years.

                    da(1)                 db(1)                  
scenario1 twins1 
  exposed 
          
                da(2)      db(2) 
  twins2 
  unexposed 

         da(1)                 db(1)                  
scenario 2 twins1 
  exposed 

       db(2)      da(2) 
  twins2 

   unexposed 

n years n years
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deaths among the exposed. The latter is determined by
multiplying the size of the exposed population by the
fraction of deaths among the unexposed population
conditional on age. Finally, e-YPLL is derived according to
Park et al. 2002 [2] by multiplying the number of excess
deaths by the life expectation at death in each age category
(see Chapter 2.1 for details). The total number of excess
Years of Life Lost due to exposure sums up to 255,094
years.

Table 2 (see Additional file 2) describes the impact of two
different causal exposure-response mechanisms, both
compatible with the data presented in Table 1 (see Addi-
tional file 1). Mechanism 1 assumes two different
response types of subjects. One type is immune and does

not react under exposure in comparison to no exposure
(no advancement of age at death). The other type shows
an adverse effect of exposure because his death is
advanced by five years. In contrast, mechanism 2 sup-
poses three different reaction types: an immune one and
two types adversely affected by exposure. The affected
types differ in their degree of response (advancement by
five years or ten years). Tables 1 and 2 are based on a
spreadsheet that is supplied as an additional data file (see
Additional file 4).

Note that the total numbers of deaths, unexposed and
exposed, as well as the total excess Years of Life Lost are
identical in both sub-tables of Table 2 (see Additional file
2) although the sub-tables reveal a different causal impact

Excess Years of Potential Life Lost e-YPLL and true excess Years of Life Lost e-YLL1 and e-YLL2, assuming two different causal mechanisms, conditional on age at deathFigure 3
Excess Years of Potential Life Lost e-YPLL and true excess Years of Life Lost e-YLL1 and e-YLL2, assuming two different causal 
mechanisms, conditional on age at death. Basic data, exposure impact, and mechanism producing e-YPLL, e-YLL1, and e-YLL2 
are given in Table 1 and Table 2. Lost Years, true and estimated, sum up to 255,094 years always.
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of the varied mechanisms. Note further that the distribu-
tion of unexposed deaths as well as the distribution of
exposed deaths are constant across both sub-tables and
Table 1 (see Additional file 1). Moreover, the total e-YLL
calculated in the sub-tables of Table 2 (see Additional file
2) agrees with the total e-YPLL derived in Table 1 (see
Additional file 1). But obviously, the excess Years of Life
Lost conditional on age differ between mechanism 1 and
2, and moreover, diverge from the conditional excess
Years of Potential Life Lost calculated in Table 1 (see Addi-
tional file 1). Figure 3 contrasts the distributions.

The excess Years of Potential Life Lost differ remarkably
from the true excess Years of Life Lost. The difference
depends on the chosen mechanism. In this example e-
YPLL overestimates the true excess Years of Life Lost up to
an age of about 65 years and underestimates the impact at
higher ages. The zigzag increase of e-YPLL may reflect a
real phenomenon since mechanism 2 produces a similar
structure. However, the somewhat surprising zigzag
increase of e-YPLL may be totally artificial because mech-
anism 1 causes a nearly smooth incline. Thus, it is not jus-
tified to interpret the form of the increase of e-YPLL across
age as a true phenomenon without assuming untestable
mechanistic assumptions about how exposure causes
death. Note that such naive interpretations can be grossly
misleading.

Hence, as illustrated by this example, the true excess Years
of Life Lost conditional on age at death cannot be identi-
fied from cohort data like that presented in Table 1 alone
(survival curves, see Additional file 1). The estimator e-
YPLL conditional on age is shown to be potentially biased
even if optimality criterion 2 (as defined in the last para-
graph of Chapter 1) is fulfilled. The reason is that e-YPLL
conditional on age does not make use of the relevant indi-
vidual matching information.

4. Non-identifiability of Years of Life Lost due to a specific 
cause of death
The equality of total e-YPLL and total e-YLL was proven
for deaths from all causes given the assumptions men-
tioned in Chapter 2. However, such an equality does not
hold for a specific cause of death like lung cancer. To see
why, consider the simple scenario presented in Figure 4.

Figure 4 illustrates an elementary gold standard cohort
study performed with two twins, one exposed and the
other unexposed. Since the subjects are assumed to be
exchangeable, exposure caused a premature death with an
overall e-YLL = d(2) - d(1). However, if we are interested
in the exposure impact on age at death for lung cancer we
are left with an identification problem. Obviously, if twin
2 had died from lung cancer also the causal effect on age
at death from lung cancer would have been d(2) - d(1).

But in case of the scenario illustrated in Figure 4, one can
only conclude that the effect on age at death from lung
cancer must be at least d(2) - d(1). Therefore, as a simple
but important consequence, the causal effect on age at
death from lung cancer is not identifiable even in an opti-
mal study comprising exchangeable twins as long as com-
peting causes of death exist. Since this causal effect cannot
be identified even in an optimal study (i.e., fulfilling con-
dition 2 defined in the last paragraph of Chapter 1) it does
not make sense to estimate it without assuming untesta-
ble mechanistic assumptions about how exposure causes
death from lung cancer.

Note, however, that this causal effect is not the e-YLL due
to exposure and manifested by lung cancer, e-YLL(lung
cancer) for short. In contrast to the causal effect, e-
YLL(lung cancer) comprises exactly that part of e-YLL
from all causes of death that is due to the occurrence of
lung cancer deaths among the exposed. In the example
(Figure 4) these e-YLL(lung cancer) are d(2) - d(1) which
is the exposure effect on the age at death from all causes,
e-YLL(overall) for short. The reason ist that there are no
other causes of death among the exposed besides lung
cancer. Whereas the causal effect of exposure on age at
death from lung cancer cannot be identified in an optimal
study with pairs of twins fulfilling optimality criterion 2
(defined in the last paragraph of Chapter 1) without
adopting further untestable assumptions we may ask
whether at least e-YLL(lung cancer) can be estimated
unbiasedly assuming criterion 2. To give an answer we
must investigate the situation in more detail.

Two exchangeable twins 1 and 2Figure 4
Two exchangeable twins 1 and 2. The exposed twin died 
from lung cancer at age d(1), the unexposed twin 2 died from 
heart attack at d(2) > d(1).

d(1) 
twin 1 
exposed 
 lung cancer 

d(2) 
twin 2 
unexposed 

heart attack 
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The concept presented supposes that each subject has a set
of hypothetical (deterministic) death times for each com-
bination of level of exposure and cause of death. Just one
of these death times is effective, the others are latent. For
the exposed twin 1 lung cancer is effective as a cause of
death and heart attack is latent. It is vice versa for the
unexposed twin 2. Both causes of death compete within
each twin for the effective position. Of course, the result
of this competition depends on the exposure conditions
applied. This result motivates to introduce a second (com-
peting) exposure into the scenario, in which I deal with

two competing responses (lung cancer and heart attack).
Figure 5 expands on this concept accordingly.

In Figure 5 both exposures are assumed to be never pre-
ventive for all endpoints of interest (LC = lung cancer, HA
= heart attack). However, when contrasting the two situa-
tions without asbestos exposure smoking obviously leads
to a decrease in the number of lung cancer deaths, and
correspondingly, asbestos exposure causes a decrease in
the number of deaths from heart attack given smoking.
This spuriously preventive effects of both exposures are an

Effective and latent causes of death in a quadruplet of exchangeable subjectsFigure 5
Effective and latent causes of death in a quadruplet of exchangeable subjects. Each subject is supposed to have been allocated to 
a different combination of two binary exposures, illustrated here by asbestos and smoking. Without any exposure and as well 
as after asbestos exposure the subjects are assumed to have died from lung cancer, LC (effective cause). Lung cancer was 
latent in the smoker not exposed to asbestos while heart attack, HA, became the effective cause in this situation. Asbestos 
exposure had no causal effect on age at death from heart attack but from lung cancer. Smoking affected age at death from heart 
attack and lung cancer, the latter to the same amount as asbestos did. Under joint exposure a synergistic effect on age at death 
from lung cancer is assumed, but not for heart attack.

exposures                 
      

asbestos smoking 
                      age at death 
                                     

    1       1       X  
                   LC       HA 
  

    1       0       X

                 LC         HA 
          

    0       1            X
            HA LC 
  

    0       0            X

    LC         HA 
                     lung       heart 
                    cancer    attack 

      X  effective cause      + latent cause 

          of death     of death 
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outcome of the competing causes of death structure. In
the following, I prove that this structure leads to a poten-
tial bias of e-YPLL(lung cancer). Note that the misleading
impression of a preventive effect is produced by relying on
a risk or rate statistic only. As I emphasized in the Intro-
duction section, these statistics count accurately how
many responses of what kind occurred ("whether"), but
unfortunately, mainly ignore the specific causal structure
in time ("when").

From Figure 6 I conclude

e-YLL(overall) = e-YLL(lung cancer) = e-YPLL(overall) =

da(2) - da(1) + db(2) - db(1).

The first equation holds because the only cause of death
among all asbestos exposed is lung cancer and the second
because I have shown that e-YLL(overall) = e-YPLL(over-
all) is true in an ideal study given the aforementioned
assumptions. The third equation follows from a simple
evaluation of e-YLL(overall).

Next, I calculate e-YPLL(lung cancer) according to Park et
al. 2002 [2]:

The effective data of Figure 5 analysed in an ideal cohort study consisting of two pairs of twins which are supposed to form a quadruplet of exchangeable subjects, cmp Figures 1 and 2Figure 6
The effective data of Figure 5 analysed in an ideal cohort study consisting of two pairs of twins which are supposed to form a 
quadruplet of exchangeable subjects, cmp Figures 1 and 2. The pairs are indexed by a and b: the twins in pair a are assumed to 
have been smokers, those in pair b non-smokers; da(1), db(1) are death times of the asbestos exposed and da(2), db(2) are 
death times of the twins not exposed to asbestos. The effective cause of death, lung cancer LC or heart attack HA, are 
denoted at age at death, accordingly.

           da(1)           db(1) 
twins 1 
exposed to                      
asbestos  LC             LC 

       da(2)                   db(2)
twins 2                 
not exposed 
to asbestos      HA            LC 
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e-YPLL(lung cancer) = Σ (observedlungcancer(t) -
expectedlungcancer(t)) YPLL(t).

The only change in comparison to the formula of e-YPLL
introduced in Chapter 2.1 is the specification of the
observed and expected cases. The important point here is
that the procedure, as defined by Park et al. 2002, only
uses information at age at death from lung cancer. For the
YPLL-terms involved I get

YPLL (a,1) = da(2) - da(1) + 0.5 (db(2) - da(2))

YPLL (b,1) = db(2) - db(1),

from which I derive

e-YPLL(lung cancer) = da(2) - da(1) + 0.5 (db(2) - da(2)) +

+ db(2) - db(1)

= e-YLL(lung cancer) + 0.5 (db(2) - da(2)),

since no expected lung cancer deaths are to be subtracted.

Hence, e-YPLL(lung cancer) is biased upward by 0.5
(db(2) - da(2)) which is half of the causal effect of smoking
on age at death from all causes (overall) according to Fig-
ure 5. This overestimate is due to the fact that no lung can-
cer deaths are expected to occur among the exposed
during follow-up. This empirical shortcoming of e-
YPLL(lung cancer) could only be overcome in general if
we were able to identify the matched partner of the lung
cancer case not dying from lung cancer and if we use this
information in the analysis. Since this is impossible when
relying on usual cohort data (survival curves) I have
proven the non-identifiability of the excess Years of Lost
Life due to exposure for a specific cause of death, given the
natural situation of competing causes for death and usual
cohort data. I demonstrate the potential bias of e-
YPLL(lung cancer) by a life table example additionally
(Table 3, see Additional file 3). This table relies on a
spreadsheet which is also supplied (see Additional file 5).

Table 3 (see Additional file 3) uses the same basic data as
Table 2 (see Additional file 2) to describe the unexposed
population but is extended by an additional column pre-
senting the number of lung cancer deaths by age. The
impact of exposure on lung cancer death is defined by an
advancement of age at death by five years in all situations.
Thus, factual (effective cause) age at death as well as
hypothetical (latent cause) age at death is assumed to
occur five years earlier under exposure. Furthermore, it is
supposed that the advancement of latent lung cancer
deaths leads to an excess of 50% among unexposed lung
cancer deaths in each age category, if exposed. This

advancement means that 3367 (= 10102 - 6735) subjects
died from lung cancer after exposure who are assumed to
have died from other causes if unexposed. A mixture of
advancements greater or equal than 0 years, differing in
amount between other causes of death than lung cancer,
is assumed to produce the distribution of the number of
deaths from all causes among the exposed. Hence, the
overall excess Years of Life Lost for lung cancer are less
than the number of exposed lung cancer deaths times five
years (i.e., 50,509 years). This number is an upper bound
because the additional lung cancer deaths occurring under
exposure are related to a loss of life in the individual of at
most five years while the cause of death changes from, say,
heart attack to lung cancer.

Applying the procedure proposed by Park et al. 2002 [2] I
calculate a total e-YPLL(lung cancer) of 86,373 years.
Thus, the estimate is biased upward by more than 35,000
years which corresponds to a relative bias of at least 70%.
In addition, the life table analysis demonstrates that the e-
YPLL method is also biased when used to estimate the
causal effect of exposure on age at death from lung cancer
among the exposed lung cancer cases, which exactly
amounts to 50,509 years. Moreover, the causal effect of
exposure on the lung cancer death times among all sub-
jects was defined to be 5(92,219) years = 476,095 years,
again clearly different from e-YPLL(lung cancer) = 86,373
years.

5. Discussion
I have shown that the total excess Years of Life Lost (e-
YLL) for death from all causes can be accurately deter-
mined by calculating the corresponding excess Years of
Potential Life Lost (e-YPLL) provided conditions hold that
are also often cited for general study validity. However,
the equality of e-YLL and e-YPLL does not hold in general
under certain conditions of interest because under these
certain conditions we need to assure criterion 2: each
exposed subject has to have an ideal unexposed control
partner so that the effect of exposure can be measured on
the individual level (see also the last paragraph of Chapter
1). The equality also requires that this information about
individual matching is used in the analysis. I pointed out
that the e-YPLL conditional on age at death are potentially
biased as they were published in some analyses (see e. g.,
Figure 1 in Park et al. 2002 [2]). Furthermore, the excess
Years of Potential Life Lost calculated for a specific cause
of death are potentially biased also. Hence, estimates of
Years of Life Lost presented for chronic diseases like lung
cancer (see for example the detailed lung cancer Poisson
model analysis by Park et al. 2002 [2]) are unjustified
without referring to untestable assumptions about the
causal mechanism involved.
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I should add, just for the sake of clarity, that in all my
examples presented that cast doubt on the validity of e-
YPLL, exposure was always assumed to be never preven-
tive. Therefore, preventive effects of exposure are not the
reason for these problems. The deeper reason of these
validity problems of e-YPLL is a non-identifiability of
excess Years of Life Lost due to exposure in an ideal but
unmatched cohort study. Note further that the calculation
of e-YPLL will ignore this important matching informa-
tion even if such data are available. This structural prob-
lem of non-identifiability was already clearly described,
analysed and discussed on an abstract level by Robins and
Greenland 1991 [1], even under the generalized scenario
of stochastic responses on the individual level. For further
theoretical discussions of the problems involved and for
an investigation into untestable assumptions that render
identification possible, I therefore like to refer to this
important publication. I simply remark here that mecha-
nisms 1 and 2 (Table 2, see Additional file 2) do not pre-
serve ranks.

It is important to note that the validity problems of e-
YPLL cannot be resolved by applying the rare disease
assumption or by restricting the discussion to a situation
with a constant relative risk across age. Rather, the prob-
lems are structural ones. For example, if the additional
lung cancer cases under exposure are calculated in Table 3
(see Additional file 3) by applying an increasing factor
with age at death instead of using the constant value of
1.5, the SMR's for lung cancer can be kept almost constant
across age. However, e-YPLL still overestimates the true
excess Years of Life Lost due to lung cancer by a consider-
able amount. A substantial upward bias, nearly independ-
ent of the increasing factor, can be demonstrated by
simulations that assume an isolated and homogeneous
detrimental effect of exposure on lung cancer. This
describes a scenario where other endpoints are only
changed due to exposure because they are competing with
lung cancer. Again using the data from BEIR IV 1988 [25]
(Table 3, see Additional file 3) I find an upward relative
bias of at least 30% if the additional lung cancer deaths
(that take over the effective position from competing
causes if exposed) amount to about half of the lung cancer
deaths shifted to a younger age at death (under exposure)
without changing the endpoint. The examples I studied
show that the relative bias is at least 70% if both groups
are of the same size.

In agreement with the direction of bias indicated by the
abstract quadruplet analyses of total excess Years of Life
Lost for lung cancer (Figures 5 and 6) I show an upward
distortion of e-YPLL(lung cancer) in the life table example
(Table 3, see Additional file 3). This upward bias is due to
an inappropriate mixture of life expectancy at age at death
from lung cancer, based on data from all later deaths, with

lung cancer excess deaths only, while ignoring the corre-
sponding excess deaths from competing causes among the
non-exposed that are produced as a side-effect of the caus-
ative exposure (against the interpretation of Park et al.
2003 [15]). However, total e-YPLL for a specific cause of
death can be used to assess total e-YLL for this cause unbi-
asedly if despite potentially competing causes no change
of the cause of death occurred within the whole cohort
after a different exposure level of interest had been allo-
cated counterfactually. Unfortunately, this assumption is
not provable. When excess cases of the cause of death of
interest are observed among the exposed – a situation
quite natural in occupational cohort studies – this
assumption definitely does not hold.

My analysis reported so far on problems with ideal studies
with complete follow-up. Obviously, if a constant end of
follow-up is introduced into the scenarios of Figure 5 and
6 so that the number of lung cancer deaths are affected,
the calculated e-YPLL can change whereas the true e-YLL
always remain constant. Hence, the degree of bias
depends additionally on the censoring structure even if
left censoring is totally uninformative. This dependence
means that censoring is not taken into account adequately
by the e-YPLL method when applied to specific endpoints.

One important point to discuss is whether the constructed
life table examples are realistic ones in comparison to the
data and results published in Park et al. 2002 [2]. All
tables presented here are based on the mortality experi-
ence of the male US population as published by BEIR IV
1988 [25], Table 2A-10, p. 139. Since the paper of Park et
al. 2002 [2] analysed the mortality of white US uranium
miners, hired during 1950 - 1963 and followed until
1990, the choice of this reference population appears to
be appropriate.

Park et al. 2002 [2] described the total excess Years of Life
Lost per cohort member as 3.1 years (Table IV, page 6)
and an effect of similar magnitude was chosen here: 2.7
years per cohort member (n = 95,219) according to Tables
1 or 2 (see Additional file 1 and 2), and 3.3 years per
cohort member according to Table 3 (see Additional file
3). In Park et al. 2002 [2] the lung cancer SMR dropped
from 7.6, age period 30–34, to 5.4, age band 45–49, and
even further to SMR = 2.6, age period 65–69 (Table III,
page 5). The example given in Table 3 (see Additional file
3) tries to mimic this downward trend starting with 7.0 in
age category 30–34, then decreasing to 3.0 in age band
45–49 and to 1.7, age period 65–69. Thus, the overall
downward trend is somewhat more pronounced here
than in Park et al. 2002 [2]. However, I try to simulate a
trend of SMR's across age that is quite similar to the rela-
tive decrease observed within the main body of data in
Park et al. 2002 [2] (age bands 65–69/45–49): 2.6 / 5.4 =
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48% (Table III, Park et al. 2002 [2]) and 1.7 / 3.0 = 57%
(Table 3 of this paper, see Additional file 3).

The overall lung cancer SMR can be calculated from Table
3 (see Additional file 3) as 1.74, less than the value of 3.8
observed by Park et al. 2002 [2] (Table III, page 5). A
lower SMR was chosen here to avoid an exaggeration of
potential biases due to overstating the effect of exposure
in the constructed example. Accordingly, the e-YPLL for
lung cancer was presented as 1.47 years per cohort mem-
ber by Park et al. 2002 [2] (Table IV, p. 6) but only 0.91
years per cohort member (n = 95,219) can be calculated
from Table 3 of this paper (see Additional file 3).

Hence, the life table examples presented in Tables 1, 2 and
3 (see Additional file 1, 2 and 3) are realistic ones and the
magnitude of potential biases identified appears to be
defensible. The potential biases derived are fairly extreme:
the true total Years of Life Lost are overstated by 100%
(mechanism 1) or 33% (mechanism 2) in age band 50–
54 but understated by more than 40% in age period 75–
79 (Figure 3 and Tables 1 and 2, see Additional file 1 and
2). Moreover, a relative upward bias of more than 70% is
demonstrated for the e-YPLL related to lung cancer (Table
3, see Additional file 3). These findings render the central
results published by Park et al. 2002 [2] scientifically
unreliable (i.e., the age-specific analysis of excess Years of
Life Lost due to exposure as well as all results published
on excess Years of Life Lost in relation to lung cancer).
Note that the latter was the main topic of Park et al. 2002
[2].

Due to its definition (Breslow and Day 1987 [24]) the
average lung cancer SMR is calculated as observed /
expected = exposed / (exposed - excess) which leads to
10,101.74 / (10,101.74 - 4,286.88) = 1.74 (Table 3, see
Additional file 3). For the sake of clarity I should note that
this value does not coincide with the average causal case
ratio (exposed / unexposed = 10,101.74 / 6,734.49 = 1.5).
The discrepancy is due to the fact that the construction of
all life tables in this paper strictly follows counterfactual
principles: the elevated death rates in the exposed popula-
tion affects the person-years yielding an expected number
of lung cancer cases smaller than the true observed
number of lung cancer cases in the unexposed population
(cp. Keiding and Vaeth 1986 [26], Greenland 1996 [27]).

Statistical measures that focus on the advancement of dis-
ease onset are assumed to be helpful in communicating
risk factor impact on disease (e.g., Peto 1980 [28]). Fis-
chhoff et al. 1993 [29], Jardine and Hrudey 1997 [30] as
well as Yamagishi 1997 [31] pinpointed problems in risk
perception and communication when frequency statistics
are solely presented as descriptors of health effect. Wein-
stein et al. 1996 [32] demonstrated additionally a consid-

erable effect of framing risk levels on the perception of
risk.

Statistics conveying information about the advancement
of disease onset are therefore helpful in exposure impact
analysis and especially worthwhile in exposure impact
communication. However, attention should be drawn to
the difficulties involved and that epidemiologists should
always be aware of the conceptual limits of the Years of
Potential Life Lost method when applying it as a regular
tool in cohort analysis.

Aside from Years of Life Lost, other approaches are availa-
ble to convey information on the impact of a risk factor on
the onset of a disease and may thus facilitate communica-
tion of epidemiological findings. One such concept is the
risk and rate advancement period (RAP) introduced by
Brenner et al. 1993 [33] which could easily be calculated
from standard software output. Risk and rate advance-
ment periods are the time periods by which the risk or rate
of disease is advanced among exposed subjects given a dis-
ease-free survival to some baseline age. An application of
RAPs in assessing the impact of risk factors on myocardial
infarction was published by Liese et al. 2000 [34]. How-
ever, the RAP statistic cannot be applied if disease rates do
not increase strictly with age. Another approach describ-
ing the exposure impact on disease onset, complementary
to RAP, was developed by Boshuizen and Greenland 1997
[35]. The authors estimated the time shift in average age at
first occurrence of disease due to exposure as a measure of
disease advancement. Although especially valuable when
the background incidence of the disease is high, a techni-
cal drawback of this procedure stems from the necessity to
correct regression model likelihoods for left truncation,
an option that is not offered in standard statistical pack-
ages. Of course, none of these procedures can be applied
sensibly if, according to study design, cases and controls
or exposed and unexposed were matched on age. A rigor-
ous causal approach in estimating the shrinkage or exten-
sion of time to an event, like lung cancer death, due to
exposure was developed by Jamie Robins and is called G-
estimation (for a brief overview see Rothman and Green-
land 1998 [5], p. 424, 425). Since this method has a pro-
found logical basis and can be applied even in
complicated longitudinal scenarios with interrelated
time-dependent covariates, and in addition, is program-
mable in standard software like SAS or STATA it should
become a regular tool in cohort analysis, in particular
when Years of Life Lost are to be estimated.

The main conclusions about non-identifiability of e-YLL
are derived as an application of a causal theory based on
counterfactuals (for a review see Greenland 2000 [36]).
Some authors seem to believe that this approach has no
clear logical and philosophical backing, judging
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Greenland's reasoning as purely academic (Armstrong
and Thieriault 1996 [37]) or Robin's counterfactual based
methods like G-estimation as not applicable in occupa-
tional epidemiology (Steenland et al. 1996 [38]). The
arguments and examples given in this article prove the
applicability and practical relevance of the counterfactual
approach in occupational epidemiology. However, this
does not help to eliminate a more fundamental philo-
sophical resistance I experienced in a number of contro-
versial discussions (e. g., with epidemiologist from
NIOSH, Cincinnati). Thus, some explanation of the phil-
osophical background of counterfactual reasoning should
be given here.

The ideas of counterfactual reasoning can at least be traced
back to philosophers in the eighteenth and nineteenth
centuries, like Hume and Mill. Even the oldest clearly
structured theory of causality, developed by Aristotle, has
some similarities to counterfactual reasoning due to its
manipulative four-causes concept (Vorländer 1979 [39]).
In its most simple form, the counterfactual approach
assumes the existence of potentially different hypothetical
response variables for the same subject depending on dif-
ferently assumed exposure conditions. At most one of
these conditions and responses can become true, the oth-
ers remain hypothetical, so counterfactual. A causal com-
parison is understood as a comparison of the responses
due to different exposure conditions within the same sub-
ject. Indeed, this is the rigorous version of ideal twins I
have used throughout to derive statements about causality
(see Figures 1, 2, 4, 5, 6). In their famous statistical text-
book, Cox and Oakes 1985 [40], p. 64 implicitly used this
approach to define the stronger version of the accelerated
failure time model: "any individual having survival time t
under z = 0 would have survival time t/Ψ under z = 1". The
counterfactual nature of this statement is reflected by the
tense used (conditional II). Note that modern physics also
uses counterfactual reasoning, expressed in conditional II,
to define causes in the framework of the general theory of
relativity: "We say that an event, let us call A, is in part the
cause of another event, B, if A was necessary for B to occur.
If A had not occurred, B could not have. In this case I can
say that A was a contributing cause of the event B" (Smo-
lin 2001 [41]). And note further that also everyday causal-
ity is often expressed by statements in conditional II (i.e.,
by statements that describe situations that contrary to fact
did not occur – "If the train had not stopped for such a
long time in front of the railway station I would have
reached the connecting train"). A detailed philosophical
discussion of the counterfactual causal model is given in
Lewis 1973 [42].

Some authors resist a counterfactual approach and argue
against the speculative and metaphysical background of
counterfactual worlds (Dawid 2000 [43]): How can one

object have two different contradictory properties like
being exposed (factually) and simultaneously not being
exposed (counterfactually)? In addition, the units of
observation are assumed to exist in different states simul-
taneously in the counterfactual world if the properties
have more than two distinct values. This duality appears
to be even more puzzling. However, exactly such weird
statements are made by quantum mechanics about
objects like electrons or Fulleren molecules which are part
of the real world we live in (Mittelstaedt 1972 [44], Feyn-
man 1985 [45], Zeilinger 2003 [46]). It is important to
understand that this superposition principle ("superpos-
ing" contradicting properties simultaneously on the same
object) is no marginal phenomenon but lies at the center
of modern physics (Dirac 1967 [47]).

Note further that the mathematically consistent analytical
treatment of causal questions by counterfactual theory is
obviously related to the so called multiverse approach
(Everett 1957 [48]). The latter is a suggestive ontological
interpretation of abstract Hilbert space theory that was
introduced into modern physics to represent quantum
states (Weberruβ 1998 [49], Penrose 1994 [50], Deutsch
1997 [51]). A new mathematical approach was necessary
because – due to the superposition principle – quantum
states are much richer than classical states and therefore
fall beyond the grasp of Newtonion and Einsteinian ter-
minology and theory (Hughes 1999 [52]). Critics of coun-
terfactual logic, like Dawid 2000 [43], overlook this deep
connection to quantum mechanics that renders the
approach empirically plausible and mathematically as
consistent as modern physics. In other words, a funda-
mental philosophical attack of counterfactual reasoning
leads inevitably into an attack of quantum physics, which
has survived successfully all criticism raised, empirically
and theoretically, during the last century (Feynman 1985
[45], Hawking 1996 [53], 2001 [54]). In a discussion of
the so called null measurements in quantum mechanics
Roger Penrose described the link of quantum mechanics
to counterfactuals as follows: "It is quite extraordinary
that quantum mechanics enables you to test whether
something might have happened but didn't happen. It
tests what philosophers call counterfactuals. It is
remarkable that quantum mechanics allows real effects to
result from counterfactuals!" (Penrose 2000 [55], p. 67).

In addition, this link to quantum mechanics disproves the
repeatedly made statement by Dawid (cp. the discussion
following Maldonado and Greenland 2002 [23]) that
counterfactual reasoning were subject to a deterministic
or 'fatal' world view. On the contrary, quantum mechan-
ics is the realm of pure chance and statistics: counterfactu-
als are therefore clearly consistent with indeterminism
and stochastic principles. Finally, critics of counterfactual
logic, like Dawid 2000 [43], have not presented an
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appealing and logically consistent alternate mathematical
theory of causality.

Whereas the counterfactual approach can help to clarify
terminology and substance of causal relations, it points
simultaneously at some ambiguities when discussing
competing causes of death. In this scenario, it is unclear
what kind of action should be taken to cause a suppres-
sion of competing risks (Greenland 2002 [56]). Hence,
the logical and causal background of the example pre-
sented with competing causes of death (Figure 4, 5, 6 and
Table 3, see Additional file 3) appears to need further
elaboration.

Conclusion
In conclusion, the excess Years of Potential Life Lost esti-
mates the excess Years of Life Lost due to exposure unbi-
asedly if we are interested in a) death from all causes and
b) total excess Years of Life Lost summed up across the
whole cohort. However, the method of calculating excess
Years of Potential Life Lost due to exposure is potentially
biased if it is applied 1) to estimate the impact of exposure
on specific causes of death, like lung cancer, in the pres-
ence of competing causes or 2) to estimate the impact of
exposure (overall or cause specific) conditional on age at
death. These potential biases can be rather severe in pub-
lished analyses (e.g., Park et al. 2002 [2]). Rigorous causal
thinking (Greenland et al. 1999a [57], Greenland et al.
1999b [58]) can help to identify and avoid such empirical
shortcomings. Fortunately, as an important outcome of
these causal considerations, methods are available (Rob-
ins 1997 [22]) and readily applicable in occupational epi-
demiology (Witteman et al. 1998 [59]) to estimate the
cause-specific reduction in life span due to occupational
exposures unbiasedly given a specified failure time model
and the assumption of no unmeasured confounders.
These methods are valid even under the complicated but
often realistic conditions of dependent censoring, survi-
vor biases and intermediate confounding (Keiding et al.
1999 [60], Morfeld et al. 2002 [61]).
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Endnote 1
The following example is based on the counterfactual
framework presented in Chapter 1. It demonstrates that
neither relative risks nor relative rates can be used in gen-
eral to estimate the probability of causation unbiasedly.
In particular, I show that an estimate of the attributable
hazard derived from a Cox model (Breslow and Day 1987
[24]) fails to describe the causally attributable fraction
among the exposed cases. The example demonstrates that
this shortcoming is due to the fact that an advanced onset
of disease is not reflected completely by risk or rate statis-

tics. As in Chapter 1, a binary exposure indicator is
assumed for simplicity in the following.

The cohort is supposed to comprise four subjects: A, A's
twin, B, and B's twin. In addition, it is assumed that the
cohort is followed up in mortality until the fixed censor-
ing date tend>0. The time scale can be chosen arbitrarily as
age, calendar time or time since start of follow-up without
affecting the following arguments. I assume that the
exposed subject A may experience the event (death) dur-
ing the follow-up period at t1 years (t1 > 0), if unexposed
counterfactually (A's twin) at t2 > t1, t2 < tend. No event may
occur in subject B and his/her twin during follow-up (i.e.,
neither under exposure nor when unexposed). Thus,
among the two exposed subjects, A and B, only one case
occurs and this case is causally affected by exposure since
t1 < t2. It follows that the probability of causation (i.e., the
percentage of exposed cases occurring during follow-up
which are causally affected by exposure) is exactly 100%.

In contrast, the incidence proportion (Rothman and
Greenland 1998 [5]) is 0.5 among both, the exposed and
unexposed, leading to a relative risk of 1 and an attributa-
ble risk among the exposed of 0. Hence, the attributable
risk calculated from incidence proportions fails to reflect
the causal impact of exposure on subject A's event time
(true probability of causation among the exposed = 100%
>> attributable risk among the exposed calculated from
incidence proportions = 0%). I'd like to emphasize that
the reason for this shortcoming is the fact that relative
risks reflect excess cases only but no advanced cases.

Note that a change from risks to rates does not overcome
the problem. The rate among the exposed is 1/(t1 + tend)
and among the unexposed is 1/(t2 + tend). Consequently,
the rate ratio is (t2 + tend)/(t1 + tend) > 1 because t2 > t1. The
attributable rate among the exposed can be determined as
(rate ratio -1) / rate ratio = 1 - 1/rate ratio. Thus, I conclude
0 < 1 - (t1 + tend)/(t2 + tend) < 1, again proving a systematic
underestimate of the true probability of causation among
the exposed by the attributable rate ratio. Note that the
rare disease assumption is of no help. Assuming n
exposed subjects (n>>1) that neither react nor do their n
unexposed twins, we get an attributable rate among the
exposed of 1 - (t1 + (n)(tend)) / (t2 + (n)(tend)) < 1. If n
approaches infinity the attributable rate among the
exposed decreases to zero whereas the true probability of
causation remains always constant at 100%. Hence, the
discrepancy is even sharpened under the rare disease
assumption.

Last, I try to escape these problems by performing a Cox
analysis. Due to its construction, the whole cohort
(exposed and unexposed) comprises 4 subjects and 2 risk
sets. One set is generated by the exposed case (A), the
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other set by the unexposed (A's twin). Therefore, a Cox
analysis of the cohort yields the following.

Assuming a relative hazard (rate) in the Cox model of

λ / λ0 = exp (β exposure), exposure = binary exposure
indicator

we get the partial likelihood

which is maximized at b = ln 2/2.

Therefore, the estimated hazard ratio is

exp (b) = √ 2

yielding an estimated attributable hazard among the
exposed of

1 - (√2)-1 < 1 = probability of causation.

Note that the rare disease assumption is again of no help
to overcome this discrepancy because the estimated attrib-
utable hazard among the exposed approaches 0 when the
number of controls is rising indefinitely.

Greenland 1999 [6] emphasizes correctly that this meth-
odological error (i.e., using attributable risks or rates
among the exposed to measure the probability of causa-
tion) has already become a social problem. Compensa-
tion of workers who developed a disease after
occupational exposure is often decided by impact meas-
ures based on this erroneous identification of probability
of causation and attributable risk or rate among the
exposed. Usually a threshold value of 50% is chosen in
Germany, which corresponds to the so called doubling of
risks (i.e., a relative risk or rate of 2). Thus, compensation
is usually withheld if the attributable risk or rate is below
50% (Morfeld and Piekarski 2001 [7]). Similar proce-
dures are applied in other countries (Greenland 1999 [6],
Armstrong and Theriault 1996 [37]). However, as
demonstrated in this endnote, such an argument based on
the attributable risk or rate is not justified. Discussions
have started about how the discrepancy between the cal-
culated attributable risk among the exposed and the
intended probability of causation can be accounted for in
amended compensation schemes in Germany (Morfeld
und Piekarski 2001 [7]). These amended compensation
schemes should reflect the advancement of disease onset
due to exposure more accurately than the conventional
ones.
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Additional File 1
Life table analysis with calculation of excess Years of Potential Life Lost e-
YPLL according to Park et al. 2002. Basic data (unexposed) from BEIR 
IV (1988), Table 2A-10, p. 133: death rates of the male US population, 
surviving at least 30 years, applied to a birth cohort of 100,000. Exposure 
impact: advancement of certain fractions of deaths. For details of assumed 
mechanism see Table 2 (Additional file 2).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
5573-1-5-S1.pdf]

Additional File 2
Two different exposure-response mechanisms compatible with the life table 
analysis in Table 1. Fractions of the unexposed deaths are advanced by 0 
yr or 5 yr according to mechanism 1 and by 0 yr, 5 yr or 10 yr according 
to mechanism 2. The age distribution of all exposed deaths is identical 
under both mechanisms. The distribution of the true excess Years of Life 
Lost e-YLL differs between mechanisms and both diverge from e-YPLL 
(Table 1, see Additional file 1), whereas the totals agree. (advcm = 
advancement)
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
5573-1-5-S2.pdf]

Additional File 3
Life table analysis with calculation of excess Years of Potential Life Lost e-
YPLL and true excess Years of Life Lost e-YLL for overall and lung cancer 
mortality (ICD9-162). Basic data (unexposed) from BEIR IV (1988), 
Table 2A-10, p. 133: overall and lung cancer death rates of the male US 
population, surviving at least 30 years applied to a birth cohort of 
100,000. Exposure impact: advancement of factual and hypothetical lung 
cancer deaths by 5 years, mixture of advancements among deaths from all 
causes. It is assumed that the advancement of hypothetical lung cancer 
deaths leads to an excess of 50% of lung cancer deaths among exposed in 
each age category. The overall e-YLL for lung cancer are less than the 
number of exposed lung cancer deaths times 5 years. The e-YPLL for over-
all death and lung cancer death are determined according to Park et al. 
2002. For all deaths e-YPLL must equal e-YLL, but e-YPLL is obviously 
biased for lung cancer death.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
5573-1-5-S3.pdf]

Additional File 4
Excel sheet explaining the calculations in Additional files 1 and 2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
5573-1-5-S4.xls]

Additional File 5
Excel sheet explaining the calculations in Additional file 3.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1742-
5573-1-5-S5.xls]
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