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Abstract

Background: There is reported to be a decline in immune function and an alteration in the frequency of
circulating lymphocytes with advancing age. There are also differences in ageing and lifespan between males and
females. We performed this study to see if there were differences between males and females in the frequency of
the different lymphocyte subsets with age.

Results: Using flow cytometry we have examined different populations of peripheral blood leukocytes purified
from healthy subjects with age ranging from the third to the tenth decade. We used linear regression analysis to
determine if there is a linear relationship between age and cell frequencies. For the whole group, we find that
with age there is a significant decline in the percentage of naïve T cells and CD8+ T cells, and an increase in the
percentage of effector memory cells, CD4+foxp3+ T cells and NK cells. For all cells where there was an effect of
ageing, the slope of the curve was greater for men than for women and this was statistically significant for
CD8+ab+ T cells and CD3+CD45RA-CCR7- effector memory cells. There was also a difference for naïve cells but this
was not significant.

Conclusion: The cause of the change in percentage of lymphocyte subsets with age, and the different effects on
males and females is not fully understood but warrants further study.

1. Introduction
It is known that there is a loss of lymphoid tissue [1]
and a decline in the function of the human immune sys-
tem with increasing age [2-4]. This decline, sometimes
termed “immunosenescence” [5,6], has been implicated
in the increased susceptibility of aged people to a num-
ber of diseases, including cardiovascular disease [7,8],
autoimmune disease and malignancy, and to impairment
of response to vaccination and infection [9,10]. Males
have a shorter lifespan than females and thus may be
more susceptible to the effects of aging [11]. The
immune system of males also has differences from the
immune system of females [12,13]. However, little is
known about whether males and females show differ-
ences in the effects of aging on the immune system. We
have been particularly interested in the percentages of
cells in peripheral blood in older age groups, because of

our studies of the peripheral immune response to
stroke, [14] which affects an older age group.
Current studies indicate that impaired immune func-

tion with age is associated with alterations in cell num-
bers, and also, in humans and in rats, with decreased
T cell activation and proliferation [15-18]. With ageing in
humans there is a decline in the number of naïve cells, an
increase in the ratio of memory to naïve cells [4], the
number of memory T cells [19,20], and the ratio of CD4+

to CD8+ cells [21] and an increase in the percentage of
NK cells [22] although the function of NK cells declines.
Less is known about the changes in immunoregulatory
T cells (Treg) with age, but the number of CD4+ Treg
cells [23-25] and the frequency of CD8+ Treg cells [26]
have been reported to increase with age. However, there
are suggestions in mice that CD4+CD25- effector cells
become incompetent with age [27].
The mechanisms involved in the decline in immune

function with age are not fully understood. These
changes are often ascribed to changes in the length
of telomeres, although this is controversial [28].
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Even though T cells can use telomerase to maintain the
length of telomeres during cell proliferation, with ageing
there is a reduction of the length of their telomeres due
to loss of telomerase activity [29,30]. With increasing
age, telomerase activity is better preserved in NK cells
than in CD8+ T cells [31]. In monkeys, the loss of naïve
cells is correlated with loss of telomere length [32].
Other proposed mechanisms of immunosenescence are
microsatellite instability due to abnormal DNA repair
[33] or to age-related epigenetic changes [34]. It is
thought that immunosenescence is a consequence of
chronic antigenic stress [35,36]. Cytomegalovirus infec-
tion appears to contribute to immunosenescence [37] by
chronic stimulation and activation of CD8+ cells [38].
To investigate the effects of age and gender on human

lymphocyte populations, we studied lymphocyte subsets
and their expression of activation markers in peripheral
blood in healthy people above the age of 21, and ana-
lyzed this according to gender.

2. Subjects and Methods
2.1. Subjects and blood collection
The procedures involved in the study were approved by
Royal Brisbane and Women’s Hospital Health Service
District Office of the Human Research Ethics Commit-
tee and The Medical Research Ethics Committee, The
University of Queensland, Brisbane, Australia. Blood
(50 ml) was collected from healthy volunteers by veni-
puncture. We regarded subjects as being healthy if they
had no acute illness, and were on no medication other
than anti-hypertensive medication, and had no serious
prior illnesses. We did not investigate whether the sub-
jects had previous infection with Epstein Barr virus or
cytomegalovirus. The age and sex distribution of the
subjects are summarized in Table 1.

2.2. Purification of PBL and staining for flow cytometry
Blood was separated by density gradient centrifugation
through LymphoSep (MP Biotechnologies). Peripheral
blood leukocytes (PBL) were then isolated and washed
twice with PBS containing 1% supreme serum, counted,

and the concentration of cells (1 × 107per ml) of sus-
pension was determined. All the data generated by flow
cytometry was from freshly purified PBL. Antibodies
used for staining were against CD3, CD4, CD8, CD20,
CD25, CD45RA, CD69, abTCR, gδTCR and CCR7
(all from BD, conjugated either to FITC, PE, PerCP or
APC) and FoxP3 (from eBioScience, PE-conjugated).
Fluorochrome-conjugated isotype-matched antibodies
were used as negative controls. For surface staining, PBL
(1 × 106 cells in 100 μl PBS containing 1% serum and
0.1% NaN3) were incubated with 1 μg antibody in the
dark at 4°C for 30 min and then washed twice. For
detecting regulatory T cells, PBL were firstly incubated
with anti-CD4-FITC and anti-CD25-APC antibodies,
then were fixed, permeabilized, incubated with anti-
FoxP3-PE or appropriate isotype control and washed
3 times. Cells were analyzed on a four-colour flow cyt-
ometer (FACSCalibur, BD), with gating on the total
lymphoid and monocyte populations, as previously
described [14]. Samples were obtained and studied indi-
vidually. For consistency, for each flow cytometry analy-
sis we used the standard calibration beads (BD) to set
the forward scatter and side scatter and PMT voltage.
The compensation was then adjusted by single staining
PBL cells (in particularly, cells from each sample were
stained with FITC,/PE/PerCP/APC/Alexa 46 in each
experiment). For the experimental samples, a corre-
sponding isotype control was used to set gates, or posi-
tive/negative cell populations.

2.3. Statistical analysis
To analyse the number of T cells, B cells, activated
T cells and activated B cells, first we gated on the lym-
phoid cell population. For naïve, effector or central
memory cells, we first gated on the CD3 cell population.
CD4/CD8 cell population was gated for analysis of alpha
beta TCR/gamma delta TCR cells. For Treg analysis, we
gated on the CD4 cell population. To investigate
whether there was a linear relationship between age in
years and the percentage of cells with different cell sur-
face markers, we performed linear regression analysis.
To determine whether there was a statistically signifi-
cant difference between men and women, we compared
the slope of the curves, using Graphpad prism. Data are
expressed as the mean ± S.D. Statistical significance
between groups was evaluated using nonparametric
Kruskal-Wallis test within One-way ANOVAL in
GraphPad. The statistical data was considered as signifi-
cant if P < 0.05.

3. Results
The results of linear regression analysis for CD3
(T cells/NKT cells), CD20 (B cells) and CD56 (NK/NKT
cells) are shown in Figure 1. In the CD3+ cells

Table 1 Age and sex of participants in the study

Number of subjects

Age group Total Male Female

20’s 12 5 7

30’s 14 7 7

40’s 12 6 6

50’s 14 7 7

60’s 12 6 6

70’s 9 3 6

>80 7 3 4

Total 80 37 43
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population (Figure 1A) there was a significant decline in
cell frequency that was significant for the combined
group of males and females, but not for males and
females alone. For the activated CD3+CD69+ cell popu-
lation (Figure 1B) and the CD20+ B cell population
(Figure 1C) there were no significant differences with
age. There was a significant decline in the percentage of
activated CD69+ B cells with age in males, but not
females (Figure 1D), and a significant increase in the
percentage of NK cells with age in males (Figure 1E).
There were no significant changes with age in the NKT
cell population (Figure 1F).
When CD3+ cells were further subdivided into CD4+

and CD8+ T cells (Figure 2), there were no significant
changes in the frequency of CD4+ cells with age

(Figure 2A). There was a significant decrease in the
percentages of CD3+CD8+ T cells in males with aging
(Figure 2B), and with aging there was an increase in the
ratio of CD4:CD8 T cells in males (Figure 2C).
There was no change in the frequency of activated

CD4+CD69+ cells with age (Figure 3A) or of CD8+CD69
+ cells (Figure 3D). For CD4+ TCRab+ T cells there was
no significant change with age (Figure 3B) but for CD8+

TCRab+ cells there was a significant decline with
age that was significant in males but not females
(Figure 3E). For TCR gδ cells there was no significant
change with age (Figure 3c and 3F).
The CD3+ cells were also subdivided on the basis of

CD45RA and CCR7 expression into CD3+CD45RA
+CCR7+ naïve cells, CD3+CD45RA-CCR7- effector

Figure 1 Distribution of percentages of PBL from individuals of different ages bearing different cell markers. The cell markers that PBL
were stained for are shown on the Y axis. The linear regression results for all individuals (black line), males (blue line) and females (pink line) and
the relevant P values are shown on the graphs. n.s. = not significant.
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memory cells, central memory cells, and terminally dif-
ferentiated subtypes (Figure 4). With aging, there was a
significant decrease in the naïve population that was sig-
nificant in males but not females (Figure 4A). There was
no significant change with age for effector memory cells
(figure 4C). There was a significant increase in effector
memory cells with age, and this was highly significant in
males but not females (Figure 4B). There was no signifi-
cant change with age in terminally differentiated cells
(Figure 4D).
As shown in Figure 5, we also analyzed Cd3+CD4+ cells

on the basis of expression of CD25 and Foxp3. Foxp3 is a
marker of regulatory T cells (Treg cells), but also appears
to be increased transiently in most activated human
CD4+ T cells [39,40]. When CD4+ T cells were analyzed,
there was a no significant change with age in the percen-
tage of cells expressing Foxp3 (Figure 5A), nor in the per-
centage of cell that were CD25hi or the percentage of
CD25hi cells that were CD25hiFoxp3+, suggesting that the
percentage of Treg cells does not change markedly with
age.
To compare the effects of aging in males and females,

we directly compared the slopes of the curves for males
and females. This is shown in Table 2. There were sig-
nificant differences in the slopes of the curves for the
CD4+: CD8+ ratio, for CD8+ ab+ T cells and central
memory cells, as shown in Table 2.

4. Discussion
Ageing is known to have effects on immune function
and on the percentages of circulating lymphocytes. Age-
ing has different effects in males and females with males
having a shorter life-span than females [11], so we have
investigated whether males and females show different
effects of ageing in human peripheral blood lympho-
cytes. In this study we did not address the functional
capacity of these cells. We examined the effects of age
on CD3+ lymphocytes expressing CD4, CD8, CD69,
CCR7, CD45RA and CCR7, on CD20 B cells, on T regu-
latory cells, defined by expression of CD25 and foxp3,
and on NK cells. The older subjects were healthy in
having no active diseases and having no serious previous
illnesses. We did not perform serology to estimate prior
exposure to CMV or EBV, although we note that
chronic infection with these viruses has been proposed
to play a role in immunosenescence [41] and that very
old subjects have large numbers of T cells reactive with
CMV [42].
By linear regression analysis we found no significant

changes in the percentage of CD3+ T cells or CD20+ B
cells with age, although we did find a significant
decrease in activated B cells with age in males. In mice
there is known to be a reduction in production of B
cells with aging [43] although this is compensated in

Figure 2 Distribution of percentages of lymphocytes from
individuals of different ages bearing CD4 (A) or CD8 (B) and
the change in the CD4:CD8 ratio with aging (C). The linear
regression results for all individuals (black line), males (blue line) and
females (pink line) and the relevant P values are shown on the
graphs. n.s. = not significant.
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Figure 3 Distribution of percentages of activated CD4 (A) or CD8 (D) T lymphocytes, and those carrying either the abTCR (B and E) or
gδTCR (C and F) from individuals of different ages. The linear regression results for all individuals (black line), males (blue line) and females
(pink line) and the relevant P values are shown on the graphs. n.s. = not significant.
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part by increased lifespan of B cells [44-46]. The age-
related impairment of B cell development is associated
with impaired V-DJ heavy chain gene recombination
[47,48] and also related with changes in the expression
and activity of the basic helix-loop-helix proteins E2A-
encoded E12 and E47 transcription factors, which help
the expression of immunoglobulin heavy chain by bind-
ing to the immunoglobulin heavy chain enhancer.
We found an increase in the proportion of NK cells.

This is also consistent with previous studies [22] that
find increased numbers but reduced functional capacity
of NK cells. There are reports of increased NK cells in
bone marrow, and indeed these cells are thought to con-
tribute to a decrease in B cell precursors in old age, by
inhibiting E2A protein and E47 transcription factors
[49]. It has been suggested that ageing is a state when
the innate immune system prevails over the adaptive
immune system. However, there is also a decline in NK
cell activity, seen also in rats, which is more pronounced
in males than females [18].
There was no significant change in the percentage of

CD4+ cells but there was a decline in the percentage of
CD8+ cells and an increase in the ratio of CD4:CD8
cells, as has been previously reported [21]. The decline
in CD8+ cells was more apparent in the TCRab than in
the TCRδg subsets. There was a significant decline in

the percentage of CD3+CD45RA+CCR7+ naïve cells and
an increase in the percentage of CD3+CD45RA-CCR7-

effector memory cells with age. The increase in effector
memory cells has been suggested to be due in part to
chronic antigenic stimulation [38,50].
We also studied T regulatory cells. Previously these

cells have been identified as CD4+CD25hi according to
high constitutive surface expression of interleukin 2
receptor alpha chain CD25 on CD4+ T cells [51,52].
Recently transcription factor Foxp3 has been recognized
as the most specific marker of T regulatory cells [53,54],
although Foxp3 also appears to be increased in most
activated human CD4+ T cells [39,40]. We measured
the CD4+CD25hiFoxp3+ cells, CD4+CD25hi cells and
CD4+CD25hifoxp3+ cells, and found that although the
percentages of Foxp3+ cells increased with age in the
total CD4+ population, there were no significant changes
in the percentage of CD4+ T cells that were both
CD25hi and Foxp3+ with age. In humans, some previous
studies have found an increase in Treg cells with age
[23,24]. Others have found increased CD4+CD25+ cells
with age, but no increase in CD4+CD25hi cells with age,
and attributed the increase in CD4+CD25+ cells to an
increase in cells with intermediate rather than high
levels of expression of CD25 [25]. We did not measure
the functional capacity of these cells, and acknowledge

Figure 4 Distribution of percentages of naïve (CD45RA+CCR7+) (A), effector memory (CD45RA-CCR7-) (B), central memory (CD45RA-

CCR7+) (C), or terminally differentiated (CD45RA+CCR7-) (D) CD3+cells from individuals of different ages. The linear regression results for
all individuals (black line), males (blue line) and females (pink line) and the relevant P values are shown on the graphs. n.s. = not significant.
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that there are studies showing that the functional capa-
city of human CD4+ Treg cells declines with age [55].
The reason for gender differences in immunosenes-

cence are a matter for speculation. There are known to
be gender differences in the immune system of males and
females. In males the total lymphocyte count is similar to
that in females but the percentage of T cells within the
lymphocyte population is lower [56,57]. There are differ-
ences in the function of the immune system in males and
females [12,13], and this is probably contributes to the
different ability of males and females to deal with infec-
tions, and the different prevalence of autoimmune disease
in males and females [58]. Generally, females produce
more vigorous humoral and cellular immune responses
than males [59,60], shown in mice as an augmented
responses to different antigens [61], ability to reject allo-
grafts more rapidly that males [62], and in mice and
humans by better in vitro responses to mitogens [60,63]
and relative resistance to the induction of immune toler-
ance [64] There is a superior ability of female mice to
combat various infections, including with Leishmania
and amebic infection with liver abscess [65], which is
thought to be due to due to sex difference in Th1 and
Th2 responses [66]. Moreover, in Wistar rats infected
with Trypanasoma cruzi, there is less parasitaemia in
females than males [67].
In the current study we are looking at the differences

in immunosenescence between males and females. The
changes that we observed with ageing were more appar-
ent in males, although this was statistically significant
only for CD8+ alpha beta T cells and for effector mem-
ory cells. This observation of gender differences in age-
ing in the immune system is not unique to the immune
system. In the heart, there is loss of myocardial mass in
men but not in women [68]. Loss of volume in the
brain with ageing occurs to a greater extent in men
than in women [69]. We note that in all animal species
there are gender differences in the effects of ageing, and
for humans and for species with species with XY chro-
mosomes, ageing had greater effects in males [11]. Some
of this may be due to the effects of hormones. For
example, estrogen stimulates c-myc which stimulates
telomerase, which could have an anti-ageing effect [70].
Another recent theory relates to the possibility that the
evolutionary needs of females and males are different
and that mitochondria are better adapted to females
than males cells [71]. Our study suggests that there can
be differences in immunosenescence between males and
females and that this is worth further study.

Figure 5 Distribution of percentages of lymphocytes from
individuals of different ages bearing CD4 and Foxp3 (A), CD4
and high levels of CD25 (B), and those CD4+ cells that were
positive for both high levels of CD25 and Foxp3 (C). The linear
regression results for all individuals (black line), males (blue line) and
females (pink line) and the relevant P values are shown on the
graphs. n.s. = not significant.
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