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From promoting to inhibiting: diverse roles of
helicases in HIV-1 Replication
Rene-Pierre Lorgeoux1,3, Fei Guo4 and Chen Liang1,2,3*
Abstract

Helicases hydrolyze nucleotide triphosphates (NTPs) and use the energy to modify the structures of nucleic acids.
They are key players in every cellular process involving RNA or DNA. Human immunodeficiency virus type 1 (HIV-1)
does not encode a helicase, thus it has to exploit cellular helicases in order to efficiently replicate its RNA genome.
Indeed, several helicases have been found to specifically associate with HIV-1 and promote viral replication.
However, studies have also revealed a couple of helicases that inhibit HIV-1 replication; these findings suggest that
HIV-1 can either benefit from the function of cellular helicases or become curtailed by these enzymes. In this
review, we focus on what is known about how a specific helicase associates with HIV-1 and how a distinct step of
HIV-1 replication is affected. Despite many helicases having demonstrated roles in HIV-1 replication and dozens of
other helicase candidates awaiting to be tested, a deeper appreciation of their involvement in the HIV-1 life cycle is
hindered by our limited knowledge at the enzymatic and molecular levels regarding how helicases shape the
conformation and structure of viral RNA-protein complexes and how these conformational changes are translated
into functional outcomes in the context of viral replication.
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Human immunodeficiency virus type 1 (HIV-1) is a lenti-
virus. Replication of the HIV-1 RNA genome involves re-
verse transcription by viral reverse transcriptase,
integration into cellular DNA by viral integrase, and
transcription by cellular RNA polymerase II. HIV-1 RNA
is subject to the regulation by viral proteins including
Tat, Rev, and Gag that recognize specific viral RNA
structures. Tat binds to the TAR (transactivation re-
sponse) RNA that is located at the very 50 end of the viral
genome, and it further recruits cellular factors including
the P-TEFb (positive transcription elongation factor b)
complex to the HIV-1 promoter and enhances transcrip-
tion [1]. Rev recognizes the RRE (Rev response element)
RNA that is located within the envelope protein-coding
region, and it promotes the nuclear export of unspliced
and partially spliced viral RNA via association with the
CRM1 (chromosome region maintenance 1, also named
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exportin 1) nuclear export machinery [1]. Gag recognizes
the viral RNA packaging signals located at the 50 untrans-
lated region (50UTR) and recruits two copies of full-
length HIV-1 RNA into each virus particle [2]. Recent
studies have begun to reveal that a group of cellular pro-
teins named helicases modulate HIV-1 replication
through interacting with Tat, Rev and Gag proteins.
The importance of helicases in HIV-1 replication began

to receive much attention when DDX3 was identified as
an essential factor of the Rev/CRM1/RRE RNA export
complex in 2004 [3]. The role of helicases in HIV-1 repli-
cation was further highlighted in a 2006 review where
the authors stated that the story of HIV-1 and helicase
would continue to unfold [4]. Indeed, in the subsequent
years, more helicases were discovered that not only pro-
mote but also, in some cases, restrict HIV-1 replication.
This review is aimed at providing an up-to-date account
of the HIV-1 and helicase story with a focus on helicases
that exert specific association with Tat, Rev, Gag or viral
RNA. We also briefly discuss the possible involvement of
helicases in HIV-1 RNA packaging and viral DNA inte-
gration, as well as how HIV-1 evades recognition by the
RNA helicase RIG-I. An overview is provided in Figure 1
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Figure 1 Putative Roles of helicases in HIV-1 life cycle. HIV-1 infection starts with the entry step and ends with production of mature and
infectious virus particles. The flow of the virus life cycle is narrated with arrows. Helicase involvement at distinct steps of HIV-1 life cycle is
illustrated. Names of helicases are highlighted in red letters. Green arrows indicate a stimulating effect of a specific helicase on HIV-1 replication,
the red lines denote inhibition.
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to illustrate the helicases that are known to modulate dis-
tinct steps of HIV-1 replication. The general role of heli-
cases in viral infection is also discussed in two recent
excellent reviews [5,6]. Methods to study the activity of
RNA helicases in the context of viral replication are
described in [7].

Helicases share conserved core structures and
have diversified functions
Helicases are enzymes that hydrolyze NTPs (nucleotide tri-
phosphates) and use the energy to unwind nucleic acid
duplexes or to translocate along the nucleic acid strand [8].
They are ubiquitously expressed and participate in almost
every cellular event involving nucleic acids. Helicases are
characterized by two RecA-like domains that exhibit ATP-
binding as well as nucleic acid-binding properties. Among
the conserved motifs that helicases carry are the Walker A
and B boxes that bind and hydrolyze NTPs, as well as the
“arginine fingers” that couple NTP hydrolysis with nucleic
acid unwinding or translocating activities. On the basis of
their conserved motifs and enzymatic properties, helicases
are classified into six superfamilies (SF) [8]. SFI and SFII have
the most members, they function in a monomeric or a di-
meric form. Many SF1 and SFII helicases contain the DExD/
H motif [9]. Members of SFIII to SFVI are of viral or bacter-
ial origin and often form hexamers [10,11]. Depending on
whether they unwind RNA or DNA duplexes, helicases are
also grouped as RNA helicases and DNA helicases. But this
definition can become ambiguous for some helicases, such
as RNA helicase A (RHA), that are able to unwind both
RNA and DNA [12]. An RNA helicase database is now avail-
able at http://www.rnahelicase.org [13].
The biochemical properties of helicases can be defined

by four measurable parameters. These include, 1) trans-
location rate, which represents the number of bases
translocate per second; 2) directionality of action either

http://www.rnahelicase.org
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from 50 to 30 or from 30 to 50; 3) processivity which is
characterized by the number of rounds of catalysis be-
fore a helicase falls off the substrate; and 4) step size
which represents the number of base pairs translocated
during each NTP hydrolysis event [8]. Helicases differ
considerably in their biochemical properties. For ex-
ample, hexameric helicases often translocate long dis-
tance on DNA before falling off, whereas RNA helicases
of the DEAD-box family unwind a short stretch of
double-stranded RNA of no more than two helical turns.
Even among DEAD-box helicases, they exhibit a wide
array of activities [9]. For example, the DEAD-box pro-
tein eIF4AIII, upon binding to ATP, shows RNA clamp-
ing activity and serves to recruit the core components of
exon junction complex (EJC) [14]. DDX21 (also named
RH-II/GuA) acts as a strand annealer in an ATP-
independent manner [15]. These biochemical properties
often determine the biological functions of helicases.
Helicases are also regulated by co-factors. For ex-

ample, the translation initiation factor eIF4A alone exhi-
bits low ATP-dependent helicase activity [16]. Binding
to eIF4B and eIF4H greatly enhances the ability of eIF4A
to unwind RNA [17]. In addition, a local activation of
the yeast helicase Dbp5 by inositol hexakisphosphate 6
(InsP6) and Gle1 leads to the removal of mRNA export
factor Mex67 when mRNA arrives at the cytoplasmic
side of the nuclear pore complex (NPC) [18,19]. There-
fore, despite the conserved motifs and the similar folding
that all helicase core domains share, each helicase is
highly specific in its way to modify nucleic acid struc-
tures and regulate nucleic acid functions.

Helicases as the co-factors of HIV-1 Tat
HIV-1 Tat protein activates viral RNA synthesis [1]. Tat
binds to the TAR RNA and recruits transcription factors
to stimulate both transcription initiation and elongation.
These transcription factors include p300/CREB-binding
protein-associated factor (PCAF) and P-TEFb. P-TEFb
contains cyclin T1 (CycT1) and cyclin-dependent kinase 9
(CDK9). CDK9 hyperphosphorylates the C-terminal do-
main (CTD) of RNA polymerase II and activates tran-
scription elongation (Figure 2) [1]. In addition to these
transcription factors, two helicases, the Werner syndrome
(WRN) helicase and RHA, were reported to act as co-
factors of Tat and enhance HIV-1 gene expression [20,21].
WRN is a member of the RECQ helicase family that

also consists of RECQL (RECQ protein-like), BLM
(bloom syndrome), RECQ4/RTS (Rothmund-Thomson
syndrome) and RECQ5. RECQ helicases harbor the
DEAH motif and belong to SFII. They are capable of re-
solving complex DNA structures that often block DNA
replication fork progression [22]. In addition to its role
in DNA recombination, WRN also promotes RNA poly-
merase II-dependent transcription, which is partially
attributable to its ability to stimulate the DNA-
unwinding activity of DNA topoisomerase I [23]. In line
with its role in transcription, WRN was recently shown
to interact with HIV-1 Tat and promote HIV-1 LTR
transactivation (Figure 2) [20]. WRN and Tat are co-
localized within the nuclei of HIV-1 infected cells. The
purified recombinant GST-Tat is able to pull down the
endogenous WRN. WRN appears to enhance HIV-1
gene expression by facilitating the recruitment of PCAF
and P-TEFb to HIV-1 LTR [20]. In support of this role
of WRN, ectopic expression of wild type WRN in
human lymphocytes increases HIV-1 p24(Gag) produc-
tion and viral replication.
In addition to the WRN helicase, RHA has also been

shown to promote TAR-dependent HIV-1 gene expres-
sion [21]. RHA contains the DEIH Walker B motif, is a
DEXH helicase. In addition to the helicase core domain,
RHA has two double-stranded RNA-binding domains
(dsRBDs) at its N-terminal region and the arginine- and
glycine-rich (RGG) repeats at its C-terminal region
(Figure 2) [24]. These latter domains target RHA to its
RNA substrates. HIV-1 TAR RNA has been shown bind-
ing to the N-terminal dsRBDs of RHA [21,25]. This
interaction allows RHA to affect a few steps of HIV-1
replication including transcription. Similar to WRN,
RHA increases both basal activity from HIV-1 LTR and
Tat transactivation (Figure 2) [21]. It is unclear whether
RHA directly interacts with Tat as WRN does. Interest-
ingly, the dsRBD II and the RGG repeats of RHA dir-
ectly interact with the N-terminal exonuclease domain
of WRN, and stimulate its exonuclease activity [26].
With such an interaction, RHA promotes the WRN-
mediated degradation of D-loop DNA as well as the
unwinding of Okazaki fragment-like hybrids [26,27]. It is
thus conceivable that these two helicases may act to-
gether to promote HIV-1 RNA synthesis (Figure 2).

The essential role of helicases in Rev-dependent
RNA export
The intron-containing cellular RNA cannot leave the nu-
cleus before they are completely spliced. HIV-1 needs to
evade this form of cellular surveillance in order to ex-
port its full-length and partially spliced RNA into the
cytoplasm and produce viral structural proteins and
accessory proteins. This viral evasion relies on the Rev
protein that binds to the HIV-1 RNA sequence RRE and
communicates the intron-containing HIV-1 RNA to the
CRM1 nuclear export pathway for export [28]. Crossing
the NPC (nuclear pore complex) is not a trivial task for
the RNP (ribonuclear protein) complex. Remodeling is
required so that the RNP is able to thread through the
NPC channel. Snay-Hodge and colleagues first reported
in 1998 that in yeast, the Dbp5 RNA helicase (human
DDX19 homolog) associates with the NPC and is
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Figure 2 Interaction of WRN and RHA with the TAR/Tat complex. (A) Domain structures of RHA and WRN. The amino acid positions of each
illustrated domain are indicated. dsRBD, double-stranded RNA-binding domain; RG-rich, arginine (R) and glycine (G)-rich region; EXO, exonuclease
domain; RQC, RecQ Conserved domain; HRDC, helicase RNase D C-terminus domain. (B) WRN interacts with Tat and helps the recruitment of the
P-TEFb complex (consisting of CycT1 and CDK9) to the HIV-1 promoter. RHA binds to the stem of TAR RNA via its dsRBD and also interacts with
WRN. TRBP, TAR RNA binding protein.

Table 1 Human genes vs Yeast homologs

Human Name Yeast homolog

DDX19 Dbp5

TAP, NXF1 Mex67

GLE1 Gle1

IP6K InsP6

NXT1 Mtr2

SKIV2L2 Mtr4

PAPD7 Trf4
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essential for mRNA export [29]. It was later shown that
following activation by Gle1 and InsP6 at the cytoplas-
mic face of the NPC, Dbp5 remodels mRNP and
removes RNA transporters Mex67 (human TAP homo-
log) and Mtr2 (human NXT1 (nuclear transport factor
2-like export factor 1) homolog) [18,19] (Table 1). It
remained unknown whether a similar role of helicase is
required for Rev/CRM1/RRE-mediated export of intron-
containing HIV-1 RNA until Yedavalli and colleagues
reported the essential role of DDX3 in this export event
(Figure 3) [3]. It is noted that, in addition to helicases,
other cellular factors have also been shown to promote
Rev/RRE-mediated RNA export. One such example is
Mtr3 that binds to the Rev/RRE complex and facilitates
the export of HIV-1 RNA [30,31].
DDX3 is a DEAD-box protein (Figure 3A). Although

DDX3 has been shown to interact with RNA transport
factors TAP/NXF1 and REF/Aly, it does not appear to
play a role in bulk mRNA export [32-34]. It is interesting
to note that Ded1 (yeast DDX3 homolog) modulates
translation by controlling the conformation of eIF4F-
mRNA complex [35], suggesting a role of Ded1/DDX3
in translation. The function of DDX3 in RNA export
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was not recognized until DDX3 was found to participate
in the Rev-dependent export of unspliced and partially
spliced HIV-1 RNAs [3]. Rev is co-immunoprecipitated
with DDX3, but a direct interaction between the two
proteins has not been experimentally demonstrated. Ra-
ther, the purified GST-CRM1 is able to pull down the
in vitro translated DDX3. This direct interaction
depends on the DDX3 fragment at amino acid positions
260 to 517 that does not include the NES (nuclear ex-
port signal) sequence, and is Ran-GTP independent
(Figure 3A, 3C), which suggests that instead of a cargo,
DDX3 acts as an effector in the CRM1-mediated nuclear
export pathway.
In support of the important role of DDX3 in Rev-

dependent HIV-1 RNA export, knockdown of DDX3 or
expression of the dominant negative mutant of DDX3
significantly diminishes HIV-1 replication [36]. Mutation
of a unique fragment between the helicase motifs I and
Ia diminishes the ability of DDX3 to bind to HIV-1 RNA
and impairs HIV-1 replication [37]. Interestingly, a lig-
and of this unique region reduces HIV-1 infection of
HeLaP4 cells, suggesting the possibility of targeting this
domain to abrogate the function of DDX3 in HIV-1 rep-
lication. It remains to be tested whether DDX3 is
involved in CRM1-mediated export of cellular RNAs
such as snRNA and rRNA, and to elucidate the molecu-
lar details regarding how DDX3 promotes RNA export.
In addition to DDX3, the RNA helicase DDX1 has

also been reported to associate with Rev and promote
the export of RRE-containing viral RNA (Figure 3A)
[38]. Purified DDX1 exhibits RNA-dependent ATPase
activity. The DDX1 sequence from amino acids 189 to
333 directly interacts with the nuclear inhibitory signal
(NIS) at amino acids 10 to 24 in Rev. Through this
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interaction, DDX1 promotes Rev oligomerization on
the RRE RNA (Figure 3B, 3C) [39,40]. This function of
DDX1 is important because coordinated binding of
multiple copies of Rev, rather than Rev monomer, to
the RRE is required for initiating RNA export [41]. In
support of its role as a co-factor of Rev, the low
DDX1 level in astrocytes results in a predominant
cytoplasmic location of Rev, which partially accounts
for the poor susceptibility of this cell type to HIV-1
infection [42]. On the basis of these observations, we
propose that DDX1 and DDX3 act sequentially in the
Rev-dependent RNA export (Figure 3C). DDX1 first
binds to Rev and promotes Rev oligomerization on the
RRE RNA. Then the oligomerized Rev molecules,
through presenting multiple copies of NES, recruit the
CRM1/DDX3 complex that subsequently exports the
RRE-containing HIV-1 RNA into the cytoplasm.
A recent proteomic study led to the finding of more

helicases that associate with HIV-1 Rev [43]. In addition
to DDX1 and DDX3, these include DDX5, DDX17,
DDX21, DHX36, DDX47 and RHA. Silencing DDX5,
DDX17 or DDX21 significantly modulates the produc-
tion of HIV-1 particles, suggesting a functional role of
these helicases in HIV-1 replication. It remains to be fur-
ther investigated how each of these helicases affects the
function of Rev and whether they play redundant roles
or are involved in distinct steps of Rev-mediated RNA
export. Interestingly, these helicases were not reported
to associate with Rev in a separate protoemic study that
employed the affinity tagging purification and mass
spectrometry methods to identify cellular factors that
interact with each of the 18 HIV-1 proteins [44]. This
discrepancy may reflect the RNA-dependent nature of
the Rev-helicase interaction.

Helicases in HIV-1 particles
Gag makes HIV-1 particles [45]. In addition to viral RNA
and viral proteins, a variety of cellular factors find their
way into virus particles via direct or indirect interactions
with Gag [46,47]. Among the many cellular factors are
two helicases, RHA and MOV10 (Moloney leukemia
virus 10 homolog) [48-51]. These two helicases both
affect HIV-1 reverse transcription but with opposite
outcomes.
RHA interacts with Gag in an RNA-dependent manner

[48]. Knockdown of RHA in virus producer cells
diminishes the infectivity of progeny HIV-1 particles,
suggesting a functional role of the presence of RHA in
the virions [25,48]. This deficit in infectivity is caused at
least in part by decreased viral reverse transcription
[25,48]. A further analysis of the viral RNA complex
within the RHA-depleted virus particles reveals a
reduced level of tRNALys.3 that is annealed onto the pri-
mer binding site (PBS) [52]. This latter finding is verified
by in vitro study showing that the purified recombinant
wild type RHA, but not its helicase-null mutant K417R,
assists Gag/NC in promoting the formation of
tRNALys.3/viral RNA binary complex [52]. Moreover,
this binary viral RNA complex that is formed with the as-
sistance of RHA exhibits higher efficiency in reverse
transcription [52], which suggests that RHA not only
promotes the annealing of tRNALys.3 onto viral RNA
but also helps the viral RNA complex to adopt conforma-
tions in favor of the action of viral reverse transcriptase.
In contrast with the stimulatory role of RHA in HIV-1

reverse transcription, MOV10 exerts an inhibitory effect
[49-51]. MOV10 is a SFI RNA helicase, and has the
DEAG Walker B motif. In addition to the helicase core
domain, MOV10 has a long N-terminal region that bears
a cysteine- and histidine-rich (CH) domain (Figure 4A).
Detailed mutagenesis analysis showed that the MOV10
sequence at amino acid positions 261 to 305 interacts
with the basic linker of the NC domain of Gag protein
(Figure 4B) [53]. In addition, efficient viral incorporation
of MOV10 also requires the helicase core domain down-
stream of this (261 to 305) region (Figure 4B). It remains
controversial in terms of which step of viral reverse tran-
scription is suppressed by MOV10. Burdick and collea-
gues reported a defect at the late stage of reverse
transcription [51], whereas Wang et al and Furtak et al
observed a reduction in the yield of early HIV-1 cDNA
products (Figure 5C) [49,50]. Testing purified MOV10
in cell-free HIV-1 reverse transcription assays is one way
to elucidate the molecular details of its inhibition activ-
ity. The ability of MOV10 to dampen reverse transcrip-
tion may enable it to have a role in controlling
endogenous retroelements. Indeed, two recent studies
reported that MOV10 inhibits the retrotransposition of
both LTR and non-LTR endogenous retroelements in-
cluding LINE-1, Alu and IAP [54,55].
MOV10 may not act alone to inhibit HIV-1 reverse

transcription. It is known that MOV10 binds to Ago2
and is a player in the microRNA pathway [56]. This
function allows MOV10 to control local protein transla-
tion at synapses and modulate synaptic plasticity [57].
Ago2 was recently detected in HIV-1 particles [58]. This
latter finding raises the possibility that MOV10 and
Ago2 may be packaged into virus particles as one com-
plex and, together, modulate the function of viral RNA.

RHA enhances HIV-1 RNA translation
The role of RHA in HIV-1 replication goes beyond en-
hancing viral transcription and reverse transcription.
RHA also increases HIV-1 RNA translation (Figure 5)
[25]. This function of RHA depends on its binding to
the R/U5 sequence of HIV-1 RNA that has been named
the post-transcriptional control element (PCE). The PCE
exists in the 50UTRs of different retroviruses, including
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spleen necrosis virus (SNV), Mason-Pfizer monkey virus
(MPMV), human foamy virus (HFV), reticuloendothelio-
sis virus strain A (REV-A), human T-cell leukemia virus
type 1 (HTLV-1), feline leukemia virus (FeLV), and bo-
vine leukemia virus (BLV) [59]. Studies show that RHA
augments translation by promoting the association of
PCE-containing RNA with polyribosomes [60]. This
translation mechanism may have a cellular origin, since
the translation of cellular junD mRNA is stimulated by
RHA in a 50UTR-dependent manner [61].
RHA is not the only helicase that promotes the trans-

lation of mRNA having structured 50UTR. DHX29 has
been reported to facilitate the formation of the 48S
translation initiation complex on the AUG codon of
mRNAs such as neutrophil cytosolic factor 2 (NCF2)
and CDC25 that harbor secondary structures at their
50UTRs [62,63]. These findings suggest that in addition
to the RNA helicase eIF4A that functions as a conical
translation initiation factor, the translation of specific
mRNA may benefit from the action of other helicases
[17].
RHA contributes to one of the several translation

mechanisms that HIV-1 has harnessed to ensure efficient
production of viral proteins. First, the activity of internal
ribosome entry site (IRES) has been detected in the HIV-
1 50UTR and the Gag-coding region [64,65], which allows
translation to initiate in a cap-independent fashion. It
has been noted that HIV-1 PCE and IRES are mapped to
different sequences of the 50UTR [25,65], indicating that
they represent distinct translation mechanisms. Second,
the Rev/RRE-exported viral RNAs have a trimethylgua-
nosine (TMG) cap at their 50 ends as opposed to the 7-
methylguanosine (m7G) at the 50 end of most cellular
mRNA [66]. The TMG cap is synthesized by the PIMT
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enzyme (peroxisome proliferator-activated receptor-
interacting protein with methyltransferases) that is
recruited to HIV-1 RNA through binding to Rev. As a re-
sult, PIMT increases the translation of Rev-exported viral
RNA. It is postulated that this mechanism ensures the
production of optimal amounts of viral structural pro-
teins at the late stage of HIV infection to produce virus
particles. This finding also explains why Rev, besides its
role in RNA export, also enhances translation [67,68].
These different translation mechanisms contribute to

HIV-1 protein production at different levels and under
different conditions. RHA, through binding to R/U5 that
is present on both spliced and unspliced HIV-1 RNAs,
promotes the synthesis of all HIV-1 proteins, whereas
the TMG cap, whose formation is Rev-dependent,
increases the translation of viral structural proteins. In
regard to HIV-1 IRES, its activity is cell cycle-dependent
and responds to oxidative stress [65,69,70].

Upf1 associates with the 3′UTR of HIV-1 RNA
HIV-1 RNA has a long 30UTR that represents one of the
signals, in addition to the pre-mature termination codon
(PTC) and the upstream open reading frame (uORF),
that are recognized by the nonsense-mediated decay
(NMD) machinery [71]. This long 30UTR scenario is par-
ticularly true for the unspliced HIV-1 RNA in which the
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termination codon of the gag-pol gene is located ap-
proximately 4 kb from the 30 end of viral RNA. Although
much is known about PTC-triggered NMD, it remained
unclear how sensing the length of 30UTR is achieved by
the NMD machinery until Hogg and Goff reported the
association of Upf1 with HIV-1 30UTR in an RNA
length-dependent manner (Figure 6) [72].
Upf1 is a key component of the NMD core machinery

[71]. As an SFI RNA helicase, Upf1 exhibits nucleic acid-
dependent ATPase activity and 50 to 30 RNA unwinding
activity [73]. Using the RNA affinity purification technique
and the mass spectrometry method, Hogg and Goff dis-
covered that Upf1 associates with HIV-1 30UTR and other
model 30UTRs [72]. When the abundance of Upf1 associ-
ation with a 30UTR exceeds a certain threshold, the RNA
is marked as a potential substrate for NMD. Frequent
translation readthrough counters this mechanism by dis-
placing Upf1 from the 30UTR [72]. Interestingly, rare
translation readthrough also rescues the RNA from NMD
without affecting the association of Upf1 with 30UTR,
which suggests a two-step model for Upf1 to sense 30UTR
and to potentiate decay. Since HIV-1 and other retro-
viruses use the frame shift mechanism to read through the
stop codon of Gag in order to produce the Gag-Pol poly-
protein, this translation mechanism may protect HIV-1
RNA from Upf1-mediated RNA decay. In support of this
possible counter measure, it has been reported that Rous
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Figure 6 Roles of Upf1 and ZAP in HIV-1 RNA degradation. Multiple co
and SMG1 to assemble the NMD machinery. The exosomes are then recrui
recognizes multiply spliced HIV-1 RNA and sends the RNA to exosomes for
sarcoma virus (RSV) has the RSV stability element (RSE)
that contains a frame shift pseudoknot and prevents the
Upf1-dependent degradation of unspliced RSV RNA [74].
However, the story of Upf1 and HIV-1 may be more com-
plicated. One study shows that the knockdown of Upf1 in
HeLa cells leads to decreased levels of both HIV-1 RNA
and viral Gag protein and that this observation is inde-
pendent of the role of Upf1 in NMD [75]. This study con-
cluded that HIV-1 has evolved to use Upf1 to stabilize
viral RNA. Further studies are warranted to define how
Upf1 modulates HIV-1 replication in HIV-1 natural target
cells such as primary CD4+ T cells.
In addition to Upf1, HIV-1 RNA was recently shown

being subject to ZAP (zinc finger antiviral protein)-
mediated degradation (Figure 6) [76]. ZAP was originally
reported to inhibit murine leukemia virus (MLV) infec-
tion [77]. Interestingly, ZAP causes the degradation of
multiply spliced HIV-1 RNA while sparing the unspliced
and singly spliced viral RNA [78,79]. This degradation
process can be initiated either by shortening the 30 poly-
adenylation tail or by removing the 50 cap. Two RNA
helicases, DDX17 and DHX30, were found as co-factors
of ZAP [76,80,81], which may function by remodeling
the viral RNP and assisting the recruitment RNA deg-
radation machinery. A similar role of RNA helicase in
cellular RNA degradation has been reported for Mtr4 in
yeast that bridges the TRAMP (Trf4/Air2/Mtr4
DegradationExosome Machinery

ZAP

DHX30DDX17

Multiply spliced viral RNA 

5’ 3’

ZAP-mediated

pies of Upf1 first bind to the long 30UTR and then recruit Upf2, Upf3
ted to degrade RNA. ZAP, together with DDX17 and DHX30,
degradation.
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polyadenylation) complex to exosomes and remodels
substrate RNA molecules [82,83].

DDX24 and DHX30 modulate HIV-1 RNA
packaging
Each HIV-1 particle packages two copies of unspliced
viral RNA that are non-covalently linked via the RNA
stem-loop structure SL1 that is defined as the
dimerization initiation site (DIS) [2,84,85]. The NC do-
main of Gag is primarily responsible for recognizing the
RNA packaging signals that comprise the SL1, SL2 and
SL3 RNA structures at the 50UTR [86,87]. The nuclear
magnetic resonance (NMR) structures of the 712-nt
HIV-1 50-leader RNA reveal a structure-based coordin-
ation of HIV-1 RNA packaging, dimerization and trans-
lation [88]. In addition to these cis-acting viral RNA
signals at the 50UTR, the Rev/RRE system has also been
shown to significantly augment HIV-1 RNA packaging
[89]. A direct involvement of helicases in HIV-1 RNA
packaging has not been documented, although it is
known that bacteriophages use helicases as motors to
“thread” phage DNA into their capsids [90]. Nonethe-
less, a couple of helicases have been implicated in modu-
lating the genome packaging of some retroviruses
including HIV-1. For example, DDX6 was reported to
affect the viral genome packaging of foamy virus, a spu-
maretrovirus [91]. Relocation of DDX6 from P bodies
and stress granules to virus assembly sites at the peri-
nuclear region was seen in cells infected with foamy virus.
However, no interaction was detected between DDX6 and
Gag, and DDX6 was not seen in the virus particles [91].
As opposed to the reported role of DDX6 in foamy virus
assembly, DDX6 binds to HIV-1 Gag and promotes Gag
assembly, independent of viral RNA packaging [92]. We
previously observed that knockdown of the RNA helicase
DDX24 diminishes HIV-1 RNA packaging [93]. This ef-
fect was seen only for Rev/RRE-exported, not for CTE
(constitutive transport element)-exported viral RNA,
which likely results from the interaction of DDX24 with
Rev. With its predominant location within the nucleolus,
DDX24 may gain access to HIV-1 RNA through associ-
ation with Rev and participates in viral RNA remodeling.
The effect may then extend to the viral RNA packaging
event that takes place within the cytoplasm. In contrast
to the stimulatory effect of DDX24, another RNA heli-
case, DHX30, inhibits HIV-1 RNA packaging [94], which
may be attributable to its accessory role in ZAP-mediated
HIV-1 RNA degradation [80].
The putative role of helicases in HIV-1 DNA
integration
Integration of HIV-1 DNA into cellular DNA is cata-
lyzed by viral integrase in the context of pre-integration
complex (PIC) [95,96]. The PIC consists of the full-
length HIV-1 DNA, integrase, viral and cellular factors
that assist viral DNA integration. In addition to a
number of cellular proteins such as BAF (barrier-to-
autointegration factor), Gemin2, EED (embryonic ecto-
derm development), integrase interactor 1, and LEDGF/
p75 (lens epithelium-derived growth factor), the helicase
DDX19A was recently shown to likely associate with the
PIC [97]. Using the yeast two-hybrid method, Studamire
and Goff screened for cellular proteins that interact with
the integrase of Moloney murine leukemia virus
(MoMLV) [98]. The candidates include several helicases
such as Ku70/XRCC6, DDX5 and DDX18. It would be
interesting to test whether these helicases also associate
with HIV-1 integrase and whether they play a func-
tional role in HIV-1 DNA integration. It should be
noted that no helicase has ever been shown experimen-
tally to interact with HIV-1 integrase, therefore a direct
role of helicase in HIV-1 DNA integration remains to
be established.
Despite not being components of the PIC, helicases in

the DNA repair machinery may participate in HIV-1
DNA integration in an indirect manner. For example, un-
integrated HIV-1 DNA has been reported to be the sub-
strate of the non-homologous DNA end joining (NHEJ)
pathway [99]. Knockdown of the Ku80 DNA helicase, a
key player in NHEJ, reduces HIV-1 DNA integration and
diminishes viral replication in human CEM4fx cells [99].
In one study, 232 host DNA repair proteins were silenced
using siRNA oligos and the effects on HIV-1 DNA inte-
gration were measured [100]. The targeted proteins are
involved in base excision repair (BER), nucleotide excision
repair (NER), NHEJ, single strand break repair (SSBR),
double strand break repair (DSB), mismatch repair
(MMR), and homologous recombination (HR). The
results revealed an important role of the BER pathway in
HIV-1 DNA integration [100,101]. Notably, knockdown
of a few DNA repair helicases including ERCC3 and
RECQL4 diminishes HIV-1 infection, suggesting their
role in viral DNA integration [100].
Instead of assisting HIV-1 DNA integration, certain

DNA repair machineries exert inhibitory effects. For
example, NER-deficient cells that are mutated in the
helicases XPB and XPD are more susceptible to trans-
duction by HIV-based retroviral vectors owing to an
increase in the integrated viral DNA [102,103]. This
suggests a role of these two DNA helicases, and likely
via the underlying NER pathway, in defending cells
against retroviral integration. In conclusion, no helicase
has been reported to specifically interact with HIV-1
integrase and thereby modulate directly viral DNA in-
tegration. Evidence does suggest that some helicases
become involved in HIV-1 DNA integration in the
context of DNA repair pathways.
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RIG-I is curtailed by viral protease for sensing
HIV-1 RNA
A small family of DExD/H helicases including RIG-I
(retinoic acid-inducible gene I), MDA-5 (melanoma dif-
ferentiation associated protein-5) and LGP2 (laboratory
of genetics and physiology 2) recognize viral RNA and
trigger interferon production [104]. Although transfect-
ing the monomeric and dimeric HIV-1 RNA into cells
triggers interferon production in a RIG-I-dependent
manner, HIV-1 infection of monocyte-derived macro-
phages does not induce interferon response [105]. This
suggests that HIV-1 has a mechanism to evade the rec-
ognition by RIG-I. Indeed, further studies showed that
HIV-1 protease removes RIG-I from the cytosol to an
insoluble fraction, therefore inhibiting RIG-I-mediated
antiviral signaling [105].

Conclusions
HIV-1 engages helicases to facilitate viral replication at
different steps. This engagement is achieved by interact-
ing with helicases via either viral RNA or viral proteins.
For example, RHA binds to the R/U5 region of HIV-1
RNA and promotes viral gene expression and viral re-
verse transcription [21,25,48,52]. DDX1 and DDX3 are
associated with the Rev/RRE/CRM1 complex and regu-
late viral RNA export [3,38,40]. Also, WRN interacts
with Tat and elevates HIV-1 gene expression [20].
Recruiting these helicases to viral RNP complexes at dif-
ferent stages of viral replication reflects the need of
HIV-1 to harness cellular helicases to overcome certain
rate-limiting steps of viral RNA replication or to accom-
plish an activity that rarely occurs to cellular RNA such
as reverse transcription. Opening the door to cellular
helicases also exposes the virus to helicases that are
deleterious to HIV-1 replication. One such example is
MOV10 that finds its way into HIV-1 particles and
impairs viral reverse transcription [49-51].
More cellular helicases than described herein may associ-

ate with HIV-1, given that a dozen of helicases have been
reported in several genome-wide functional screens that
were aimed at identifying cellular proteins that modulate
HIV-1 infection. These include DDX10, DDX19, DDX33,
DDX53, DDX50, DDX55, DDX60L, FBXO18, IGHMBP2,
YTHDC2, HFM1, RECQL4, RUVBL2 [97,106-108]. Fur-
thermore, studies have also shown that HIV-1 infection
alters the expression of a handful of cellular helicases
[109,110]. Last but not least, in a recent study aimed at
comprehensively mapping the interactions between cellular
factors and each of the HIV-1 18 proteins, DDX49 was
reported to associate with Gag, DDX20 with Vpr, and
RECQ1 with Pol [44]. An important future task is to
characterize the interactions of these candidate helicases
with HIV-1 and to decipher their functions in HIV-1
infection.
How many helicases does HIV-1 really need? How
many of these helicases play redundant roles in HIV-1
replication? In addition to these questions, we also lack
a detailed knowledge at the molecular and enzymatic
levels regarding how a helicase promotes or impedes a
specific step of HIV-1 replication. It will be a challenging
task to determine experimentally when and where a spe-
cific helicase becomes associated with HIV-1 RNPs, and
it is also challenging to discern the structural and bio-
chemical changes that a specific helicase can introduce
into HIV-1 RNPs. Knowing these biochemical and en-
zymatic details will not only help to further elucidate the
role of a helicase in HIV-1 RNA metabolism, but will
also aid in the discovery of helicase inhibitors that may
have the potential for treating HIV-1 infection [111].
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