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Endogenous MOV10 inhibits the retrotransposition
of endogenous retroelements but not the
replication of exogenous retroviruses
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Abstract

Background: The identification of cellular factors that regulate the replication of exogenous viruses and
endogenous mobile elements provides fundamental understanding of host-pathogen relationships. MOV10 is a
superfamily 1 putative RNA helicase that controls the replication of several RNA viruses and whose homologs are
necessary for the repression of endogenous mobile elements. Here, we employ both ectopic expression and gene
knockdown approaches to analyse the role of human MOV10 in the replication of a panel of exogenous
retroviruses and endogenous retroelements.

Results: MOV10 overexpression substantially decreased the production of infectious retrovirus particles, as well the
propagation of LTR and non-LTR endogenous retroelements. Most significantly, RNAi-mediated silencing of
endogenous MOV10 enhanced the replication of both LTR and non-LTR endogenous retroelements, but not the
production of infectious retrovirus particles demonstrating that natural levels of MOV10 suppress retrotransposition,
but have no impact on infection by exogenous retroviruses. Furthermore, functional studies showed that MOV10 is
not necessary for miRNA or siRNA-mediated mRNA silencing.

Conclusions: We have identified novel specificity for human MOV10 in the control of retroelement replication and
hypothesise that MOV10 may be a component of a cellular pathway or process that selectively regulates the
replication of endogenous retroelements in somatic cells.

Keywords: MOV10, Retrovirus, Retrotransposon, APOBEC3
Background
Exogenous retroviruses and endogenous retroelements
replicate in the host by reverse transcribing their RNA
genomes into DNA copies that are permanently integrated
into the host genome, making them some of the most suc-
cessful parasites studied. Approximately 45% of the
human genome is derived from mobile elements, with ac-
tive long interspersed nucleotide element-1 (LINE-1), Alu
and SINE-R/VNTR/Alu (SVA) retrotransposition events
contributing to disease-producing insertional mutations
in humans [1-4]. Host cells have evolved multiple tran-
scriptional and post-transcriptional control mechanisms
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to protect themselves and their genomes from the
pathogenic and mutagenic effects of such parasites.
Cellular restriction factors form an effective innate

defence against a range of exogenous retroviruses and
intracellular retroelements. The human APOBEC3 (apo-
lipoprotein B mRNA-editing enzyme catalytic polypep-
tide 1-like 3) family of cytidine deaminases are potent
intrinsic antiviral factors that restrict a broad range of
exogenous retroviruses [5-9] as well as the propagation
of numerous endogenous retroelements [6-10]. Similarly,
TRIM5α [11], tetherin [12] and SAMHD1 [13,14] are
restriction factors that can inhibit the replication of ex-
ogenous retroviruses at different steps in the retroviral
life cycle [15]. Intriguingly, the cytosolic exonuclease
TREX1 metabolises reverse-transcribed DNA derived
from endogenous retroelements and, presumably,
restricts their retrotransposition [16], yet is a co-factor
for human immunodeficiency virus type-1 (HIV-1)
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infection [17] revealing the complexity of host-pathogen
interactions.
MOV10 (Moloney leukaemia virus 10) is a superfamily

1 (SF1) putative RNA helicase that acts as a co-factor or
inhibitory factor for a number of RNA viruses. MOV10 is
required for the replication of human hepatitis delta virus
(HDV) [18] but restricts hepatitis C virus (HCV) and ves-
icular stomatitis virus (VSV) replication [19,20]. The anti-
viral function of MOV10 is evolutionarily conserved as its
ortholog in Arabidopsis thaliana, SDE3 (silencing defect-
ive protein 3), regulates small-RNA mediated silencing of
specific exogenous viruses [21], whereas its ortholog in
Drosophila melanogaster, Armitage, and its mammalian
paralog, MOV10-like-1 (MOV10L1), are necessary for
piRNA-mediated repression of endogenous retroelements
[22-26]. MOV10 has also been reported to associate with
the RNA-induced silencing complex (RISC) that mediates
small RNA-mediated RNA silencing [27]. Recently, we
and others identified MOV10 as interacting with the anti-
viral APOBEC3 proteins, APOBEC3G (A3G) and APO-
BEC3F (A3F), in an RNA-dependent manner [28,29].
Taken together, these observations suggest that human
MOV10 may regulate a wide range of RNA viruses and
could also control the retrotransposition of endogenous
retroelements in mammals.
Supporting the hypothesis that MOV10 is an antiviral

factor, several groups have reported that MOV10 overex-
pression restricts the infectivity of HIV-1 and other retro-
viruses [30-33], although the proposed mechanisms of
action differ. Endogenous MOV10 is packaged into HIV-1
virions produced from infected monocyte-derived macro-
phages, and recently it was reported that MOV10 pack-
aging requires the nucleocapsid region of Gag [30,32-34].
Crucially, these reports varied substantially in their conclu-
sions regarding the effect of depleting endogenous MOV10
on HIV-1 replication in that they either observed a slight
decrease in infectivity [31], a modest increase in infectivity
[32], or a small decrease in virus production with no differ-
ence in infectivity [30]. These contrasting results have led
to confusion over whether MOV10 is a co-factor or an in-
hibitory factor for HIV-1 replication. Furthermore, the pos-
sible role of MOV10 in regulating the replication of
endogenous retroelements in mammalian cells awaits
examination.
To define MOV10′s capacity to regulate retroelements,

we undertook side-by-side comparisons of the effects of
MOV10 overexpression and depletion on the replication of
a number of exogenous retroviruses and the retrotranspo-
sition of endogenous retroelements. Our results indicate
that MOV10 overexpression restricts the production of
infectious virions for a broad range of exogenous retro-
viruses and also potently inhibits the mobilisation of
endogenous retroelements. Importantly, silencing of en-
dogenous MOV10 has no effect on the replication of
exogenous retroviruses though it significantly enhances the
transposition of human endogenous retrotransposons and
a mouse endogenous retrovirus. Furthermore, we report
that MOV10 is not necessary for miRNA or siRNA-
mediated RNA silencing in cultured cells.

Results
MOV10 overexpression restricts the production of
infectious retrovirus particles
To determine whether the overexpression of MOV10
affects HIV-1 virion production and infectivity, we co-
transfected HeLa or 293T cell lines with pHIV-1NL4-3

[35] and increasing amounts of pMOV10 or a plucifer-
ase (pLuc) control vector (pT7-MOV10 or pT7-Luc).
The virion concentration was determined by p24Gag

enzyme-linked immunosorbent assay (ELISA). We
observed a consistent dose-dependent decrease in the
production of virions from HeLa and 293T cells,
whereby at the maximum dose of pMOV10 virus pro-
duction was reduced by ~70% and ~80%, respectively
(Figure 1A). We then tested the infectivity of these
virions by adding equal amounts of virus normalised by
the p24Gag concentration to the TZM-bl reporter cell
line. Overexpression of MOV10 decreased the infectiv-
ity of HIV-1 virions substantially in a dose-dependent
manner, and at the maximum amount of pMOV10
infectivity was reduced by ~80% for HeLa cells and to
undetectable levels for 293T cells (Figure 1B). Cell
lysates were analysed by immunoblotting to determine
whether MOV10 overexpression affected Gag expres-
sion or processing. We quantified all the Gag bands to
measure total cellular Gag levels and also determined
the percentage of Gag processing (total processed Gag
bands divided by total Gag bands). Total cellular Gag
levels decreased by ~40% and ~50% in HeLa and 293T
cells, respectively, at the maximum pMOV10 amount
when compared with the pLuc control (Figure 1A, com-
pare lanes 1 and 7). Furthermore, Gag processing was
slightly reduced by ~10% and ~40% in HeLa and 293T
cells, respectively (Figure 1A, compare lanes 1 and 7).
Therefore, the overexpression of MOV10 decreased the
production and infectivity of HIV-1 virions in a dose-
dependent manner, and also caused a modest decrease
in Gag expression and processing.
We then determined whether MOV10 overexpression

also restricts the infectivity of a selection of divergent retro-
viruses including rhesus macaque-derived simian immuno-
deficiency virus (SIVmac, a lentivirus), murine leukaemia
virus (MLV, a gammaretrovirus) and Mason-Pfizer monkey
virus (M-PMV, a betaretrovirus). We produced SIVmac
vectors by transfecting 293T cells with an SIVmac Gag-Pol
packaging plasmid (pSIV3-RMES4) [36], a GFP-expressing
SIVmac vector (pSIV-RMES4) [36] and pVSV-G [37]. As a
control, we also tested analogous VSV-G pseudotyped
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Figure 1 MOV10 overexpression restricts the production of infectious retrovirus particles for a broad range of exogenous retroviruses.
(A) MOV10 overexpression decreases HIV-1 virus production. HeLa or 293T cells were co- transfected with pHIV-1NL4-3 and increasing amounts of
pT7-MOV10 as indicated or the pT7-Luc control. Virus concentration in the medium was determined by a p24Gag ELISA. Cell lysates were analysed
by quantitative immunoblotting with anti-T7, anti- p24Gag and anti-Hsp90 antibodies. (B) Overexpression of MOV10 inhibits the infectivity of HIV-1
virions. The TZM-bl reporter cell line expressing a HIV-1 Tat inducible β-gal reporter gene was infected with equal amounts of virus normalised by
the p24Gag concentration from each of the indicated samples. Cells were lysed and β-gal activity was measured to determine virus infectivity. (C)
MOV10 overexpression inhibits the production of infectious SIVmac, MLV and M-PMV particles. For HIV-1 and SIVmac lentiviral vector production,
293T cells were co-transfected with p8.91, pCSGW and pVSV-G, or pSIV3+, pSIV-RMES4 and pVSV-G, respectively, together with pT7-MOV10 or
pT7-Luc. 293T cells were infected with lentiviral particles and infectivity was determined by measuring the percentage of GFP-positive 293T cells
by FACS. For MLV and M-PMV virion production, 293T cells were co-transfected with pNCS/FLAG, pMSCV/Tat and pVSV-G, or pMTΔE and pVSV-G,
respectively, together with pT7-MOV10 or pT7-Luc. Infectivity was determined using TZM-bl cells. (D) Overexpression of MOV10 decreases the
production of M-PMV virions. Cell lysates and sucrose cushion purified M-PMV virions were analysed by immunoblotting with anti p27Gag and
anti-Hsp90 antibodies (* refers to non-specific bands). For (A), (B) and (C) results are normalised to the pLuc control, which is set at 100%. For (C)
a single control bar set at 100% is graphed for simplicity. Values are the mean ± SD of 3 independent experiments.
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HIV-1 vectors, produced using the HIV-1 Gag-Pol plasmid
p8.91 [38], the HIV-1 GFP-expressing vector pCSGW [39]
and pVSV-G. Plasmids for lentiviral vector production were
co-transfected with either pMOV10 or the pLuc control.
The effect on the production of infectious particles was
determined by challenging 293T cells and measuring the
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percentage of GFP-positive cells. Similar to the wild-type
HIV-1 experiments (Figure 1B), overexpression of MOV10
reduced the production of infectious HIV-1 and SIVmac
particles by over 80% relative to the pLuc control
(Figure 1C).
To test MLV infectivity, we co-transfected 293T cells

with a full-length MLV proviral plasmid (pNCS/FLAG)
[40] together with a surrogate MLV genome expressing
HIV-1 Tat (pMSCV/Tat) [41] and pVSV-G. To analyse
M-PMV infectivity, 293T cells were co-transfected with
a M-PMV proviral plasmid in which env is replaced with
HIV-1 tat (pMTΔE) [42] together with pVSV-G. Plas-
mids for the production of both MLV and M-PMV vir-
ions were co-transfected together with either pMOV10
or the pLuc control. The effect on the production of in-
fectious MLV and M-PMV virions was determined by
infecting the TZM-bl reporter cells. Overexpression of
MOV10 decreased the production of MLV and M-PMV
infectious virions by over 80% with respect to the pLuc
control (Figure 1C). We also analysed sucrose cushion
purified M-PMV virions and cell lysates by immunoblot-
ting to determine the effect of MOV10 overexpression
on virus production. Similar to HIV-1 (Figure 1A), we
observed a decrease in M-PMV precursor p78Gag and
processed p27Gag levels in the cell lysate as well as a
decrease in virion production with increasing concentra-
tions of pMOV10 relative to the pLuc control
(Figure 1D, compare lane 1 with lanes 2 and 3). These
results show that MOV10 overexpression can restrict
the production and infectivity of retroviruses from mul-
tiple genera.

Overexpression of MOV10 inhibits the retrotransposition
of LTR and non-LTR endogenous retroelements
Similar to exogenous retroviruses, endogenous retroele-
ments replicate via an RNA intermediate that is reverse
transcribed and integrated into the host genome. Consid-
ering the association of MOV10 homologs with the sup-
pression of endogenous mobile elements [22-24], we next
assessed whether overexpression of MOV10 inhibits the
retrotransposition of some representative endogenous ret-
roelements. We tested the non-LTR autonomous human
LINE-1 and its dependent non-autonomous short inter-
spersed nucleotide element (SINE) Alu retrotransposons,
both of which reverse transcribe by target-site primed
reverse transcription (TPRT) in the nucleus [1]. We also
included the mouse intracisternal A-type particle (IAP),
which is related to the betaretrovirus family of exogenous
retroviruses, though it has a strictly intracellular life cycle
[43].
Established cell culture-based retrotransposition assays

were used to study these retroelements [44-46]. Briefly,
HeLa cells were transfected with expression plasmids for
human LINE-1 (pJM101/L1.3) [47], human Alu (pAlu-
neoTet) [48] or mouse IAP (pGL3-IAP92L23neoTNF) [49]
all of which contain an antisense neomycin resistance
gene cassette (neo) in the 3′UTR driven by its own pro-
moter and disrupted by an intron. Neo expression occurs
only after a full retrotransposition event: specifically, tran-
scription of the retroelement RNA, removal of the intron
by splicing, translation of the proteins, reverse transcrip-
tion and then integration of the cDNA into the host cell
genome, allowing for enumeration of retrotransposition
by counting G418-resistant colonies. The Alu element is
dependent on LINE-1 enzymes for replication; therefore,
to measure Alu element retrotransposition, the cells were
also co-transfected with a plasmid encoding the LINE-1
ORF2 protein (pCEP-ORF2) [48], which encodes the
LINE-1 endonuclease and reverse transcriptase enzymatic
activities. Either pMOV10 or the pLuc control was
co-transfected to determine the effect of MOV10 over-
expression on the replication of these endogenous retro-
elements. Similar to the observations made with exogenous
retroviruses (Figure 1), overexpression of MOV10
decreased human LINE-1, Alu and mouse IAP retro-
transposition by over 90% when compared with the
pLuc control (Figure 2A).
As a control, HeLa cells were also transfected with a

pcDNA3.1 vector that contains a neomycin resistance
expression cassette (pcDNA3.1-neo) to ensure that
MOV10 overexpression did not affect neo expression
or selection directly. The cultures were G418-selected
and the colonies were counted as described for the ret-
rotransposition assays, with similar numbers of col-
onies seen in the context of MOV10 overexpression as
for the pLuc control (Figure 2B). Therefore, MOV10
overexpression inhibits the propagation of multiple
endogenous retroelements.

Silencing endogenous MOV10 does not affect the
production of infectious retroviral particles
We next determined the effect of depleting endogenous
MOV10 on HIV-1 production and infectivity in the con-
text of one full cycle of viral replication. Stable HeLa and
293T non-silencing control and MOV10 knockdown (KD)
cell lines were produced by transducing HeLa or 293T cells
with lentiviral vectors expressing either a non-silencing
control shRNA or a MOV10-specific shRNA, which
reduced MOV10 protein steady-state abundance to un-
detectable levels when compared with the non-silencing
control cells (Figure 3A). The depletion of endogenous
MOV10 did not affect the growth rate of these cells (data
not shown). HeLa or 293T non-silencing control and
MOV10 KD cell lines were infected with equal amounts of
VSV-G pseudotyped HIV-1NL4-3 and virion production
and infectivity were determined. Depletion of endogenous
MOV10 showed no significant effect on the amount
(Figure 3A) or infectivity (Figure 3B) of virions produced
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Figure 2 Overexpression of MOV10 suppresses the retrotransposition of both LTR and non-LTR endogenous retroelements. (A) MOV10
overexpression restricts the replication of LINE-1, Alu and IAP. HeLa cells were co-transfected with pLINE-1 (pJM101/L1.3), pAlu (pAlu-neoTet plus
pCEP-ORF2), or pIAP (pGL3- IAP92L23neoTNF) together with pT7-MOV10 or pT7-Luc. Cells were selected with G418 for 12-14 days to measure
retrotransposition frequency and then fixed and stained with Giemsa. (B) MOV10 overexpression has no affect on neo expression or selection.
HeLa cells were co-transfected with a pcDNA3.1 control vector containing a neomycin resistance cassette (pcDNA3.1-neo) together with
pT7-MOV10 or pT7-Luc. The cells were G418 selected and the colonies were quantified as described in panel (A). Results are normalised to the
pLuc control, which is set at 100%. For (A) a single control bar set at 100% is graphed for simplicity. Values are the mean ± SD of 3 independent
experiments.
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in comparison to the non-silencing control in both HeLa
and 293T cells. Similar experiments were performed with
comparable results using a second, unrelated MOV10-
specific shRNA (data not shown). To determine whether
depletion of endogenous MOV10 affects multiple rounds
of HIV-1 replication, we infected stable non-silencing con-
trol or MOV10 KD Hut78 T cells with equal amounts of
HIV-1NL4-3 and determined the effect on virus production.
Consistent with the single-cycle infectivity assays, silencing
of MOV10 had no effect on spreading HIV-1 replication
(Figure 3C).
To determine whether endogenous MOV10 regulates

the production of infectious SIVmac, MLV or M-PMV,
virions were produced as described above in 293T non-
silencing control or MOV10 KD cells and the effect on
infectious particle production was determined. Deple-
tion of endogenous MOV10 had no significant effect
on the production of HIV-1, SIVmac, MLV or M-PMV
infectious particles (Figure 3D). Although we cannot
rule out the possibility that undetectable levels of re-
sidual MOV10 in our KD cultures are still functional,
these data strongly suggest that endogenous levels of
MOV10 do not control the replication of exogenous
retroviruses.
Depletion of endogenous MOV10 specifically enhances
the retrotransposition of endogenous retroelements
We next determined the effect of silencing endogenous
MOV10 on LINE-1, Alu and IAP replication in the
HeLa non-silencing control or MOV10 KD cells. In the
absence of detectable MOV10, statistically significant 4-
fold, 5-fold and 2-fold enhancements in retrotransposi-
tion frequencies were detected for LINE-1, Alu and IAP,
respectively (Figure 4A). We also transfected HeLa non-
silencing control or MOV10 KD cell lines with the
pcDNA3.1-neo control plasmid and obtained similar
number of colonies with the non- silencing control and
MOV10 KD cell lines verifying that silencing of en-
dogenous MOV10 does not effect neo expression and se-
lection directly, and also has no effect on transfection
efficiency (Figure 4B).
To confirm that the increase in endogenous retroelement

replication was due to the depletion of endogenous
MOV10 and not an unanticipated off-target effect, we con-
structed a silencing resistant MOV10 vector, pMOV10-R,
by introducing silent mutations that prevented recognition
by the shRNA. The antiviral activity of MOV10 was un-
affected by these mutations as overexpression of pMOV10-
R inhibited the production of infectious MLV and M-PMV
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Figure 3 Silencing endogenous MOV10 has no significant effect on the production of infectious retrovirus particles for a panel of exogenous
retroviruses. (A) Depletion of endogenous MOV10 has no effect on HIV-1 virus production. Stable MOV10 KD cells were produced by transducing
HeLa or 293T cells with lentiviral vectors expressing either a non-silencing control shRNA or a MOV10-specific shRNA. HeLa or 293T non-silencing
control and MOV10 KD cells were infected with VSV-G pseudotyped HIV-1NL4-3. Virus concentration in the medium was determined as described in
Figure 1A. Cell lysates were analysed by immunoblotting with anti-p24Gag, anti-Hsp90 or anti-MOV10 antibodies, the latter of which was used to verify
the MOV10 KD. (HeLa virus production p = 0.0611, 293T virus production p = 0.2007). (B) Silencing of endogenous MOV10 has no effect on HIV-1
virion infectivity. Virion infectivity was determined as described in Figure 1B. (HeLa infectivity p = 0.3080, 293T infectivity p = 0.4812). (C) Depleting
endogenous MOV10 has no effect on spreading HIV-1 replication. Hut78 non-silencing control or MOV10 KD cells were infected with equal amounts
of HIV-1NL4-3 and passaged every 2 days. Medium was harvested on days 2, 4, 6 and 8 and virus production was determined as described in Figure 1A.
Cell lysates were analysed by immunoblotting with anti-MOV10 and anti-Hsp90 antibodies. (D) MOV10 silencing has no effect on the production of
infectious SIVmac, MLV and M-PMV particles. 293T non-silencing control or MOV10 KD stable cells were transfected as described in Figure 1C for the
production of HIV-1, SIVmac, MLV and M-PMV particles. Infectivity was determined as described in Figure 1C. (HIV-1 p = 0.1358, SIVmac p = 0.1040,
MLV p = 0.4907, M- PMV p = 0.4919). For (A), (B) and (D) results are normalised to the non-silencing control, which is set at 100%. For (D) a single
control bar set at 100% is graphed for simplicity. Values are the mean ± SD of 7 independent experiments for (A) and (B) or 3 independent
experiments for (D). The data were analysed with an unpaired one- tailed t test.
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Figure 4 Depletion of endogenous MOV10 significantly enhances the retrotransposition of endogenous retroelements. (A) Silencing of
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virions to a similar magnitude as parental pMOV10 (data
not shown). The shRNA resistance of pMOV10-R was con-
firmed by titrating sensitive pMOV10 and resistant
pMOV10-R into the HeLa MOV10 KD cells, and analysing
cell lysates by immunoblotting (Additional file 1A). Results
showed that the levels of MOV10 encoded by pMOV10-R
were elevated in the KD cells relative to those seen with the
parental pMOV10 vector (Additional file 1A, compare
lanes 5 and 6 with 11 and 12). Next, we transfected
MOV10 KD cells with pMOV10-R to test the functional
consequence of restoring MOV10 expression, and found
that the suppression of LINE-1 retrotransposition was re-
established (Additional file 1B).
Thus, endogenous human MOV10 specifically represses

the propagation of intracellular retroelements.

MOV10 is not necessary for miRNA or siRNA-mediated
mRNA silencing
MOV10 interacts with the Argonaute proteins, which
are central effector components of the RISC, and has
been reported to be necessary for siRNA-mediated
mRNA silencing by an endogenous miRNA [27]. To
determine whether MOV10 is necessary for small RNA-
mediated RNA silencing, which is one possible mechan-
ism by which MOV10 may control the replication of
endogenous retroelements, we initially tested the re-
quirement of MOV10 for miRNA-mediated mRNA
repression. HeLa non-silencing control or MOV10 KD
cell lines were transfected with either a firefly (FF) luci-
ferase reporter construct containing four copies of the
endogenous let-7 miRNA binding site (FF4LCS; let-7
WT) or a negative control carrying mutations in the
target seed region of the let-7 binding sites (FFr4mLCS;
let-7 mutant), together with a control plasmid expressing
renilla luciferase (pRenilla) [50]. Cells were lysed and the
relative FF luciferase and renilla luciferase activities were
determined. FF luciferase activity was normalised to the
renilla luciferase activity to control for transfection
efficiency.
As expected, the let-7 WT luciferase activity was

repressed ~5-fold compared to the let-7 mutant luciferase
activity in the non-silencing control cells (Figure 5A). A
similar 5-fold repression in let-7 WT luciferase activity
relative to the let-7 mutant luciferase activity was observed
in the MOV10 KD cells suggesting that MOV10 is not
required for endogenous let-7 miRNA-mediated mRNA
repression in HeLa cells (Figure 5A). As a control for this
assay, we also knocked down DICER-1, which is an RNase
III enzyme essential for miRNA biogenesis, and co-
transfected DICER-1 KD or non-silencing control cells
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Figure 5 MOV10 is not necessary for miRNA or siRNA-mediated
mRNA silencing. (A) MOV10 is not necessary for miRNA-mediated
mRNA repression. HeLa non-silencing control or MOV10 KD cells
were co-transfected with either FF4LCS (let-7 WT) or FFr4mLCS (let-7
mutant) together with pRenilla. Relative luciferase activities were
measured using a Dual-LuciferaseW Reporter Assay System and FF
luciferase activity was normalised to the renilla luciferase activity. (B)
MOV10 is not required for siRNA-mediated mRNA cleavage. HeLa
non-silencing control or MOV10 KD cells were transfected with
either psi-CHECK2-let-7X3 (let-7 WT) or psi-CHECK2-let-7X3m (let-7
mutant). Luciferase activities were measured as described in panel
(A) and renilla luciferase activity was normalised to FF luciferase
activity. Results are normalised to the non-silencing control, which is
set at 100%. Values are the mean ± SD of 3 independent
experiments.
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with the FF luciferase reporter constructs and pRenilla. As
expected, and confirming the validity of our approach, a
70% decrease in DICER-1 mRNA expression resulted in a
partial derepression of the let-7 miRNA activity (Additional
file 2).
To determine whether MOV10 is required for siRNA-

mediated mRNA silencing as previously reported [27],
HeLa non-silencing control or MOV10 KD cells were
transfected with renilla luciferase reporter constructs
containing three copies of perfectly complementary let-7
miRNA binding sites (psi-CHECK2-let-7X3; let-7 WT)
or mutated let-7 binding sites (psi-CHECK2-let-7X3m;
let-7 mutant) [51]. The perfect complementarity be-
tween endogenous let-7 miRNA and the reporter mRNA
promotes siRNA-mediated cleavage instead of miRNA-
mediated repression. Both let-7 WT and let-7 mutant
constructs also expressed FF luciferase from a second
promoter and the renilla luciferase activity was normal-
ised to FF luciferase activity to control for transfection
efficiency. In the non-silencing control cells, let-7 WT
luciferase activity was repressed by ~50-fold relative to
the let-7 mutant luciferase activity, and this level of
repression was maintained in the MOV10 KD cells
(Figure 5B). These results imply that, at least in HeLa
cells, MOV10 is not essential for miRNA or siRNA-
mediated mRNA silencing.

MOV10 is dispensable for the restriction of LINE-1 or HIV-1
replication by APOBEC3 proteins
Overexpression experiments have previously shown that
a number of APOBEC3 proteins such as APOBEC3A
(A3A), APOBEC3B (A3B) and A3G inhibit the retro-
transposition of endogenous retroelements [6-8,10] and
the depletion of endogenous A3B increases the replica-
tion of human LINE-1 in HeLa and human embryonic
stem cells [10]. Since MOV10 was identified as an
APOBEC3-interacting protein, we determined whether
A3A, A3B or A3G require MOV10 for the restriction of
LINE-1. HeLa non-silencing control or MOV10 KD cells
were co-transfected with either pA3A, pA3B, pA3G or a
pGFP control (pCMV4-HA tagged A3A, A3B, A3G or
GFP) [52] together with pLINE-1 as described. A3A
completely inhibited LINE-1 retrotransposition both in
the presence or absence of MOV10 (Additional file 3A).
A3B restricted LINE-1 replication in the non-silencing
control and MOV10 KD cells by 70% and 66%, respect-
ively, while A3G inhibited LINE-1 retrotransposition by
50% and 56%, respectively, relative to the non-silencing
control and MOV10 KD pGFP controls (Additional file
3A). Therefore, A3A, A3B and A3G do not require
MOV10 for the inhibition of LINE-1 mobilisation.
Similarly, we also tested whether MOV10 is required

for A3G antiviral activity by co-transfecting HeLa non-
silencing control and MOV10 KD cells with pA3G or a
pGFP control together with a plasmid expressing a vif-
deficient HIV-1 provirus (pHIV-1IIIB/Δvif ) [52]. Virion
infectivity was determined using the TZM-bl reporter
cell line and results showed that A3G still inhibited
HIV-1 infectivity in the absence of endogenous MOV10,
suggesting that MOV10 is not required for A3G antiviral
activity (Additional file 3B).

Discussion
Host cell restriction factors inhibit the replication of a
diverse range of exogenous retroviruses and endogenous
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retroelements. Identifying the full complement of these
proteins is necessary to understand the capacity of the
host to regulate and control these genetic parasites.
MOV10 has been reported to modulate the replication
of a variety of RNA viruses including HCV, HDV and
VSV [18-20]. Here, we analysed whether MOV10 con-
trols the replication of exogenous retroviruses and
endogenous retroelements.
Our results show that MOV10 overexpression restricts

the production of infectious retrovirus particles (Figure 1).
This broadly agrees with previously published reports
[30-32], and extends the finding to the betaretrovirus M-
PMV (Figure 1C and D). Similar to Furtak et al., [31] we
observe a greater decrease in HIV-1 virion infectivity com-
pared to virion production, and this is more obvious in
293T cells (Figure 1A and B). We also observe a modest
decrease in cellular HIV-1 Gag abundance and processing
similar to that reported by Burdick et al. [30], as well as a
more noticeable decrease in cellular Gag abundance and
processing for M-PMV (Figure 1A and D). As virion
assembly is a cooperative process, decreases in total intra-
cellular Gag abundance may account for the reductions in
Gag processing [53]. MOV10 can also be packaged into
budding HIV-1 virions [30,32-34] and, interestingly, the
overexpression of MOV10 in HIV-1 producing cells
decreases the accumulation of early reverse transcription
products in target cells (data not shown) [31,32]. The
mechanism(s) underlying the defects in virion production
and reverse transcription are unclear, though the generality
of these observations across retroviral genera suggests a
common mode of action.
As described above, three groups have analysed the

role of endogenous MOV10 in HIV-1 replication, but
have reported variable results [30-32]. It was important
for us to test the effect of depleting endogenous
MOV10 on HIV-1 replication, and we extended this to
include a panel of exogenous retroviruses. Contrary to
the previous reports, we observe that depletion of
endogenous MOV10 has no affect on the production of
infectious retroviral particles or spreading HIV-1 repli-
cation (Figure 3). This result is similar to that reported
recently for foamy virus, a distantly related retrovirus
belonging to the spumaretrovirus subfamily, where
knockdown of MOV10 had no effect on viral replica-
tion [54]. In sum, while it appears that endogenous
levels of MOV10 do not restrict retroviral replication,
we speculate that the results of overexpression studies
implicate MOV10 as a component of a pathway or mul-
tiple pathways that exogenous retroviruses encounter.
MOV10 has also been reported to be a type I
interferon-stimulated gene [19], but whether interferon
or other cytokines can stimulate sufficient levels of
MOV10 protein to impact exogenous retrovirus infec-
tions is not yet known.
The MOV10 ortholog Armitage is required for the
repression of endogenous mobile elements in both germ
cells and somatic cells in Drosophila melanogaster
[22,25,26]. Similarly, the MOV10 paralog, MOV10L1,
has been shown to be necessary for the silencing of
endogenous retrotransposons in the germ line of male
mice [23,24]. Therefore, we analysed whether human
MOV10 could inhibit endogenous retroelements. Similar
to its effect on exogenous retroviruses, the overexpres-
sion of MOV10 potently inhibits the transposition of the
human endogenous retrotransposons LINE-1 and Alu as
well as the mouse endogenous retrovirus IAP (Figure 2A).
Unlike the exogenous retroviruses, however, the depletion
of endogenous MOV10 significantly enhances the replica-
tion of LINE-1, Alu and IAP (Figure 4A), which in the
case of LINE-1 can be reversed by restoration of MOV10
expression with an shRNA-resistant version of MOV10
(Additional file 1). The mechanism by which MOV10 con-
trols these LTR and non-LTR endogenous retroelements
is unknown, but previous studies have shown that Dicer1
knockout mouse embryonic stem cells have increased
levels of LINE-1 and IAP transcripts [55]. Furthermore,
Yang et al., [56] showed that human LINE-1 bidirectional
transcripts produced from the LINE-1 sense and antisense
promoters (ASP) are processed to yield LINE-1 specific
endogenous siRNAs that suppress LINE-1 retrotransposi-
tion by an RNAi mechanism.
Although it has been reported that MOV10 associates

with the RISC pathway and is necessary for siRNA-
mediated silencing of target mRNAs [27], our findings
to date using reporter constructs indicate that MOV10
is not absolutely required for miRNA or siRNA-
mediated mRNA silencing in cultured cells (Figure 5A
and B); therefore, whether this is a mechanism by which
MOV10 could regulate endogenous retroelements is
unclear. MOV10 also localises to mRNA processing
bodies (PBs) [27,29], which are cytoplasmic sites involved
in the storage and decay of translationally repressed RNA
species, and it has recently been reported that silencing of
the PB-associated proteins DDX6 and 4E-T increases IAP
transcript levels and promotes IAP retrotransposition
[57]. Taking this into consideration, we are currently in-
vestigating the pathway/mechanism by which MOV10
regulates retroelement mobility.
Human MOV10 is expressed in a wide range of adult

tissues including the heart, lungs, liver, testes and ovaries
with the highest transcript levels detected in the adult
brain including the hippocampus and caudate nucleus
[58]. Intriguingly, recent studies have shown that LINE-
1 transcripts are expressed in most human somatic
tissues as opposed to being confined to the germ line
[3]. Furthermore, active LINE-1, Alu and SVA element
retrotranspositions in the human hippocampus and
caudate nucleus have been reported to contribute to the
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genetic mosaicism of the human brain that may underlie
both normal and abnormal neurobiological processes
[2,4]. Based on our observations that endogenous MOV10
regulates LINE-1 and Alu replication (Figure 4A), it will
be interesting to determine whether human MOV10 may
be involved in the modulation of somatic retrotransposi-
tion and contribute to the control of retrotransposition-
mediated genetic variation.

Conclusion
MOV10 overexpression potently restricts the replication
of a broad range of exogenous and endogenous retroele-
ments. Silencing endogenous MOV10 has no effect on the
replication of exogenous retroviruses, but it significantly
enhances the retrotransposition of endogenous retroele-
ments. We hypothesise that MOV10 may contribute to
the regulation of endogenous retroelement mobilisation in
somatic cells.

Methods
Cell culture, MOV10 RNAi and plasmids
Human HeLa and 293T cells were cultured in Dulbecco's
modified Eagle's medium while Hut78 cells were cultured
in RPMI. Both types of media were supplemented with
10% fetal bovine serum plus penicillin-streptomycin and
L-glutamine. 293T cells were co-transfected with lentiviral
vectors expressing either a non-silencing control or
MOV10-specific shRNAmir in the miR-30 context con-
taining a puromycin resistance gene (GIPZ Lentiviral
shRNAmir, Open Biosystems V2LHS_201304), together
with the HIV-1 p8.91 packaging plasmid and pVSV-G (see
plasmids below). HeLa, 293T and Hut78 cells were trans-
duced with the recombinant lentiviral stocks and stably
transduced cells were selected with puromycin treatment.
The pT7-MOV10 and pT7-Luc plasmids were con-

structed by cloning XbaI-BamHI digested full-length
MOV10 and FF luciferase PCR products into the
pCGTHCFFLT7 expression vector that contains two
5′-T7-epitope tags [59]. The pMOV10-R plasmid was
constructed by introducing six silent mutations into the
MOV10-specific shRNA target sequence (nucleotides
342 to 363) by overlapping PCR (Primers: Forward
5′ TTTATGACAGGGCCGAATACCTCCACGGAAAA
CATGGTGTGG 3′, Reverse 5′ CCACACCATGTTT
TCCGTGGAGGTATTCGGCCCTGTCATAAA 3′) and
cloning the XbaI-XmaI digested PCR product into a
similarly digested pT7-MOV10 vector. The HIV-1NL4-3

strain provirus was used for this study [35]. Plasmids
for exogenous retrovirus and endogenous retroelement
experiments have been described previously: pVSV-G
[37]; HIV-1, p8.91 and pCSGW [38,39]; SIVmac,
pSIV3+ and pSIV-RMES4 [36]; MLV, pNCS/FLAG and
pMSCV/Tat [40,41] M-PMV, pMTΔE [42]; LINE-1,
pJM101/L1.3 [47]; Alu, pAlu-neoTet and pCEP-ORF2
[48]; IAP, pGL3- IAP92L23neoTNF [49]. Plasmids for
the luciferase assays were described previously:
FF4LCS, FFr4mLCS, pRenilla, psi-CHECK2-let-7X3
and psi-CHECK2-let-7X3m [50,51].
Virus production and infectivity assays
For wild-type HIV-1 virus production, parental HeLa or
293T cells (2 x 105 cells) were transfected with 0.5 μg of
a plasmid expressing the full-length HIV-1NL4-3 strain
provirus (pHIV-1NL4-3) using either FuGENE 6 (Roche)
according to manufacturer's instructions at a 3 μl
FuGENE to 1 μg DNA ratio for the HeLa cells, or 16 μl
(1 mg/ml) PEI (per well of a 6-well dish) for the 293T
cells. For MOV10 overexpression experiments, pHIV-
1NL4-3 was co-transfected with the indicated concentra-
tion of pT7-MOV10 and the appropriate concentration
of the pT7-Luc control plasmid to ensure equivalent
amounts of DNA in all transfections. For HIV-1 and
SIVmac lentiviral vector production, parental 293T cells
or 293T non-silencing control and MOV10 KD cells
were co-transfected as described with 1 μg p8.91, 1 μg
pCSGW and 0.5 μg pVSV-G, or 1 μg pSIV3+, 1 μg
pSIV-RMES4 and 0.5 μg pVSV-G, respectively. MLV and
M-PMV virions were produced by co-transfecting paren-
tal 293T cells or non-silencing control and MOV10 KD
cells as described with 0.2 μg pNCS/FLAG, 0.2 μg
pMSCV/Tat and 0.1 μg pVSV-G, or 1 μg pMTΔE and
0.5 μg pVSV-G, respectively. Plasmids for lentiviral
vector or MLV and M-PMV virion production were co-
transfected with 0.5 μg pT7-MOV10 or pT7-Luc for
MOV10 overexpression experiments. Cells were lysed
~40 h post-transfection and virus particles were fil-
tered through a 0.45 μM filter. The concentration of
HIV-1 p24Gag in the supernatant was quantified by a
p24Gag enzyme-linked immunosorbent assay (ELISA)
(Perkin-Elmer).
For HIV-1 infectivity, the TZM-bl reporter cell line

(1 x 105 cells) expressing a HIV-1 Tat inducible β-gal
reporter gene was challenged with equal amounts of
virus normalised by the p24Gag concentration. Cells were
lysed ~24 h post-infection and β-gal activity was deter-
mined using the Galacto-StarTM System (Applied Biosys-
tems) according to the manufacturer's instructions. For
HIV-1 and SIVmac lentiviral vector infectivity, 293T
cells (1 x 105 cells) were challenged with equal amounts
of vector- containing medium and infectivity was deter-
mined ~24 h post-infection by measuring the percentage
of GFP-positive 293T cells using a FACS Canto II Flow
Cytometry System (BD Biosciences). MLV and M-PMV
virion infectivity was determined by infecting TZM-bl
cells (1 x 105 cells) with equal amounts of virus-
containing medium and infectivity was determined as
described for the wild-type HIV-1 experiments.
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HIV-1 infection of producer cells and spreading infection
For endogenous MOV10 silencing experiments, HeLa or
293T non-silencing control and MOV10 KD cells (2 x
105 cells) were infected with equal amounts of VSV-G
pseudotyped wild type HIV-1NL4-3 virus normalised by
the p24Gag concentration (25 ngs) in a total of 1 ml
medium (6-well dish). The cells were washed 4 h later
and 2 mls of fresh medium was replaced. For spreading
replication, non-silencing control or MOV10 KD Hut78
cells (1 x 106 cells) were infected with equal amounts of
virus normalised by the p24Gag concentration (100 ngs)
and cells were passaged every 2 days. Medium was
harvested on days 2, 4, 6 and 8 and virus production
was measured by p24Gag ELISA.
Immunoblotting
Cells were lysed in radioimmunoprecipitation assay
(RIPA) buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl,
1 mM EDTA, 0.1% SDS, 1% Triton X-100, 1% sodium
deoxycholate) and filtered virions were pelleted through
a 20% sucrose cushion and lysed. Proteins were resolved
by SDS-PAGE and transferred to a nitrocellulose mem-
brane for immunoblotting. HIV-1 precursor p55Gag and
processed p24Gag were detected using a mouse anti-
p24Gag antibody [60]. M-PMV precursor p78Gag and
processed p27Gag were detected using goat anti-p27Gag

antisera (78 S-136, Microbiological Association). T7-
tagged MOV10 and Hsp90 were detected with mouse
anti-T7 (Novagen) and rabbit anti-Hsp90 (Santa Cruz
Biotechnology) antibodies, respectively. Endogenous
MOV10 was detected with a rabbit anti-MOV10 anti-
body (Proteintech). Secondary IRdye800 conjugated anti-
bodies (Li-Cor Biosciences) were used for quantitative
immunoblotting with the Odyssey infrared scanner
(Li-Cor Biosciences).
Retrotransposition assays
For LINE-1, Alu and IAP retrotransposition assays
parental HeLa cells or HeLa non-silencing control and
MOV10 KD cells (2 x 105 cells) were co-transfected as
described with either 1.5 μg pJM101/L1.3, 1 μg
pAlu-neoTet plus 0.5 μg pCEP-ORF2 or 1.5 μg
pGL3-IAP92L23neoTNF, respectively. Plasmids were
co-transfected with 1 μg pT7-MOV10 or pT7-Luc for
MOV10 overexpression experiments. Cells were G418
selected (1 mg/ml) 2 days post-transfection. At ~12-15
days post-transfection, the cells were fixed in 4% parafor-
maldehyde and colonies were stained with 0.4% Giemsa
(Sigma) for counting. For control pcDNA3.1-neo experi-
ments cells were transfected with 0.3 μg of a pcDNA3.1
empty vector containing a neomycin resistance cassette,
and the assay was performed similarly to the retrotranspo-
sition assays.
Luciferase assays
For the miRNA assays, HeLa non-silencing control or
MOV10 KD cells (1 x 105 cells) were co-transfected as
described with either 0.1 μg FF4LCS or FFr4mLCS
together with 0.1 μg pRenilla. For the siRNA assays, the
cells were transfected with 0.1 μg psi-CHECK2-let-7X3
or psi-CHECK2-let-7X3m. Cells were lysed ~24 h post-
transfection. Relative luciferase activities were measured
using a Dual-LuciferaseW Reporter Assay System (Pro-
mega) according to the manufacturer's instructions.

Additional files

Additional file 1: Restoration of MOV10 expression rescues the
control of LINE-1 retrotransposition. (A) HeLa MOV10 KD cells were
transfected with increasing concentrations of >pT7-MOV10 or
pT7-MOV10-R. Cells were analysed by immunoblotting with anti-MOV10,
anti-T7 and anti-Hsp90 antibodies. (B) HeLa non-silencing control or
MOV10 KD cells were co-transfected with pLINE-1 (pJM101/L1.3)
together with pT7-MOV10-R or pT7-Luc at the indicated concentrations,
following which the cultures were G418 selected and colonies were
counted to measure the retrotransposition frequency. Cell lysates were
analysed by immunoblotting with anti-MOV10, anti-T7 and anti-Hsp90
antibodies. For (B) results are normalised to the non-silencing control,
which is set at 100%. Values are the mean ± SD of 3 independent
experiments.

Additional file 2: Knockdown of DICER-1 relieves miRNA-mediated
mRNA repression. HeLa cells were transfected with non-silencing
control or DICER-1-specific siRNAs to produce non-silencing control or
DICER-1 KD cells, respectively. These cells were co-transfected with
either FF4LCS (let-7 WT) or FFr4mLCS (let-7 mutant) together with
pRenilla. The relative luciferase activities were measured using a
Dual-LuciferaseW Reporter Assay System. FF luciferase activity was
normalised to renilla luciferase activity.

Additional file 3: MOV10 is not required for restriction of LINE-1 or
HIV-1 infection by APOBEC3 proteins. (A) HeLa non-silencing control
or MOV10 KD cells were co-transfected with pLINE-1 (pJM101/L1.3) and
pCMV4-HA tagged A3A, A3B, A3G or a GFP control. Cells were G418
selected and colonies were quantified to determine the
retrotransposition frequency. (B) HeLa non-silencing control or MOV10
KD cells were co-transfected with pHIV-1IIIB/Δvif and either pA3G or
pGFP. Infectivity was determined by infecting TZM-bl cells with equal
amounts of virus normalised by the p24Gag concentration. For (A) results
are normalised to the non-silencing control, which is set at 100%. Values
are the mean ± SD of 3 independent experiments.
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