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Abstract

generation maturation inhibitors.

Background: Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human
Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus
particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their
functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors
impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself.
Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of
protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation
inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance
mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We
used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance
mutations on the development of maturation inhibitor resistance.

Results: Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor
bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral
replication did not appear to be a major factor during emergence of bevirimat resistance. In all in vitro selections,
one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on
maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data
suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication
profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be
explained by differences in CA/p2 cleavage processing by the different proteases.

Conclusions: These findings highlight the complicated interactions between the viral protease and its substrate. By
providing a better understanding of these interactions, we aim to help guide the development of second

Background

Maturation is an essential step in the life-cycle of
human immunodeficiency virus type 1 (HIV-1). It is the
transition of the immature, non-infectious virus particle
to the mature and infectious virion and is triggered by
the proteolytic cleavage of the precursor Gag (Pr559%)
and GagPol (Pr1609°8"°!) polyproteins by the viral
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enzyme protease. Gag is cleaved into the structural pro-
teins matrix (MA, p17), capsid (CA, p24) and nucleo-
capsid (NC, p7), p6 and two small spacer peptides (pl
and p2). This protease-mediated cleavage elicits the
structural rearrangement that results in the dense coni-
cal core, characteristic of infectious HIV-1 particles.
Since immature particles are non-infectious, particle
maturation is an excellent target for antiretroviral drugs.
Protease inhibitors (PI) successfully inhibit viral replica-
tion by targeting the enzyme responsible for maturation
and have played a major role in antiviral therapy since
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their introduction in 1995. So far, nine different PIs
have been approved for clinical use. However, a high
degree of cross-resistance between protease inhibitors
limits the utility of these inhibitors if PI resistance
emerges.

Maturation inhibitors are a new class of antiretrovirals
that also impede particle maturation but do so by tar-
geting the substrate of protease (Gag) instead of the
protease enzyme itself. Therefore, direct cross-resistance
between PIs and maturation inhibitors may seem unli-
kely. However during PI treatment, co-evolution of the
viral protease and its substrate Gag is common, which
may have an effect on the subsequent utility of matura-
tion inhibitors [1-5]. Several maturation inhibitors are
or have been in development including: bevirimat
(BVM, Panacos PA-457, Myriad MPC-4326);
PA1050040, which is a second generation maturation
inhibitor from Panacos [6], based on bevirimat; two
maturation inhibitors from Myriad Pharmaceuticals,
Vivecon (MPC-9055)[7,8] and MPI-461359 [9]; PE-
46396 [10] from Pfizer and several capsid assembly inhi-
bitors including CAP-1 [11], CAI[12], and BI-257, BI-
627 and BI-720 from Boehringer-Ingelheim[13]. Beviri-
mat was the first of these maturation inhibitors to go
into clinical trials and inhibits HIV-1 replication by spe-
cifically blocking cleavage of CA from p2, one of the
final (rate-limiting) steps in the Gag processing cascade.
Incomplete processing of CA from CA-p2 (p25) results
in unsuccessful particle maturation and, therefore, non-
infectious virions [14]. The CA/p2 cleavage site (CS) has
been identified as the bevirimat target region by Wes-
tern-blotting and in vitro resistance selection studies
[14,15]. Nonetheless, the mechanism of action of beviri-
mat is still poorly understood as the actual binding site
of bevirimat has not been identified. Recently, it has
been shown that, besides sterically blocking the CA/p2
junction, bevirimat may have a stabilizing effect on the
immature Gag lattice. This indicates that bevirimat
binds during assembly and must be incorporated to
inhibit maturation, which offers an explanation why bev-
irimat is unable to prevent cleavage of free Gag in solu-
tion[16].

Initial in vitro selection studies identified bevirimat
resistance mutations in the CA/p2 cleavage site at Gag
positions 358, 363, 364 and 366 [15]. Phase 2b clinical
studies demonstrated that baseline polymorphisms
slightly downstream of the CA/p2 cleavage site (Gag aa
369, 370 and 371, known as the QVT-motif) also confer
resistance [17,18].

We previously showed that bevirimat resistance muta-
tions are more frequently observed in PI resistant but
bevirimat naive HIV-1 isolates, compared to PI and bev-
irimat treatment naive isolates; and this was mainly
attributed to an accumulation of mutations in the QVT-
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motif [19]. This study also showed that mutations asso-
ciated with bevirimat resistance were detected more fre-
quently in HIV-1 isolates with three or more PI
resistance mutations than in those with less than three
PI resistance mutations. Conversely, Adamson and col-
leagues suggested that mutations in the viral protease
affecting viral replication may delay the selection of
maturation inhibitor resistance [20].

To better understand the effect of PI therapy on viral
susceptibility to maturation inhibitors, we set up a
maturation inhibitor model system. We performed mul-
tiple in vitro selection studies with ten different viruses
that contained PI resistance mutations in the viral pro-
tease and/or Gag CS and that displayed a broad range
of replication capacities (RC). Subsequently, we con-
ducted a detailed analysis of the identified resistance
mutations. The data in this paper clearly demonstrate
that PI resistance mutations alter the resistance profiles
for the maturation inhibitor bevirimat. We also show
that the protease background determines the level of
maturation inhibitor resistance and viral replication.

Results

In vitro selections

To assess the impact of different PI resistant back-
grounds on selection of bevirimat resistance, we per-
formed multiple in vitro resistance selection studies with
a set of ten different viruses. Two wild-type viruses
(HXB2 and NL4-3), two viruses that harbored PI resis-
tance associated mutations in the NC/plcleavage site
(but had wild-type proteases) and six viruses that had PI
resistance mutations in the viral protease (Table 1) were
studied. The broad range of replication capacities of
these viruses (Figure 1) allowed us to investigate the
impact of RC on selection of bevirimat resistance.

During the in vitro selection experiments, there were
no major differences in the rate of virus propagation in
the presence of bevirimat between wild-type viruses and
viruses with PI resistance mutations in the viral pro-
tease. Regardless of their RC, all viruses reached full-
blown cytopathic effect (CPE) in a comparable number
of days during each serial passage. However, indepen-
dent of their RC, viruses with NC/pl CS mutations
(without mutations in protease), showed delayed propa-
gation. The delay was primarily the result of a relatively
long first passage, with subsequent passages being simi-
lar in duration to those of the other viruses (see Addi-
tional file 1).

After five serial passages to a final concentration of
240 nM bevirimat, RNA was isolated from all viruses
and full Gag and protease genes sequenced. In all cul-
tures, mutations in or near the CA/p2 cleavage site were
found clearly supporting the hypothesis that this is the
main target region for bevirimat (Tables 2 and 3). Gag



Fun et al. Retrovirology 2011, 8:70
http://www.retrovirology.com/content/8/1/70

Page 3 of 12

Table 1 Characteristics of the ten viruses that were used for the in vitro selection experiments

HIV-1 variant Mutations compared to HXB2 Pl resistance
Gag Protease LPV ATV
HXB2 - - - -
NL4-3 - 31-37N 1 1
PR-1 31-20R-35D-361-54V-63P-71V-82T 122 56
PR-2 431V 31-101-13V-35D-361-37D-461-54V-55R-57K-62V-63P-71T-82A-90M-93L-95F 15.1 7.8
PR-3" 431V 31-101-13V-35D-361-37D-54V-55R-57K-62V-63P-71T-82A-90M-93L-95F > 120 > 120
PR-4" 431V 31-101-13V-35D-361-37D-461-55R-57K-62V-63P-71T-82A-90M-93L-95F 8.1 116
PR-5" 431V 31-101-13V-35D-361-37D-461-54V-55R-57K-62V-63P-71T-90M-93L-95F 108 89
PR-6" 431V 31-101-13V-35D-361-37D-461-54V-55R-57K-62V-63P-71T-82A-93L-95F 19.6 59
NC/p1 431V - 26 13
NC/p1 436E-437T - 4.7 33

HXB2 and NL4-3 are subtype B reference viruses. Mutations are as compared to HXB2. All amino acid differences in the viral protease are listed. All protease
inhibitor (PI) resistance mutations, as defined by the International AIDS Society[37] are in bold. In addition, mutations in the NC/p1 cleavage site are listed. The
CA/p2 cleavage site of the ten viruses was identical. PR-1 is clone 460.2 from Nijhuis et al. [21] and PR-2 through PR-6 are the B6 clones from Maarseveen et al.
[30]. *PR-3 - PR-6 are site directed mutants created from PR-2. In each of these clones one Pl resistance mutation was reverted to wild-type, PR-3 - PR-6 lack PI
resistance mutation 461, 54V, 82A and 90M respectively. The NC/p1 variants only differ from HXB2 at the positions indicated in the table. The level of PI
resistance was determined for these viruses against lopinavir (LPV) and atazanavir (ATV). Pl resistance is expressed as fold change in ECs, compared to HXB2.

mutations outside this region were found only in a small
number of isolates and appeared to be random. The
protease gene was completely conserved in all viruses
(data not shown).

Viruses with wild-type proteases (HXB2, NL4-3 and
NC/p1 variants) selected for Gag mutation A364V in 26
of 28 cultures, with additional mutations observed in 4
of these 26: two cultures had V3621+A364V; one had
A366V+A364V and another one V370A+A364V (Table
2). These combinations of mutations were thought to
represent separate populations, with no viruses harbor-
ing two CA/p2 mutations on one genome. This was
confirmed by clonal analysis of one culture containing

multiple mutations (culture HXB2 #8; V362I1+A364V,
data not shown). In the two cultures where A364V was
not selected, mutations V3621 and V370A were
observed respectively.

In contrast to viruses with WT proteases, viruses with PI
resistant proteases (PR-1 - PR-6) showed a much more
diverse resistance pattern (Table 3) with a significantly
higher prevalence of mutations at position 362, 368 and in
the QVT-motif (V370A/L and T371N, Table 4).

In summary, we identified 8 bevirimat resistance
mutations at 7 different codons: V362I, L363M, A364V,
A366V, S368N, V370A/L and T371N. Most of these
mutations have been selected during in vitro selections
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Figure 1 Replication capacity of the ten viruses that were used for the in vitro selection experiments. Replication capacities (RC) were
determined by culturing the viruses in SupT1 cells in absence of inhibitor and monitoring p24 production[28]. Error bars indicate the standard
deviation. Replication of NL4-3 is comparable to that of HXB2 (not shown).
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Table 2 Mutations selected in viruses with wild-type proteases during the bevirimat in vitro selections

Wild-type proteases

CA p2
Gag position 359 360 361 362 363 364 365 366 367 368 369 370 371
HXB2 aa K A R Vv L A E A M S Q v T
WT - - - - - Vv - - - - - - -
HXB2
n=10
- - - - - - - - - - - é -
- - - - - Y - - - - - - -
- - - - - Y - - - - - - -
- - - v/ - - - - - - - - -
- - - - - Y - - - - - - -
- - - - - Y - - - - - - -
- - - \i - AN - - - - - - -
- - - - - Y - - - - - - -
- - - - - Y - - - - - - -
WT - - - - - AN - AN - - - - -
NL4-3
n=10
- - - - - A/V - - . - - m -
- - - - - \Y - - - - - - -
- - - - - \Y - - - - - - -
- - - - - Y - - - - - - -
- - - - - A/V - - - - - - -
- . - - - V - - . - - - -
- - - - - V - - . - - - -
- - - - - V - - . - - - -
- - - - . V - - - - - - .
NC/p1 - - - - - Vv - - - - - - -
431V
n=4
- - - - - V - - - - - - -
_ - - - - V - - - - - - -
- - - - - Y - - - - - - -
NC/p1 - - - - - Vv - - - - - - -
436E-437T
n=4
- - - \ - AN - - - - - - -
- - - - - Y - - - - - - -
- - - - - Y2 - - - - - - -

Schematic representation of the amino acid changes appearing in the CA/p2 region during bevirimat in vitro selection experiments with wild-type HIV-1 or NC/p1
mutants. In vitro selections with wild-type viruses (HXB2 and NL4-3) were performed 10 times, the NC/p1 variants 5 times (n = 4 because one culture was discontinued
for each virus). Mutations that previously have been identified in vitro as bevirimat resistance mutations are indicated in bold. The QVT-polymorphisms that are
associated with a reduced response to bevirimat in vivo are underlined. The actual CA/p2 cleavage site is between amino acids 363 and 364.

in previous studies, or have already been associated in
vivo with reduced bevirimat susceptibility, except for the
mutation at position 368, which was considered a poten-
tial new resistance mutation. In all 58 isolates at least
one of the following mutations was found: Gag V362I,
A364V, S368N or V370A/L.

Impact of Pl resistance mutations on bevirimat resistance
and viral replication

To characterize the different bevirimat resistance pro-
files observed in viruses with wild-type and PI resistant
proteases, we investigated the impact of the four most
frequently selected mutations on bevirimat susceptibility
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Table 3 Mutations selected in viruses with Pl resistant proteases during the bevirimat in vitro selections
Pl resistant proteases
CA p2
Gag position 359 360 361 362 363 364 365 366 367 368 369 370 371
HXB2 aa K A R v L A E A M s Q v T
PR-1 - - - - - v - - - - - - -
n=>5
- - - - - ANV - - - - - -
- - - v/ L/M - - - - N - A -
- - - v/I - - - - - SN - - /N
- - - - - ANV - - - - - - /N
PR-2 - - - - - - - - - SN - - -
n=>5
- - - - - - - - - - - ﬂ -
- - - v/ - AN - - - - - - -
- - - v/I - - - - - - - -
- - - - - - - - - - . é -
PR-3 - - - v/i - - - - - SIN - - -
n=
- - - . - AN - - - - . - -
- - - - - V - - - - - - -
- - - - - - - - - SN - V/A -
- - - [ - - - - - - - - -
PR-4 - - - - - ANV - - - - - - -
n=
- - - v/I - - - - - - - V/A -
- - - v/ - - - - - - - - -
- - - v/I - - - - - SN - -
- - - - - - - - - - - A -
PR-5 - - - v/ - - - - - - - - -
n=
- - - - L/M AN - - - - - - -
- - - v/ - - - - - - - V/A -
- - - . - - - - - - . Y/L .
- - - - - AN - - - S/N - - -
PR-6 - - - V/i - - - - - S/N - - -
n=
- - - v/ - AN - - - S/N - - -
- - - | - - - - - - - - -
- - - 7 - - - - - - - V/A -
- - - . - . - - - - . m -

Schematic representation of the amino acid changes appearing in the CA/p2 region after bevirimat in vitro selection experiments with the PR-1 - PR-6 mutants.
In vitro selections with the protease mutants were performed 5 times. Mutations that previously have been identified in vitro as bevirimat resistance mutations
are indicated in bold. The QVT-polymorphisms that are associated with a reduced response to bevirimat in vivo are underlined. Previously unknown mutations
are printed in italic type. The actual CA/p2 cleavage site is between amino acids 363 and 364.

and viral replication in different genetic backgrounds.
Therefore we introduced Gag mutations V3621, A364V,
S368N or V370A by site-directed mutagenesis in the
background of HXB2, PR-1 and PR-2. The bevirimat
susceptibility and the relative replication capacity of
these 12 viruses were determined.

In wild-type HXB2, mutations A364V and V370A
conferred the highest level of resistance (Table 5). Both
mutations resulted in a complete lack of inhibition even
at 3000 nM (> 150-fold reduced susceptibility to beviri-
mat, Table 5 and Additional file 2, panels A and B).
Mutations V3621 and S368N resulted in low-level
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Table 4 Differences in mutations selected during the
bevirimat in vitro selections

mutation  Wild-type proteases Pl resistant proteases p-value
n (%) n (%)
V362l 3/28 (10.7) 15/30 (50.0) 0.002
A364V 26/28 (92.9) 10/30 (33.3) < 0.001
S368N 0/28 (0) 9/30 (30.0) 0.002
V370A 2/28 (7.1) 9/30 (30.0) 0.043
all QvT 2/28 (7.1) 12/30 (40.0) 0.005

The differences in mutations that were selected with viruses with either wild-
type or Pl resistant proteases during the bevirimat in vitro selections are listed.
Absolute frequencies and the proportion of cultures harboring the mutations
are given. P-values were determined using Fisher’s exact test.

resistance (2.8-fold and 6.6-fold respectively). In the
context of protease mutant PR-1, fold changes for the
four site-directed mutants were almost identical to that
of HXB2 (Table 5). However, the results were quite dif-
ferent for the mutations in the PR-2 background. Again,
mutations A364V and V370A conferred > 150-fold
resistance but, interestingly, mutations V3621 and S368N,
which demonstrated only low-level resistance in the
background of HXB2 and PR-1, also resulted in the fully
resistant phenotype when introduced in PR-2 (see Addi-
tional file 2, compare panels C and E with D and F). This
revealed that the newly identified S368N mutation indeed
is a bevirimat resistance mutation, which results in low-
level resistance in a wild-type protease background but
can give high-level resistance in the context of a mutated
protease.

We also tested if the bevirimat resistance mutations
affected PI (lopinavir and atazanavir) susceptibility. All
site-directed mutants with the bevirimat resistance
mutations in the HXB2 and PR-1 backgrounds were
analyzed. None of these Gag mutations had a substantial
effect on PI susceptibility; all changes in EC5o were
below 2-fold (see Additional file 3). As an additional
control, the susceptibility to lopinavir and atazanavir
was tested for virus PR-2GagS368N. Compared to virus
PR-2, fold changes in susceptibility were 1.7 and 1.1-fold
respectively. Furthermore, the susceptibility of
HXB2GagV370A to PIs tipranavir, saquinavir, nelfinavir,
indinavir and the NRTI zidovudine was determined.
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Fold changes in EC5y compared to HXB2 were 0.9, 1.0,
1.8, 0.9 and 1.2-fold respectively.

The relative RC of the 12 site-directed mutants was
assayed by culturing virus in the absence of inhibitor for
14 days and monitoring p24 production. None of the
four resistance mutations had an apparent effect on
viral replication in the background of HXB2 wild-type
virus (Figure 2A). Similarly, in PR-1, which had an RC
comparable to that of HXB2, the introduction of any of
the four bevirimat resistance mutations had little effect
on replication. There was a slight delay in replication of
viruses PR-1GagA364V, PR-1GagS368N and PR-
1GagV370A but these differences were very small (one
day) and the slopes of the curves and end-point replica-
tion were similar to those of the reference virus and
other PR-1 strains (Figure 2B). In contrast, we observed
large differences in RC for the mutations in the PR-2
background (Figure 2C). The parental virus (PR-2)
already exhibited reduced replication compared to
HXB2 wild-type virus and all four bevirimat resistance
mutations further lowered the RC of the virus, to very
different extents. Virus PR-2GagV362I displayed the
highest replication capacity of the four site-directed
mutants but replication was still substantially lower than
that of PR-2. Mutations S368N and V370A had a more
severe impact resulting in intermediate replication levels.
Mutation A364V was highly detrimental in this back-
ground and reduced viral replication to a minimum.

Effect of bevirimat resistance mutations on CA/p2
processing efficiencies

In order to characterize the differences in resistance
levels conferred by bevirimat resistance mutations in dif-
ferent genetic backgrounds, we performed a biochemical
analysis of the specific cleavage efficiencies. The effect
of mutations V3621 and A364V on CA/p2 processing
was analyzed in the background of HXB2 and PR-2 pro-
teases. Nonapeptides representing the WT CA/p2 clea-
vage site, or containing bevirimat resistance mutation
V3621 or A364V, were processed with either the HXB2
or the PR-2 protease enzyme. Although the absolute
cleavage efficiency of PR-2 was lower compared to
HXB2, the relative increase in processing caused by

Table 5 Impact of Pl resistance mutations on bevirimat resistance

Virus Fold resistance
bevirimat
V3621 A364V S368N V370A
HXB2 2.8 > 150 6.6 > 150
PR-1 (20R-361-54V-63P-711-82T) 0.6 2.1 > 150 6.0 > 150
PR-2 (431V-10I-13V-361-461-54V-62V-63P-71T-82A-90M-93L) 2.1 > 150 > 150 > 150 > 150

Levels of bevirimat resistance caused by single CA/p2 mutations in different protease backgrounds are given. Resistance is expressed as fold change in ECsq
compared to HXB2. All numbers are averages of at least two separate experiments.
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Figure 2 Impact of bevirimat resistance mutations on viral replication in different genetic backgrounds. Viruses were cultured in SupT1
cells in absence of inhibitor and p24 production was monitored for 14 days. All viruses were tested in duplicate. Error bars indicate the standard
deviation. Replication curves of (A) the HXB2 site-directed mutants, (B) the PR-1 mutants and (C) the PR-2 mutants.
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adding mutation V3621 or A364V was approximately
50% greater for the PR-2 protease than for the HXB2
protease (Table 6). For both proteases, processing of the
peptide with mutation A364V was one order of magni-
tude faster compared to V362L.

Discussion

Maturation inhibitors are an experimental class of anti-
retrovirals that prevent HIV-1 replication by targeting
the structural proteins essential for particle maturation
and thus formation of infectious virions. The target
region for maturation inhibitors, Gag, is the same as the
natural substrate of the viral protease. Co-evolution of
protease and Gag during PI therapy[1,5,21-23] may,
therefore, have consequences for the subsequent use of
maturation inhibitors. We used bevirimat in a model
system to study the impact of PI therapy on the devel-
opment of resistance against maturation inhibitors. To
date, no direct cross-resistance between PIs and beviri-
mat has been observed[14,20,24], but it is conceivable
that reduced viral replication, as often caused by PI
resistance mutations, influences the emergence of beviri-
mat resistance. Therefore, we wanted to include the
effect of viral replication capacity on development of
maturation inhibitor resistance in our studies. We chose
viruses PR-1 through PR-6 for our resistance selection
studies because of their broad range of replication
capacities.

During in vitro selection, there were only small differ-
ences in rates of virus propagation in the consecutive
passages between the wild-type and PR-1 - PR-6 viruses.
We did not find a clear correlation between the rate of
selection for bevirimat resistance and the viral replica-
tion capacity. The differences within the individual cul-
tures from a particular molecular clone were often
larger than the differences between the averages of the
various clones. However, the viruses with mutations

Table 6 CA/p2 processing efficiencies of the HXB2 and
PR-2 proteases

Substrate Relative substrate conversion
HXB2 PR-2 Ratio
(PR-2/HXB2)
WT 1 1 -
V362l 087 13 149
A364V 76 " 145

Comparison of the CA/p2 processing efficiencies of the HXB2 and PR-2
protease enzymes. Three different nonapeptides representing the CA/p2
cleavage site were cleaved with either the HXB2 or the PR-2 protease: 1. wild-
type (WT) KARVL|AEANLe-NH,, 2. (V362l) KARIL|AEANLe-NH, and 3. (A364V)
KARVL|VEANLe-NH,. The bevirimat resistance mutations are underlined and
the arrow indicates the actual junction. The cleavage efficiency of the WT
substrate was set to 1, conversion of substrates with V362| or A364V was
measured relative to the conversion of the WT substrate. The test was
performed in triplicate.
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only in the NC/p1 cleavage site appeared to have a
delayed emergence of bevirimat resistance. This delay
cannot be explained by viral replication capacity since
this was comparable for the 431V mutant and wild-type
virus. A possible explanation is that altering both rate-
limiting cleavage sites (CA/p2 and NC/p1) without hav-
ing an adapted protease is unfavorable for the virus.

In all our in vitro selection cultures, mutations were
selected in or slightly downstream from the CA/p2 clea-
vage site. We showed that PI resistance mutations have
a substantial impact on the selection of bevirimat resis-
tance: the resistance profiles were remarkably different
for viruses with PI resistant proteases compared to wild-
type proteases. Mutation A364V occurred most fre-
quently and was associated with a completely resistant
phenotype in all three protease backgrounds (HXB2,
PR-1 and PR-2). This mutation had no effect on replica-
tion in an HXB2 background, which might explain the
almost exclusive selection of A364V by viruses with a
wild-type protease. We also observed selection of multi-
ple QVT-mutations. Although these mutations are
known to cause bevirimat resistance, until recently they
had only been found as naturally occurring polymorph-
isms in clinical isolates demonstrating reduced bevirimat
susceptibility[17,18,25]. Knapp and colleagues showed
selection of QVT-mutations in a different experimental
setup in which they used mixed, clinically derived gag-
protease recombinant HIV-1 samples to select for bevir-
imat resistance[26]. We have now shown that QVT-
mutations can also be selected by clonal strains and
wild-type virus. However, they are much more often
selected by viruses with a mutated protease, which is in
line with our previous in vivo observations[19]. We also
showed this to be the case for mutation V3621, which
recently has been identified as a natural polymorphism
that confers bevirimat resistance[27]. In addition, we
identified a previously unknown bevirimat resistance
mutation, S368N. This mutation was not found in any
cultures with wild-type proteases, but appeared fre-
quently in cultures with PI resistant proteases.

Our results indicate that the protease background
determines the level of resistance and the impact on
replication. When introduced into the PR-2 background,
mutations V3621 and S368N result in much higher
levels of resistance than in backgrounds HXB2 or PR-1.
High levels of bevirimat resistance for mutation V3621
have also been observed in other genetic backgrounds
[27]. A possible explanation for these observations is the
difference in cleavage efficiencies of the Gag substrate
by the viral protease. It has previously been reported
that the level of bevirimat resistance is reduced in a PI
resistant virus with a reduced Gag processing efficiency
[20]. We show that processing of the CA/p2 cleavage
site is accelerated by the presence of a bevirimat
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resistance mutation, which is likely to augment beviri-
mat resistance, parallel to what is observed for PI resis-
tance[4,5]. Both proteases that were tested (HXB2 and
PR-2) processed substrate with mutation A364V one
order of magnitude more effectively than substrate with
a V362l mutation. This might explain the high levels of
bevirimat resistance conferred by A364V in all back-
grounds. Furthermore, the relative increase in substrate
conversion is greater in the context of the PR-2 protease
compared to the HXB2 protease and we hypothesize
that this relative increase in CA/p2 processing contri-
butes to the enhanced bevirimat resistance levels
observed for the PR-2GagV362I and PR-2GagS368N
viruses.

Conclusions

Like most new drug classes, maturation inhibitors are
likely to be introduced as part of salvage therapy. The
majority of patients requiring new therapeutic options
will be infected with viruses that harbor multiple resis-
tance mutations, most likely including PI resistance
mutations. Therefore, it is essential to understand the
consequences of prior treatment with PIs for the use of
maturation inhibitors. Our data show that predicting
treatment responses for maturation inhibitors might not
be straightforward and that the complex interactions
between protease and Gag have to be taken into
account.

The development of new and more potent maturation
inhibitors should therefore aim to overcome the issues
encountered by the current drugs with virus containing
the baseline polymorphisms found in the C-terminal
Gag region (QVT-mutations) and, ideally, new matura-
tion inhibitors would exhibit synergy with protease inhi-
bitors. They should capitalize on the reduced processing
often caused by PI resistance mutations in such a way
that there is added value from the use of a maturation
inhibitor in salvage therapy for PI experienced patients.

Methods

Viral and cell culture

Cells

293T cells were maintained in DMEM with L-glutamine
(Lonza, Verviers, Belgium) supplemented with 10% fetal
bovine serum (FBS; Sigma-Aldrich, Zwijndrecht, The
Netherlands) and 10 pg/ml gentamicin (Invitrogen,
Breda, The Netherlands). SupT1 and MT-2 cells were
maintained in RPMI 1640 with L-glutamine (Lonza)
supplemented with 10% FBS and 10 pg/ml gentamicin.
Recombinant virus panel

We selected a panel of ten different viruses for in vitro
resistance selection studies (Table 1). Two wild-type
viruses (HXB2 and NL4-3), six recombinant viruses
with PI resistance mutations in the viral protease (PR-
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1 - PR-6) and two recombinant viruses without muta-
tions in the viral protease but with PI resistance asso-
ciated mutations in the Gag NC/p1 cleavage site (NC/
pl 431V and NC/pl 436E-437T). PR-1 and PR-2 were
gag-protease recombinant viruses from patient isolates
that had acquired resistance mutations during long-
term PI therapy and have different resistance profiles
and replication capacities. PR-1 was selected because it
displayed wild-type replication kinetics despite the pre-
sence of multiple PI resistance mutations. In contrast,
like most PI resistant isolates, PR-2 had a slightly
defective replication compared to wild-type (Figures 1
and 2C). PR-3 through to PR-6 are site directed
mutants created from PR-2 in which in each of these
clones one PI resistance mutation was reverted to
wild-type. This resulted in dramatic changes in RC
(Figure 1) while the mutations were very stable; they
remained present and no additional protease mutations
were acquired during long term culture in T cells in
the absence of PIs [28]. These findings were consistent
with other studies that described a significant effect on
RC of a single mutation in the viral protease[29-31].
The NC/p1 variants had divergent replications capaci-
ties and both conferred low-level PI resistance in the
absence of mutations in the viral protease. Fold
changes against the commonly used PIs lopinavir and
atazanavir are given in Table 1 for all variants.

In vitro selections with wild-type viruses HXB2 and
NL4-3 were performed 10 times (10 parallel in vitro
selections per virus), all other viruses 5 times. One cul-
ture of each NC/pl variant was discontinued because of
inadequate viral replication.

Transfections

Viruses were generated by transfecting 293T cells with
10 pg of plasmid DNA of the molecular clones using
Lipofectamine 2000 reagent (Invitrogen) according to
the manufacturer’s protocol. Cell free virus was har-
vested 2 days after transfection. Infectious virus titer
(TCIDso) was determined by end-point dilution assays
in MT-2 cells.

In vitro selections

Multiple in vitro selection experiments were started
simultaneously for all viruses, 10 times with reference
viruses HXB2 and NL4-3 and 5 times with all other
viruses in. The in vitro resistance selections were started
by infecting 2.0 x 10° SupT1 cells with virus at a multi-
plicity of infection (MOI) of 0.001. Bevirimat concentra-
tion in the initial cultures was 20 nM. Cultures were
monitored daily for cytopathic effect (CPE) and twice a
week half of the culture was replaced by fresh culture
media supplemented with bevirimat. When full-blown
CPE was observed, cell free virus was harvested. Subse-
quent passages were started by infecting 2.0 x 10°
SupT1 cells with virus containing supernatant from the
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previous passage. Bevirimat concentration was raised in
each passage to a final concentration of 240 nM in pas-
sage 5. After passage 5, HIV-1 RNA was isolated from
all cultures for genotypic analysis.

Genotypic analysis

Viral RNA extraction, amplification and sequencing

HIV-1 RNA was extracted using the Nuclisens Isola-
tion kit (BioMérieux, Boxtel, The Netherlands). 100 pl
of virus supernatant was added to 900 ul lysis buffer
with 40 pl silica beads. After 10 minutes incubation,
beads were washed twice in wash buffer, twice in 100%
ethanol and once in acetone and subsequently air-
dried. RNA was eluted at 56°C with 100 pl of 40 ng/pl
poly-A RNA. Full Gag and protease genes were
reversed transcribed and amplified in a single-step
reaction using the Titan One Tube RT-PCR kit (Roche
Diagnostics, Almere, The Netherlands). In a second
PCR using the Expand High Fidelity kit (Roche) the
amount of product was further enhanced. In the first
PCR primers KVL 064 (5-G TTG TGT TGT GAC
TCT GGT AAC TAG AGA TCC CTC AGA-3’; 570-
603)[32] and 3’prot-6 (5'-TTT TCA GGC CCA ATT
TTT GAA ATT TT-3’; 2710-2685) were used. The
second PCR was carried out with primers 5-Anna (5'-
ACT CGG CTT GCT GAA GCG CGC-3’; 696-716)
and 3’prot-5 (5-TGC TTT TAT TTT TTC TTC TGT
CAA TGG CCA-3’; 2648-2619). Sequence analysis was
performed with the BigDye Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems, Foster City, CA,
USA). Full Gag and protease sequences were obtained
using a set of ten primers: GA1 (5-GAC GCA GGA
CTC GGC TTG CT-3’; 688-707), MArev-1 (5-TGA
TGT ACC ATT TGC CCC T-3%; 1223-1205),
HXB2Gagfor[33], Sk38 (5’-ATA ATC CAC CTA TCC
CAG TAG GAG AAA T-3’; 1544-1571), Sk39 (5-TTT
GGT CCT TGT CTT ATG TCC AGA ATG C-3’; 1658-
1631), NCrev-1 (5’- TGT GCC CTT CTT TGC CAC
AAT-3’;1990-1970), 5'clea-4 (5-ATA ATG ATG CAG
AGA GG-3’; 1915-1931) and 3'CS1, PR2 and PR5 [34].

Site-directed mutagenesis

In viruses HXB2, PR-1 and PR-2, Gag substitutions
V3621, A364V, S368N and V370A were introduced by
site-directed mutagenesis. Therefore PCR was performed
on the respective plasmids using Ventg DNA polymer-
ase (New England Biolabs, Ipswich, MA, USA) with pri-
mers 5’-Anna and 3’prot-6 and a third mutagenesis
primer: GagV362 (5-GGC AAG AAT TTT GGC TGA
AGC AAT G-3;1866-1890), GagA364V (5-GGC AAG
AGT TTT GGT _TGA AGC AAT G-3’;1866-1890),
GagS368N (5-GGC TGA AGC AAT GAA CCA GGT
AAC CA-3;1878-1903) or GagV370A (5-GCA ATG
AGC CAG GCA ACC AAT TGC; 1885-1907).
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The full Gag and protease PCR fragments were digested
with restriction enzymes BssHII and MIuNI. Digested
fragments were then cloned into the previously described
HXB2 reference vector CP-Wt[33] that also was digested
with BssHII and MIuNI. PCR product and vector
(pHXB2AGagPR) were ligated using the Rapid DNA Liga-
tion System (Promega Benelux, Leiden, The Netherlands)
and subsequently transformed in competent cells.

Phenotypic analysis

Drug susceptibility analysis

Drug susceptibility was determined by a multiple cycle
cell-killing assay[35]. MT-2 cells (5 x 10* in 200 pl
RPMI 10% FBS per well) were plated in 96-well micro-
plates. Sample virus and reference virus were inoculated
for five days on a single 96-well plate in the presence of
threefold dilutions of bevirimat. Both sample virus and
reference virus were inoculated at multiple MOIs to
adjust for any differences in viral RC. Fold change (FC)
values were calculated by dividing the mean 50% effec-
tive concentration (ECs) for a sample virus by that of
the HXB2 reference strain. Fold changes are averages of
at least two separate experiments.

Viral replication assay

For each viral clone the amount of p24 was determined
by ELISA (Aalto Bioreagent, Dublin, Ireland). Replica-
tion capacity was determined by infecting 2.0 x 10°
SupT1 cells (in duplicate) with an equivalent of 100 ng
p24 of each virus. After 2 hours of incubation, cells
were washed twice with fresh RPMI 1640 medium with
L-glutamine and subsequently resuspended in 10 ml
RPMI 1640 medium with L-glutamine supplemented
with 10% FBS and gentamicin. Cultures were maintained
in the absence of inhibitor for fourteen days and once
daily 300 pl of cell-free virus supernatant was harvested
for p24 analysis.

CA/p2 processing efficiencies of the HXB2 and PR-2
protease enzymes

HXB2 and PR-2 proteases were over-expressed in E. coli
and purified to homogeneity as described previously[36].
Briefly, E. coli BL21(DE3)RIL (Novagen, Darmstadt, Ger-
many) were transfected by pET 24a plasmid coding for
the corresponding enzyme. The insoluble recombinant
protein, accumulated in the form of inclusion bodies,
was isolated and solubilized in 67% (v/v) acetic acid.
The recombinant proteases were refolded by diluting in
a 25-fold excess of water and overnight dialysis against
water at 4°C followed by overnight dialysis against 50
mM 2-(N-morpholino)ethanesulfonic acid (MES) pH
5.8, 10% (v/v) glycerol, 1 mM ethylenediaminetetraacetic
acid (EDTA) and 0.05% (v/v) 2-mercaptoethanol. The
proteases were purified by cation exchange chromato-
graphy using MonoS FPLC (Amersham Biosciences,



Fun et al. Retrovirology 2011, 8:70
http://www.retrovirology.com/content/8/1/70

Uppsala, Sweden). Purified enzymes were stored at -70°
C. The proteolytic activities of these enzymes were
tested with substrates derived from Gag wt, GagV3621
and GagA364YV, represented by the following nonapep-
tides: KARVL|AEANLe-NH,, KARIL|AEANLe-NH,,
and KARVL|VEANLe-NH, as previously described.
Substrates (200 uM) were incubated for 25 min with
either HXB2 or PR-2 protease (75 nM) enzyme in 50
mM MES buffer (300 mM NaCl, pH 6.0) at 37°C. The
arrow indicates the actual cleavage site. The cleavage
reaction was stopped by adding concentrated formic
acid. Enzymatic reaction mixtures were resolved in tri-
plicates on a Zorbax SB-C;g reversed phase HPLC col-
umn (4.6 x 150 mm, particle size 1.8 pm, Agilent
Technologies, USA).

Additional material

Additional file 1: Virus propagation in the presence of increasing
bevirimat concentrations. The cumulative number of days until full
blown CPE was observed is shown averaged for each variant.

Additional file 2: Impact of protease background on bevirimat
resistance. Fold increase in bevirimat ECsy caused by single CA/p2
mutations in different protease backgrounds.

Additional file 3: Impact of bevirimat resistance mutations on Pl
susceptibility. The impact of the bevirimat resistance mutations on Pl
susceptibility is presented.
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