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Revisiting HIV-1 uncoating
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Abstract

HIV uncoating is defined as the loss of viral capsid that occurs within the cytoplasm of infected cells before entry
of the viral genome into the nucleus. It is an obligatory step of HIV-1 early infection and accompanies the
transition between reverse transcription complexes (RTCs), in which reverse transcription occurs, and pre-integration
complexes (PICs), which are competent to integrate into the host genome. The study of the nature and timing of
HIV-1 uncoating has been paved with difficulties, particularly as a result of the vulnerability of the capsid assembly to
experimental manipulation. Nevertheless, recent studies of capsid structure, retroviral restriction and mechanisms of
nuclear import, as well as the recent expansion of technical advances in genome-wide studies and cell imagery
approaches, have substantially changed our understanding of HIV uncoating. Although early work suggested that
uncoating occurs immediately following viral entry in the cell, thus attributing a trivial role for the capsid in infected
cells, recent data suggest that uncoating occurs several hours later and that capsid has an all-important role in the
cell that it infects: for transport towards the nucleus, reverse transcription and nuclear import. Knowing that
uncoating occurs at a later stage suggests that the viral capsid interacts extensively with the cytoskeleton and other
cytoplasmic components during its transport to the nucleus, which leads to a considerable reassessment of our
efforts to identify potential therapeutic targets for HIV therapy. This review discusses our current understanding of
HIV uncoating, the functional interplay between infectivity and timely uncoating, as well as exposing the appropriate
methods to study uncoating and addressing the many questions that remain unanswered.

Structure of mature HIV-1 capsid and its
importance at early stages of infection
The mature HIV-1 capsid, also called HIV-1 core, is a
highly organised macromolecular assembly, formed
within newly released virions upon proteolytic cleavage
of the precursor p55Gag polyprotein by the viral pro-
tease which generates the cleavage product CA (also
called capsid or p24). Rather confusingly, the term cap-
sid refers both to the conical multimeric structure and
to the CA monomers that constitute the cone. There-
fore, to avoid all confusion, the terms “capsid” and
“core” are preferred for reference to the conical struc-
ture and monomers are referred to as “CA”. Negative
staining and cryo-electron microscopy of authentic
mature particles or isolated mature HIV-1 cores reveal
that capsids have an intriguing conical shape, with a
relatively consistent length of 100-120 nm [1-4] (Figure 1).
The diameter of the wide end of the capsid cone (50-60
nm) and the angle at the tip of the cone (18-24°) may vary

and lead to capsids with apparent heterogeneity of shape
(bullet shape, cylindrical forms).
The intrinsic properties of the HIV-1 capsid, such as

its poor stability or asymmetry, have made it particularly
difficult to explore the detailed structure of mature
cores isolated from disrupted virions. However, recom-
binant CA can spontaneously assemble in vitro into
cones and structures analogous to authentic HIV-1 cap-
sids [5] and much of the valuable information we have
on the shape and underlying molecular structures of the
capsid derive from core-like structures obtained from in
vitro CA assembly reactions. These have shown that
despite its macromolecular asymmetry, the HIV-1 capsid
is assembled with a high degree of organisation as a full-
erene cone, a structure with hexagonal lattice symmetry
that is capped at both ends [5,6]. The HIV-1 capsid is
made up of ca. 1,500 CA monomers, which assemble
into 250 hexameric rings through NTD-NTD (N-term-
inal domain) interactions, which are themselves linked
into a hexagonal lattice through CTD-CTD (C-terminal
domain) interactions [7,8]. The hexagonal lattice is
curved into a cone through subunit mobility [8] and isCorrespondence: nathalie.arhel@pasteur.fr
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capped by exactly 12 pentameric rings, 7 at the wide
end and 5 at the narrow end of the cone [5].
The capsid contains the viral genome (two single

stranded RNA molecules), some viral proteins (CA,
nucleocapsid (NC), reverse transcriptase (RT), integrase
(IN), Vpr) and numerous cellular proteins, such as
Cyclophilin A and APOBEC3G [9]. Its main function is
to organise and contain the viral genome for optimal
delivery in target cells and efficient reverse transcription,
which together contribute to effective replication in the
new host cell. The capsid cone is absolutely essential for
infection since mutations of protease cleavage sites in
Gag, or inhibitors of Gag processing, produce immature
virions and abolish HIV-1 infectivity [10-13]. Further-
more, point mutations that lead to hyperstable or
unstable capsids, or to capsids with aberrant morpholo-
gies, lead almost systematically to reduced infectivity
[14], indicating that the shape and stability of the capsid
are also critical for HIV-1 infectivity.

The necessity of uncoating for HIV-1 and
other lentiviruses
HIV-1 and other lentiviruses are unique among orthore-
troviruses in their ability to replicate efficiently in meta-
bolically active non-dividing cells [15,16] as a result of
the active nuclear import of their genome across the
nuclear membrane of interphasic nuclei [17]. Retro-
viruses such as the Murine Leukaemia Virus (MLV)
gain access to the nuclear chromatin following the disas-
sembly of the nuclear membrane that occurs during
mitosis [18]. For such retroviruses, evidence suggests
that the viral capsid accompanies the viral genome into
the nuclear compartment and participates in interaction
with the chromatin [19] indicating that uncoating is not
required prior to nuclear import.
HIV and other lentiviruses enter the nuclei via the

nuclear pore; and, although commonly assumed, it is by
no means certain that they can use an alternative route
of entry during mitosis. Indeed, the replication of certain
lentiviruses (such as EIAV, CAEV and VISNA) is entirely
limited to macrophages, which do not divide. In the case
of HIV-1, which infects cycling CD4+ T cells in addition
to macrophages, a mitosis-independent nuclear import in
cycling cells has been reported [20]. Furthermore, a gen-
ome-wide RNA interference-based screen comparing
HIV-1 and MLV infections identified unique nuclear
import factors for HIV-1 even though the study was car-
ried out in cycling cells [21]. In addition, HIV-1 mutants
with a nuclear import defect in cell cycle-arrested cells
often maintain this defect in cycling cells [22-25]. Finally,
the assumption that HIV-1 might passively gain access to
the chromatin upon mitosis, if based on the belief that
cytoplasmic and nuclear contents mix homogeneously
throughout mitosis, is not valid. Indeed, evidence sug-
gests that mitotic cells maintain spatial information
through gradients, such as the RanGTP gradient that sur-
rounds chromatin [26,27]. Taken together, it is probable
that HIV-1 enters nuclei only through the nuclear pore
whether cells divide or not.
The dependency of lentiviruses on non-dividing cells

for in vivo transmission and persistence and the result-
ing necessity to enter the nucleus through the nuclear
pore impose an uncoating step because the diameter of
the viral capsid (up to 60 nm wide) exceeds that of the
nuclear pore (~30 nm). Consistent with this notion, pre-
vious work has reported a substantial difference in mass
between cytoplasmic and nuclear HIV-1 complexes
[28,29] and the absence of CA within pre-integration
complexes [30,31].

Where and when does uncoating occur?
Although most agree that uncoating occurs after fusion-
dependent entry in the cytoplasm and before nuclear

Figure 1 Scanning electron microscopy imaging of HIV-1
capsids in the cytoplasm and at the nuclear membrane of
infected cells. (A) Schematic representation of the mature HIV-1
capsid shell. The HIV-1 capsid is an assembly of approximately 1,500
CA monomers arranged into a hexagonal array of hexamers.
Dimensions are derived from microscopy observations of mature
virions or isolated cores. (B-D) Images show the backscattered gold
signal corresponding to specific labelling with a mouse monoclonal
anti-p24 antibody (183-H12-5C AIDS Reagent Program) followed
with goat anti-mouse IgG H&L conjugated 10 nm gold (British
Biocell International) in HIV-1 infected P4-CCR5 cells. HIV-1 capsids
are typically conical- or cylindrical-shaped, ca 100-150 nm long, and
heavily labelled with 10-30 immunogold particles. The bulk of
antibodies likely induces some distortions in size and shape of
capsids. In panels B and D, capsids are located at the nuclear
membrane: nuclear pore complexes appear as bright rings with
dark lumen.
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import, the field remains divided as to the precise
moment and location for this event. Indeed, the extent
of the role of HIV-1 capsid at early stages of infection is
still a matter of debate. In a first model, the viral capsid
is disassembled close to the plasma membrane immedi-
ately following fusion into the cytoplasm and most CA
is dissociated from the HIV-1 nucleoprotein complex
[32-35]. Uncoating is required for formation of the
reverse transcription complex (RTC) and is likely trig-
gered by the sudden change in environment in which
the viral complex finds itself, or possibly by the loss of
high concentrations of free CA present in virions and
responsible for maintaining metastable cores [36]. In
this model, the absence of significant amounts of CA
within intracellular HIV-1 complexes soon after inocula-
tion [28,29,37-39] and the inability to detect capsids in
the cytoplasm of infected cells using transmission elec-
tron microscopy (TEM) [40] led to the conclusion that
the primary function of HIV-1 capsid is to deliver the
viral genome into the cytoplasm, after which it can and
must be discarded for productive infection to proceed,
although it is not excluded that initial disassembly is
partial [32-35].
A second model proposes that capsid remains intact

for some time post-entry, at least for the initiation of
reverse transcription, and that uncoating occurs gradu-
ally during transport towards the nucleus and reverse
transcription [41]. In this model, uncoating is promoted
in response to multiple successive changes in the cellu-
lar environment, sequential contact with different cell
factors, and through the molecular rearrangements that
accompany reverse transcription, thus triggering pro-
gressive or stepwise conformational changes and disas-
sembly. In support of this hypothesis are studies that
report a broad range of different sizes and shapes for
cytoplasmic HIV-1, both greater and smaller than
mature extracellular cores, suggesting a complex series
of transformations accompanying reverse transcription
and transport to the nucleus [39,41-43] (although it can-
not be excluded that the observed variations are due to
the preparation or isolation protocol [44]), immuno-
fluorescent microscopy showing association of CA with
RTCs [42], and the demonstration that capsids with
increased or decreased core stability has impaired
reverse transcription [14].
A third model, which we favour, proposes that capsids

remain intact until HIV-1 incoming complexes reach
the nuclear membrane and that uncoating occurs at the
nuclear pore upon completion of reverse transcription.
In this model, the HIV-1 capsid is all-important for
maintaining a high stoichiometry of HIV-1 reverse tran-
scriptase enzyme relative to the viral genome during
reverse transcription to counteract its tendency to dis-
sociate from its template [45], since dilution of reverse

transcriptase in the cytoplasm would lead to highly inef-
fective reverse transcription. While it organises the
HIV-1 viral genome and proteins, it offers no imperme-
able environment from small macromolecules of the
cytoplasm: the capsid lattice is an open structure, with
inter-ring spacings of up to 10 nm [6], which allow
small macromolecules, such as nucleotide triphosphates
and indeed reverse transcriptase inhibitors, to access the
reverse transcription complex in the cytoplasm of
infected cells. While the first model proposes that
uncoating (at the plasma membrane) is required to trig-
ger viral reverse transcription, this third model suggests
that it is the successful completion of reverse transcrip-
tion (at the nuclear pore) that triggers uncoating.
Recent evidence suggests that the integrity and timely

disassembly of the HIV-1 capsid are essential for routing
to the nuclear compartment, reverse transcription and
successful nuclear import [14,29,46-48]. For this reason,
there is an increasing appeal to determine up to which
point the viral capsid is required for infection and at
which point in space and time it is disassembled.

Uncoating accompanies the conversion of RTCs
into pre-integration complexes (PICs)
In early replication, incoming HIV-1 is referred to either
as an RTC or as a PIC. The literature is divided as to
the nature and location in the cell of HIV-1 RTCs and
PICs, and most importantly as to the presence or lack
of capsid in these complexes. RTCs are simply defined
as HIV-1 complexes that undergo reverse transcription,
during which they convert their single-stranded positive
RNA viral genome into double-stranded DNA [49,50]
(Figure 2). The RTC genomes are thus either RNA or
RNA-DNA intermediates of reverse transcription. In
contrast, PICs no longer contain any RNA but only the
double-stranded DNA. PICs are per definition integra-
tion-competent HIV-1 complexes and can integrate effi-
ciently into a target DNA in vitro [51,52]. They are
formed in the cytoplasm upon synthesis of full-length
viral DNA and then translocate into the nucleus where
they form the integrated provirus.
It is assumed that reverse transcription is triggered by

the exposure of the viral complex to non-limiting deox-
yribonucleotides in the cytoplasm [44]. Reverse tran-
scription involves firstly the formation of the minus
strand strong-stop DNA, a strand transfer event, and
the synthesis of the minus strand DNA with concomi-
tant degradation of the RNA template. In the HIV-1
genome, two polypurine tracts (PPT), the central PPT
(cPPT) and 3’ PPT, resist degradation by RNase H and
serve as primers for synthesis of plus-strand DNA
[49,53,54]. Reverse transcription proceeds with synthesis
of plus-strand DNA, involves a second strand transfer
event, and terminates at a central termination sequence
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(CTS) in the centre of the genome. The initiation of
plus-strand synthesis at the cPPT, as well as the 3’ PPT
common to all retroviruses, leads to a discrete plus-
strand displacement of ca 100 nucleotides in the centre
of the genome (Figure 2). The final product of HIV-1
reverse transcription is therefore a linear double-
stranded DNA with a central DNA Flap [54]. The dura-
tion of reverse transcription varies according to the

metabolic state of the cell and in the case of asynchro-
nous infection. Full-length linear DNA may be detected
as early as 4 h post-infection but reaches its peak at
8-12 h post-infection [22,55,56]. Upon DNA Flap forma-
tion and completion of reverse transcription, the viral
complex becomes a PIC, competent for import into the
nucleus and integration within the host cell chromatin.
In the PIC, the ~ 9.7 kb HIV-1 genome, which would

per definition measure up to 3.3 μm, is compacted into
a 56 nm diameter object [31], possibly by viral and/or
cellular proteins that additionally could render it karyo-
philic for passage through the nuclear pore. Although
the complete identification of PIC components remains
elusive due to the difficulty to isolate PICs from infected
cells, many viral and cellular factors have been identified
as PIC components [34]. PICs are devoid of detectable
CA proteins [30,31] and contain IN [30]. The presence
of other viral proteins such as NC, matrix (MA), RT
and Vpr is a source of debate [28-31,37]. Several cellular
factors have also been shown to associate with HIV-1
PICs, such as the high mobility group protein HMG I
(Y) [31] and LEDGF/p75 [57]. Although interaction of
these cellular factors with HIV-1 PICs may occur in the
cytoplasm, their role in HIV-1 infection becomes appar-
ent in the nucleus where they may assist tethering of
the PIC to the chromatin, determine integration site
selection and assist integration [31,58,59].
Clearly, the transition between RTC and PIC is asso-

ciated with uncoating, however the fragile nature of the
HIV-1 capsid and the complexity of the early phases of
HIV-1 infection have made it particularly difficult to
pinpoint when this occurs.

Experimental hurdles to studying the fate of
HIV-1 capsids in newly infected cells
The most straightforward way to study uncoating in
infected cells is to isolate RTCs at given time points
post-infection using sedimentation velocity gradients
and to probe for co-sedimentation of CA with the viral
genome; or conversely to immunoprecipitate cellular
extracts with anti-CA antibodies and probe for viral
genome by PCR. Using these approaches, CA was not
found to be substantially associated with the viral gen-
ome within the cytoplasm of infected cells, thus lead-
ing to the conclusion that the viral capsid is discarded
from RTCs rapidly after cell entry [28,29,37-39]. How-
ever, the HIV-1 capsid is inherently unstable and
disassembles readily in the presence of non-ionic
detergents and upon ultracentrifugation [2,60]. More-
over the size, shape and components of isolated RTCs
are highly dependent on the conditions used for
isolation, particularly on the detergent and salt concen-
trations [44]. Therefore, it cannot be excluded that
the complexes analysed by biochemical isolation

Figure 2 Schematic representation of reverse transcription in
lentiviruses and other orthoretroviruses (such as MLV). The
conversion of the single-strand RNA genome (represented as a
black line) into double stranded DNA genome (at the bottom of
the diagram) is the hallmark of retroviruses. Reverse transcription is
initiated by the synthesis of minus-strand DNA (in green) at the PBS
site (Primer Binding Site) at the 5’ end of the RNA genome. The
minus-strand strong-stop DNA thus synthesised is then transferred
to the 3’ end of the genome through complementarity with the R
(Repeated) region of the LTR region (Long-Terminal Region) thus
allowing synthesis of the minus-strand DNA to be completed. Minus
strand DNA synthesis is accompanied by progressive degradation of
the RNA matrix by the RNase H activity of reverse transcriptase. Two
RNA sequences resist RNase degradation because they contain a
unique PPT sequence and these serve as initiation sites for the plus-
strand DNA. In all retroviruses, plus-strand DNA synthesis (in red) is
initiated at the 3’PPT. In the case of lentiviruses, initiation also takes
place at the cPPT. After a second strand transfer, plus-strand DNA
synthesis proceeds to generate double-stranded DNA. In the case of
lentiviruses, plus-strand initiation in two distinct sites leads to a
displacement of the downstream strand over ca 100 nucleotides,
terminating at the CTS and thus generating a discrete strand
displacement called the central DNA Flap.
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approaches have in fact lost their capsid during the
isolation procedure.
A further difficulty comes from the fact that most

incoming viral complexes are more likely to be destined
for degradation than on a productive pathway for infec-
tion since over 85% of viruses that have entered the cell
do not form proviruses [61]. This is the case of viral
particles that have entered by endocytosis [62] and of
functional RTCs that are lost in the routing process
towards the nucleus [42]. As a result, the majority of
cytoplasmic RTCs isolated early after infection likely
represent complexes that were damaged or engaged in a
pathway of degradation at the time of isolation or
observation.
In order to circumvent the need to isolate RTCs from

infected cells, some groups have attempted to visualise
HIV-1 capsids by in situ ultrastructural electron micro-
scopy in infected cells. Generally speaking however, it is
difficult to follow the fate of viral complexes inside the
cytoplasm using morphological criteria in sections of
electron microscopy (EM) [63]. Indeed, a single viral
capsid would be almost impossible to distinguish from
other cytoplasmic components unless it was fortuitously
cut right along the length of the capsid, thus displaying
its unusual conical morphology. Any other cut will lead
to heterogeneous circular and ovoid structures. Further-
more, the visualisation of intracellular capsids within a
60 nm thick EM slice, which represents less than 1:50th

of the cell thickness, is per definition a rare event. Using
this ultrastructural approach with TEM, few [47] or no
[40] intact virus cores were observed in the cytoplasm
of infected cells.
The intrinsic difficulty of studying HIV-1 uncoating has

driven the development of alternative approaches. Using
in situ immunohistochemical approaches, HIV-1 CA is
readily detected throughout the cytoplasm of infected
cells and co-localises with the viral genome [42,47].
Nevertheless, in order to demonstrate that this CA signal
corresponds to capsid cores rather than soluble CA,
immunolabelling of CA or detection of the viral genome
must be combined with ultrastructural observations. This
is especially difficult to achieve using TEM since prepara-
tions generally favour either ultrastructural observations
or immunolabelling. One approach to overcome this
involves detection of the viral DNA using in situ hybridi-
sation with electron microscopy [64] without the usual
protease treatment in order to preserve proteinaceous
structures as much as possible. Using this approach, cap-
sid shells could be detected around the viral genome but
with weak intensity [47]. An alternative approach
involves observing intracellular complexes, in situ via a
scanning EM (SEM), in cells stripped of their plasma
membrane [47,65]. This ultrastructural approach may be
readily combined with immunolabelling and may enable

the observation of intracellular HIV-1 capsids, identified
by specific anti-CA labelling and a morphology similar to
intact viral cores [47] (Figure 1).
To study uncoating in a quantitative manner, particu-

late (intact) capsids may be separated from soluble
(monomeric) CA by ultracentrifugation of virions
through a sucrose cushion overlaid with a low concen-
tration of detergent [66]. This cell-free assay enabled to
analyse the effects of mutations on capsid stability
[14,67,68] and of reverse transcription on capsid integ-
rity [47]. A variation of this assay enables the study of
capsid uncoating in infected cells by carefully designed
ultracentrifugation of cell lysates through a sucrose
cushion, which separates cytosolic cores from soluble
CA [69]. This fate-of-capsid assay has been used for
example to establish a correlation between retroviral
restriction and accelerated uncoating [69,70], to study
capsid stability in infected cells [71], and quantify retro-
viral restriction potency and kinetics [72,73].
Given the complexity and fragile nature of the HIV-1

capsids, there is still a need for sensitive, specific and
reliable assays for uncoating. No assay may be relied
upon solely when interpreting uncoating events.

Timely uncoating is key for HIV-1 reverse
transcription, nuclear import and infectivity
Lessons from retroviral restriction: premature uncoating
leads to abortive infection
The tripartite motif 5-alpha (TRIM5a) protein is a
dominant factor of intrinsic immunity that mediates cel-
lular restriction against retroviral infections in a species-
specific manner [74,75] and was originally discovered
as a determinant of the resistance of monkey cells to
HIV-1 infection [76]. Although the exact mechanisms
that lead to virus inactivation by TRIM5a proteins
remain unclear [77], it is known that TRIM5a targets
intact retroviral capsids early in viral replication prior to
reverse transcription, by interacting directly with these
through its B30.2 (SPRY) C-terminal domain [69,78,79].
Interestingly, Fv1 restriction of MLV in mouse cells,
although known to involve different mechanisms than
TRIM5a, also targets capsid cores [80,81]. Retroviral
restriction mechanisms are thought to have evolved in
many species including primates as a result of evolution-
ary pressure exerted by continual exposure to retro-
viruses [77]. The startling evolutionary conservation of
recognition of capsid cores as restriction mechanism
suggests that their structure, composition and stability
are key to retroviral infections.
In the case of restriction of HIV-1 in rhesus macaque

cells, it was originally supposed that TRIM5a binding
might inhibit the uncoating of the viral capsid [82,83],
thought to be required for reverse transcription to initi-
ate in the cytoplasm of newly infected cells. However,
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more recent work indicates that TRIM5a, quite on the
contrary, promotes the rapid and premature disassembly
of viral capsids thus abrogating productive reverse tran-
scription [69,70,84] (Figure 3). These findings indicated
for the first time that premature uncoating of HIV-1, far
from being beneficial for initiation of reverse transcrip-
tion and infection, is in fact detrimental to both and is
the molecular cornerstone for potent species-specific
retroviral restrictions. This suggests that the stability
and integrity of HIV-1 capsids during the early steps of
infection is key to effective replication. In support of
this are findings that capsid mutants with either reduced
or increased stability compromise almost systematically
HIV-1 infection [14] (Figure 3), indicating that both too
rapid and too slow uncoating are detrimental for HIV-1
infection.

Lessons from reverse transcription: unsuccessful reverse
transcription precludes uncoating
One hypothesis proposes that uncoating might occur in
response to changes in viral nucleic acid nature and
structure, rather than in changes in cellular environ-
ment. If this were the case, then inhibiting reverse tran-
scription would be expected to arrest uncoating at a
very defined and reproducible step. Strikingly, blocking
reverse transcription by a reverse transcriptase inhibitor
(Nevirapine) resulted in the accumulation of conical
capsid cores in proximity to and at the nuclear mem-
brane and nuclear pores at late time points post-

infection [47]. These were formally identified as HIV-1
capsids based on specific anti-CA labelling and morpho-
logical criteria, and were shown to contain the viral gen-
ome using EM in situ hybridisation. An accumulation of
intact capsids at the nuclear membrane was also
observed in the case of inhibition of DNA Flap forma-
tion, the last chronological event of reverse transcription
[47] (Figure 1). Therefore, although incoming HIV-1
capsids may undergo stepwise destabilisation during cell
entry and cytoplasmic transport, these data suggest that
HIV-1 uncoating is not progressive but occurs upon
completion of reverse transcription. They also suggest
that progression through reverse transcription and
uncoating is independent of transport towards the
nucleus.

Lessons from nuclear import: timely uncoating underlies
the ability of HIV-1 to infect non-dividing cells
The search for the determinants of nuclear import
that allow HIV-1 and other lentiviruses to infect non-
dividing cells is an active and controversial field of
investigation [85]. Based on the search of nuclear locali-
zation sequences, a number of HIV-1 proteins have
been proposed to contribute in a redundant manner to
the karyophilic properties of the HIV-1 PIC but the
actual participation of these proteins in HIV-1 genome
nuclear import has been a matter of strong debate [85].
The integrase protein, which is tightly associated with
PICs until the integration of the viral DNA into the host
chromosomes, is karyophilic and may participate in
HIV-1 nuclear import. The cis-acting sequences cPPT
and CTS, which form the central DNA Flap during
reverse transcription, have also been identified as deter-
minants of HIV-1 genome nuclear import [22] and are
as a result systematically inserted within lentiviral vec-
tors to enhance gene transfer efficiencies.
Intriguingly, recent work based on capsid mutants or

chimeras has introduced the existence of a functional
link between the HIV-1 CA and nuclear import
[46,48,86], underlying the importance of timely uncoat-
ing for nuclear import. Furthermore, the requirement of
HIV-1 nuclear import for transportin-SR2 [87] [88], also
called TNPO3, has been mapped to the HIV-1 CA [89].
Although an interaction between HIV-1 capsid and
TNPO3 remains to be demonstrated, a CA point muta-
tion renders HIV-1 insensitive to TNPO3 knockdown
[90]. Uncoating is necessary for passage through the
nuclear pore, and HIV-1 complexes that fail to uncoat
will accumulate at the cytoplasmic face of the nuclear
membrane [47]. However, these data further suggest
that HIV-1 CA may also be essential to mediate interac-
tion with the nuclear pore, with transport proteins such
as transportin-SR2, or with nucleoporins prior to
uncoating.

Figure 3 Schematic representation of the fates of viral capsids
in the cytoplasm of newly infected cells. After entry into the
cytoplasm, HIV-1 capsids that are on a path of productive infection
remain intact and are transported towards the nucleus along the
cytoskeleton. They uncoat at the nuclear membrane upon
completion of reverse transcription. Premature uncoating, in the
case of TRIM5a restriction or of unstable capsid mutants, leads to
abortive infection. Similarly, compromised uncoating, in the case of
incomplete reverse transcription or of hyperstable capsid mutants,
also leads to a dead-end infection event.
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Conclusion: rethinking HIV-1 uncoating
Previous work led us to suppose that the HIV-1 capsid
core, although all-essential for initial delivery into the
cytoplasm, is then discarded immediately post-fusion to
stimulate reverse transcription. Others propose that
uncoating probably occurs gradually, possibly in
response to multiple cellular cues such as interaction
with cellular proteins or subcellular localisation, or viral
cues such as the progress of reverse transcription.
Although incoming capsids may undergo progressive
destabilisation during their transport towards the
nucleus, since hyperstable capsid mutants have impaired
reverse transcription [14], recent independent experi-
ments suggest that the position and timing of uncoating
may in fact be tightly regulated and have a trigger.
Uncoating must be neither too early nor too late in
order to ensure productive infection (Figure 3).
Although the intricacies of HIV-1 uncoating - its tim-

ing, location and mechanism - are by no means
resolved, recent work enables us to etch a possible
model for the early steps of HIV-1 infection. Entry of
HIV-1 into target cells delivers the intact capsid core
into the cytoplasm and exposure of the viral nucleopro-
tein complex to non-limiting deoxyribonucleotides trig-
gers reverse transcription. This likely occurs within the
intact capsid core, which is essential for maintaining a
high concentration of enzyme around the nucleic acid
while being entirely permeable to the necessary deoxyri-
bonucleotides. During reverse transcription, HIV-1
RTCs move rapidly toward the nuclear compartment,
using microtubules then actin filaments to reach the
nuclear pore [42,47]. Since transport to the nuclear pore
(within minutes to 1-2 hours) is more rapid than reverse
transcription (8-12 hours), it is likely that most viral
DNA synthesis occurs within capsid cores docked at the
nuclear pore. This implies that subcellular fractionation
experiments that do not distinguish between nuclear
membrane and nucleoplasm are in fact incapable of dis-
tinguishing nuclear from cytoplasmic HIV-1 complexes.
Indeed, HIV-1 complexes docked at the nuclear mem-
brane will appear in the nuclear fraction even though
they are in fact in the cytoplasm. The presence of intact
HIV-1 capsids at the nuclear membrane further implies
that the most likely viral structure that interacts with
the host cell during transport towards the nucleus is the
capsid core. Using a yeast-two-hybrid screen and inter-
action assays with capsid cores, we identified several
components of the microtubule and actin network as
interaction partners for HIV-1 capsid and essential co-
factors of HIV-1 infection (A. Becker, S. Munier, N.
Arhel, unpublished data). Therefore, as well as being
essential for reverse transcription, the capsid shell may

also be key to bringing viral complexes to their site of
replication.
One hypothesis brought forward is that the comple-

tion of reverse transcription and the formation of the
central DNA Flap trigger or facilitate uncoating [47]. If
this is the case, then the trigger for uncoating is not a
cellular cue, as is the case for adenoviruses [91] or
herpes simplex virus type 1 [92], but a viral signal. Con-
cordant with this, uncoating can occur in vitro upon
synthesis of full-length viral DNA by endogenous
reverse transcription, suggesting that any cellular factors
required for uncoating are present within HIV-1 virions
[47]. Apart from the DNA Flap, other viral and cellular
factors have been proposed to participate in uncoating,
including IN [93], prolyl isomerases Pin1 [94] and
Cyclophilin A [72], and cellular factors present in non-
resting cells [95].
A further hypothesis is that uncoating occurs at the

nuclear pore [47] and allows PICs to be imported into
the nucleus. Consistent with this is the fact that CA
may constitute a determinant of HIV-1 PIC nuclear
import [46,48,86,89]. Premature uncoating, as in the
case of TRIM5a restriction or unstable capsid mutants,
leads to abortive infection. Similarly, complexes that fail
to uncoat, such as hyperstable capsid mutants or in the
case of inhibited reverse transcription, cannot be
imported into the nucleus.
Much of previous work was interpreted in light of the

assumption that HIV-1 uncoating occurred immediately
post-fusion and the association of CA with intracellular
HIV-1 was understood to be detrimental for HIV-1
infection. If we accept the premise that HIV-1 capsids
uncoat at the nuclear pore upon completion of reverse
transcription, our interpretation of data must be
reversed: the loss of capsid cores after entry then corre-
sponds to early degradation products of abortive com-
plexes and the maintaining of intact capsids to
complexes on the path of productive infection.

Perspectives
The molecular mechanisms underlying the destabilisa-
tion and uncoating of HIV-1 in the cytoplasm of
infected cells remain to be elucidated. Both cytoplasmic
environment and major rearrangements of the RTC at
the end of reverse transcription could contribute to the
disassembly of capsids prior to nuclear import. Further-
more, the importance of timely uncoating for HIV-1
infection and the fact that the capsid is the target of
evolutionary conserved anti-retroviral restriction
mechanisms emphasise the interest to develop a new
class of anti-retroviral drugs that either accelerate or
entirely inhibit uncoating.
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