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Abstract

Latently infected, resting memory CD4* T cells and macrophages represent a major obstacle to the
eradication of HIV-I. For this purpose, "shock and kill" strategies have been proposed (activation of HIV-
| followed by stimuli leading to cell death). Histone deacetylase inhibitors (HDACIs) induce HIV-I
activation from quiescence, yet class/isoform-selective HDACIs are needed to specifically target HIV-1
latency. We tested 32 small molecule HDACIs for their ability to induce HIV-1 activation in the ACH-2
and Ul cell line models. In general, potent activators of HIV-| replication were found among non-class
selective and class I-selective HDACIs. However, class | selectivity did not reduce the toxicity of most of
the molecules for uninfected cells, which is a major concern for possible HDACI-based therapies. To
overcome this problem, complementary strategies using lower HDACI concentrations have been
explored. We added to class | HDACIs the glutathione-synthesis inhibitor buthionine sulfoximine (BSO),
in an attempt to create an intracellular environment that would facilitate HIV-1 activation. The basis for
this strategy was that HIV-| replication decreases the intracellular levels of reduced glutathione, creating
a pro-oxidant environment which in turn stimulates HIV-1 transcription. We found that BSO increased
the ability of class | HDACIs to activate HIV-1. This interaction allowed the use of both types of drugs at
concentrations that were non-toxic for uninfected cells, whereas the infected cell cultures succumbed
more readily to the drug combination. These effects were associated with BSO-induced recruitment of
HDACI-insensitive cells into the responding cell population, as shown in Jurkat cell models for HIV-I
quiescence. The results of the present study may contribute to the future design of class | HDACIs for
treating HIV-1. Moreover, the combined effects of class I-selective HDACIs and the glutathione synthesis
inhibitor BSO suggest the existence of an Achilles' heel that could be manipulated in order to facilitate the
"kill" phase of experimental HIV-1 eradication strategies.
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Findings

Given the inability of antiretroviral therapy (ART) to erad-
icate HIV-1 from the body (even after decade-long periods
of therapy), and the absence of effective vaccines on the
horizon, novel approaches to HIV-1 eradication are
needed. To this end, the so-called "shock and kill" strate-
gies have been proposed [1]. These strategies consist of
inducing, through drugs, HIV-1 activation from quies-
cence (i.e. the "shock" phase), in the presence of ART (to
block viral spread), followed by the elimination of
infected cells (i.e. the "kill" phase), through either natural
means (e.g. immune response, viral cytopathogenicity) or
artificial means (e.g. drugs, monoclonal antibodies, etc.)
[1]. For the "shock" phase, histone deacetylase inhibitors
(HDACISs) have been proposed [2]. Histone deacetylases
(HDACGs) contribute to nucleosomal integrity by main-
taining histones in a form that has high affinity for DNA
[3]. Physiologically, this activity is counteracted by his-
tone acetyl transferases (HATs) which are recruited to
gene promoters by specific transcription factor-activating
stimuli [3].

Several of the currently available HDACIs activate HIV-1
from quiescence in vitro [4,5]. However, this activity is
associated with a certain degree of toxicity [6], given that
these inhibitors are not class-specific and compromise a
large number of cellular pathways [7,8]. Class I HDACs
comprise HDAC1-3 and 8; they are predominantly
nuclear enzymes and are ubiquitously expressed [9]. Class
II HDAGCs include HDAC4-7, 9 and 10 and shuttle
between the nucleus and the cytoplasm [10,11]. HDACs
are recruited to the HIV-1 promoter by several transcrip-
tion factors, including NF-xB (p50/p50 homodimers),
AP-4, Sp1, YY1 and c-Myc [12-14]. Identification of class/
isoform-selective HDACIs with increased potency and
lower toxicity [3] and drugs able to potentiate their effects
is believed to be important for HIV-1 eradication.

To identify novel HDACIs capable of activating HIV-1, we
first tested the HIV-1 activating ability of our institutional
library of HDACIs [see Additional file 1] in cell lines in
which HIV-1 is inducible (i.e. T-lymphoid ACH-2 cells
and monocytic U1 cells). The potency of these molecules
to activate HIV-1 was assessed in terms of p24 production,
as measured by ELISA (Perkin-Elmers, Boston, MA), fol-
lowing incubation with a drug concentration of 1 uM
(generally used as a threshold for selection of lead com-
pounds). As a positive control, we used TNF-a (5 ng/ml),
a cytokine that activates HIV-1 transcription through NF-
kB (p65/p50) induction [1]. As a reference standard for
the comparison of results, we used suberoylamide
hydroxamic acid (SAHA; also referred to as "vorinostat"),
a non-specific inhibitor of both classes of HDACs when
used in the upper-nanomolar/micromolar range of con-
centrations [15].
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The results revealed a number of compounds capable of
activating HIV-1; and, for the most potent compounds,
there was good agreement between the results in the ACH-
2 and U1 cells (Figure 1). Only non-class selective and
class I-selective HDACIs were significantly active (Figure
1), and potent class I-selective HDACIs enhanced HIV-1
replication in the nanomolar range in a dose-dependent
manner (Figure 2). In general, class I selectivity was insuf-
ficient for eliminating toxicity, although some of the com-
pounds (e.g MC2211) induced adequate HIV-1
activation and low-level toxicity (Figure 1, 2). Of note, the
class I-selective HDACIs that activated HIV-1 included
MS-275, an HDACI1-3-selective inhibitor currently being
tested in phase II clinical trials as an anticancer drug [15].

A previous study showed a trend towards higher toxicity
of the HDACI trichostatin in ACH-2 cells than in their
uninfected counterparts and linked this phenomenon to
the cytotoxicity of activated HIV-1 replication in lym-
phoid cells [16]. In our experiments, three different class I
HDACISs (i.e. MS-275, MC2113 and MC2211) displayed
lower CCs,in ACH-2 cells (Figure 2D) than in uninfected
CDA4+T cells (data from Jurkat cells are shown as an exam-
ple in Figure 2E), yet the extent of the difference did not
support the possibility of a "therapeutic window". The
same compounds displayed non-significant toxicity in U1
cells at concentrations up to 1 uM (Figure 2F).

In these experiments, an incubation period of 72 hours
was preferred to shorter periods, because of the intrinsi-
cally slow mode of action of epigenetic modulators,
which only indirectly induce HIV-1 activation. This was
confirmed by our experiments using Jurkat cell clones
with an integrated green fluorescence protein (GFP)-
encoding gene under control of the HIV-1 LTR [17]. In
these Jurkat cell clones, GFP induction by HDACIs was
evident only in a fraction of cells at 24 hours of incubation
and increased over time [see Additional file 2].

To focus on the structural requirements for the most
potent class I-selective HDACIs, we then performed a
structure/activity relationship (SAR) study. SAR studies
relate the effect or the potency of bioactive chemical com-
pounds with their chemical structure and help to under-
stand the structural requirements for obtaining a desired
effect. HDACIs are structured according to a general phar-
macophore model (i.e. "a molecular framework that car-
ries the essential features responsible for a drug's
biological activity" [18]) (Figure 3A). This pharmacoph-
ore model comprises a cap group (CAP), a polar connec-
tion unit (CU), and a hydrophobic spacer (HS), which
carries at its end a Zn2+binding group (ZBG), able to com-
plex the Zn2+ at the bottom of the cavity [19]. The ZBG
consists of a hydroxamate, a sulthydryl, or a benzamide
moiety (Figure 3A shows a benzamide inhibitor com-
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Potencies of different HDACISs in terms of activation of HIV-1 replication in Ul and ACH-2 cells, and toxicity
in uninfected Jurkat T-cells. Panel A: Cells were incubated with the test compounds (I uM), and p24 production was meas-
ured by ELISA in cell culture supernatants at 72 hours post-infection (means + SEM; 3 experiments). Asterisks show the signif-
icant differences in comparison to untreated control cultures according to repeated-measures ANOVA using Dunnet's
multiple comparison post-test (a Log transformation of p24 values was applied to restore normality). Panel B: Uninfected Jurkat
T cells were incubated for 72 h under similar conditions, and toxicity was measured by the methyl tetrazolium (MTT) method.
Results are presented as a percentage of the O.D. (A = 550) of untreated controls subtracted of background (means + SEM; 3
experiments). Asterisks show the significant differences in comparison to untreated control cultures according to repeated-
measures ANOVA using Dunnet's multiple comparison post-test.

plexed with HDAC2). A general scaffold describing the
characteristics of the most potent HDACIs from our
library is presented in Figure 3B, C. The differences in the
general structural requirements for the two main chemical
types of HDACIs in our library (hydroxamates and benza-
mides) can probably be attributed to the hydrophobicity/
hydrophilicity balance (the more hydrophobic benza-
mides require less hydrophobic CAP groups than hydrox-
amates do). The molecular docking simulations,
conducted as previously described [20,21], highlighted
particular requirements for the CU (Figure 3D). These

requirements consisted of a uracil group or an amide
group in a cis-conformation, which presented the nitro-
gen-bond hydrogen and the carbonylic oxygen on the
same side of the molecule (usually amide groups are in a
trans-conformation, with the nitrogen-bond hydrogen
and the carbonylic oxygen oriented in opposite direc-
tions) (Figure 3D). SAHA, consistent with its non-specific
inhibitory activity on HDACs [15], did not match the
characteristics of our pharmacophore model [see Addi-
tional file 3].
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Figure 2 (see previous page)

Dose-dependent activation of HIV-1 replication by class I-selective HDACIs and corresponding toxicity in Ul
and ACH-2 cells. Panels A, B: Concentration-dependent stimulation of HIV-1 p24 production in the latently infected cell lines
Ul (A) and ACH-2 (B) at 72 hours of incubation with MS-275, MC2211, MC21 13 (class I-selective HDACIs) and SAHA (a non-
class-selective HDACI used as a positive control). Mean values are from three independent experiments (error bars are not
shown for better clarity). Dotted lines represent the average p24 levels found in untreated controls in the same experiments.
Panel C. Effective concentrations for increasing viral replication to 500% of the basal levels of untreated controls (ECs,). Panel
D: Cell viability of ACH-2 cells, as measured by the methyl tetrazolium (MTT) method. Results are presented as a percentage
of the O.D. (A = 550) of untreated controls subtracted for background (means + SEM; 3 experiments). Panel E: Cell viability of
uninfected Jurkat T cells incubated for 72 hours with the same drugs is shown as comparison. Panel F. 50% cytotoxic concen-

trations (CCy). For the symbols in panels D, E, the reader should refer to those of panels A, B.

Given that class I selectivity, in general, did not markedly
decrease the toxicity of HDACIs, we have begun studies on
complementary strategies that might increase the efficacy
of class I HDACIs at non-toxic concentrations. It is well
known that HIV-1 induces a pro-oxidant status which in
turn enhances the levels of HIV-1 transcription [22-25].
There are probably many mechanisms behind HIV-1-
induced oxidative stress, and the signals that it sparks are
still far from being fully understood [26]. In general, oxi-
dative stress tilts the balance of HAT/HDAC activity
towards increased HAT activity and DNA unwinding, thus
facilitating the binding of several transcription factors
[27]. The HIV-1-induced pro-oxidant status is in part
mediated by decreased intracellular levels of reduced glu-
tathione [26,28]. The depletion of reduced glutathione
has been linked to activation of viral replication [29],
whereas the administration of this cofactor results in
antiretroviral effects [26]. We hypothesized that glutath-
ione depletion might create an intracellular environment
that facilitates HIV-1 activation by HDACIs. To test this
hypothesis, we evaluated the HIV-1 activating effects of
buthionine sulfoximine (BSO), which depletes glutath-
ione by inhibiting y-glutamyl cysteine synthetase (a limit-
ing step in glutathione synthesis) [27,30].

BSO, at concentrations of up to 500 pM, did not signifi-
cantly raise the p24 concentrations; yet it increased the
HIV-1 promoting effects of class I HDACIs, such as MS-
275 (Figure 4A) and MC2113 (data not shown) in ACH-2
cells (Figure 4A) and U1 cells (data not shown). Accord-
ing to the literature, the concentrations of MS-275 and
BSO adopted here are clinically achievable [31,32]. The
results shown in Figure 4A are based on a 24 hour incuba-
tion time, given the marked cytotoxicity shown by the
drug combination in the ACH-2 cells at 72 hours of incu-
bation (Figure 4B). Since HIV-1 replicating cell cultures
display decreased levels of reduced glutathione [29], their
poor tolerance to an inhibitor of glutathione synthesis is
not surprising. This concept is supported by experiments
in uninfected Jurkat cells and Jurkat cell clones (6.3 and
8.4), which contain a quiescent HIV-1 genome (with the

GFP gene) under control of the LTR [17]. We found that
the 6.3 cell clone succumbed more readily to the MS-275/
BSO combination than its uninfected counterpart (Figure
4C, D). Similar results were obtained with the 8.4 clone
(data not shown).

The Jurkat model for HIV-1 quiescence showed that BSO
recruited HDACI-insensitive cells into the responding cell
population (Figure 5). These results are derived from the
A1 Jurkat cell clone, which has an integrated GFP/Tat con-
struct under control of the HIV-1 LTR, which is quiescent
in the majority of cells [17]. This clone was chosen
because this type of analysis could not be conducted in
the 6.3 or 8.4 clones, since, at 24 hours of incubation with
the drugs, these clones displayed only a small proportion
of cells expressing GFP, and a correct estimate of the
expression of this protein at subsequent time points was
biased by the autofluorescence of dying cells. The Al
clone, which does not have a complete HIV-1 genome,
was less sensitive to the toxic effects of the MS-275/BSO
combination than the 6.3 and 8.4 clones (data not
shown).

To sum up, the combination of a class I-selective HDACI
and BSO activates HIV-1 at concentrations that show low
toxicity in uninfected cells, and it induces cell death in
infected cell cultures. These results are consistent with a
model in which BSO would favor the HIV-1 activating
effects of HDACIs by lowering the intracellular levels of
reduced glutathione [30] and would induce the death of
infected cells by preventing replenishment of the reduced
glutathione pools that are further "consumed" by the
virus activated from quiescence [28,29]. If these results are
confirmed, the decreased pool of reduced glutathione
may become an Achilles' heel of the infected cells, and its
manipulation may open new avenues to their elimina-
tion.

This strategy will of course require optimization, and sev-
eral issues still have to be addressed. First, not all of the
cells with a quiescent provirus respond to the treatment. A
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R: direct bond or an ethylene or ethenylene group, X
=CH- or=N-,

R1: aryl or heteroaryl {(mono- or bi-cyclic)

R2: straight or branched chain alkyl, optionally
substituted by a mono- or hi-cyclic aryl or heteroaryl
group. Preferahly, R2 is unsubstituted alkyl,
preferably methyl, ethyl, or isopropyl. R1 is preferably
phenyl or naphthyl. R is preferably

ethenylene. Xis preferably =CH-.

D

Figure 3

Y: ane or twa si-membered rings, each heing
unsaturated or partially unsaturated and
heterocyclic ar homocyelic, with two to eight
linking atoms, and wherein either the linking
atoms or a ring comprises a NH and a carbanyl
group.

Structural characteristics of HIV-1 activating HDACIs. Panel A: Docking of the HDACI MC221 1| at the catalytic cavity
of HDAC2, a class | enzyme. The different portions of the inhibitor [i.e. the CAP portion (CAP), the connection unit (CU), the
hydrophobic spacer (HS), and the zinc-binding group (ZBG)] are mapped to the molecule represented in the picture. The
enzyme is shown as semi-transparent Connolly surface. The Zn**ion embedded in the catalytic cavity is shown as a dotted
sphere. The inhibitor is shown according to CPK colouring. Panels B, C: General formulas for HDACIs capable of inducing
HIV-1 activation from quiescence. Panel D: Structural superimposition of the best docking poses for the HDACIs MC21 13 and
MC2211 within the catalytic cavity of HDAC2. Inhibitors are shown in CPK (MC2113: carbon backbone in white; MC221 I:
carbon backbone in cyan). The enzyme backbone is shown as cartoons. The Zn**ion is shown as a gray sphere. Amino acids
D100, HI141 and G150 (important for hydrogen bonding with the inhibitors) are shown as orange sticks.
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Effects on HIV-I replication and cell viability of class I-selective HDACIs, MS-275 and buthionine sulfoximine
(BSO), alone or in combination. Panel A: HIV-1 p24 concentrations in ACH-2 cell culture supernatants at 24 hours of incu-
bation with the drugs. Panels B-D: Cell viability values at 72 hours of incubation, as determined by the methyl tetrazolium
(MTT) method: ACH-2 cells (B), Jurkat 6.3 cells (C), uninfected Jurkat cells (D). Results are presented as percentages of the
absorbance (A = 550) in untreated controls subtracted for background (means + SEM; 3 experiments). Asterisks show the sig-
nificant differences found between BSO treatments and matched treatments in the absence of BSO (* P < 0.05; ** P < 0.01; ***
P < 0.001). Statistical significance was calculated using repeated-measures, two-way ANOVA and Bonferroni's post-test, fol-
lowing an appropriate transformation to restore normality, where necessary. The higher drug concentrations adopted in Pan-

els C, D serve as comparisons with the experiment in Figure 5.

variegated phenotype after activation, with only a fraction
of the cell population becoming activated in response to a
global signal, was also shown by Jordan et al. [17], who
attributed this phenomenon to the different local chro-
matin environments. A thorough investigation of the
molecular signals sparked by the BSO/class I-selective
HDACI combination (currently in progress in our labora-
tories) is expected to provide insight into these phenom-
ena. Moreover, the "therapeutic window" (i.e. the
differential toxicity in uninfected vs. infected cells) still
needs to be widened. In this regard, the general structural
requirements for the HIV-1 activating HDACIs presented

in our study, as well as the recent identification of HDAC2
as a potential target for HIV-1 reactivation strategies [33],
may represent a good starting point for developing next-
generation class I HDACIs with increased selectivity and
decreased toxicity. Finally, we are currently searching for
novel y-glutamyl-cysteine synthetase inhibitors acting in
the nanomolar range and displaying lower toxicity than
BSO in uninfected cells.

The concept to activate provirus transcription to target
latency is not new, and several clinical trials have been
conducted in the past years along this line, ranging from
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Figure 5

Stimulation of HIV-1 LTR-controlled expression of green fluorescent protein (GFP) by MS-275 and buthionine
sulfoximine (BSO), alone or in combination in a Jurkat cell clone (Al). The Al cell clone, derived from T-lymphoid
Jurkat cells, is a model for latent HIV-1 infection. This clone has an integrated GFP/Tat construct under the control of the HIV-

| LTR and displays a basal proportion of cells expressing GFP,

which increase following stimuli activating the HIV-1 promoter.

Al cells were incubated for 72 hours with the different treatments, and GFP expression was monitored by standard flow-cyto-
metric techniques and assessed as the percentage of fluorescent cells (indicated for each histogram) beyond the threshold
value established using control non-transfected Jurkat cells. One experiment out of three with similar results is shown. The his-
tograms derived from double-drug treatments were found to be significantly different (P < 0.01) from those derived from
treatments with a single drug at matched concentrations (Kolmogorov-Smirnoff statistics). Differences between the drug con-
centrations adopted in this experiment and that in Figure 4A are derived from adjustments due to the different nature of the

cell lines adopted.

the administration of IL-2 to the utilization of valproic
acid [34-36]. The results of these trials have been largely
disappointing so far. Valproic acid, a relatively weak
HDACI, was tested in a small clinical trial in combination
with antiretroviral therapy intensified with the fusion
inhibitor enfuvirtide [35,36], but some more recent stud-
ies have failed to show a decay of resting CD4+T cell infec-
tion in individuals under valproic acid treatment for
clinical reasons while also receiving standard ART [37].
Our study provides a potentially more powerful approach
for the "shock" phase of experimental HIV-1 eradicating
strategies and a potential tool for the "kill" phase. Not-

withstanding the aforementioned need for amelioration,
it is interesting to point out that both MS-275 and BSO
have passed class I clinical trials for safety in humans and
are therefore ready for testing in animal models. Such test-
ing would be important at a time when no proof-of-con-
cept exists for the "shock and kill" theory. In this regard,
even a partial response (e.g. a reduction in latently
infected cells) would be a valuable indicator of the valid-
ity of this approach. The possible efficacy of the "shock
and kill" approach is still a matter of debate. For example,
a recent study of Jeeninga et al. suggests that there are dif-
ferent cellular reservoirs for HIV-1 latency and that each
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reservoir may require a specific activation strategy [38].
Viral factors, along with cellular factors, may contribute to
HIV-1 quiescence, and these factors may not be controlled
by strategies using HDACISs.
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Additional file 1

Structures and HDAC inhibiting activity of the cited HDACIs. Where
data on human HDACs are unavailable, data on maize HD1-B (homol-
ogous with human class | HDACs) and HD1-A (homologous with human
class II HDAC:s), or relevant references, are provided.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1742-
4690-6-52-S1.doc]

Additional file 2

To study the HDACI response in a cell population, we used quiescently
infected T-lymphoid Jurkat cell clones. Two types of cell clones were
used: 1) A1, and A2, which have an integrated GFP/Tat construct under
control of the HIV-1 LTR; 2) 6.3, and 8.4, which contain the entire HIV-
1 genome under control of the LTR and have the GFP gene replacing nef.
The 6.3 cells display insignificant basal levels of GFP expression. Cells
were incubated with the different treatments, and GFP expression was
monitored in gated live cells at 12, 24 and 72 hours by standard flow cyto-
metric techniques. Results are presented as fluorescence histograms. Each
histogram reports the percentage of fluorescent cells beyond a threshold
value established using non-infected Jurkat cells.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1742-
4690-6-52-S2.ppt]
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Additional file 3

Structural superimposition of MC2211 (carbon backbone in cyan)
and SAHA (vorinostat; carbon backbone in yellow) docking at the
HDAC2 catalytic site. SAHA, a non-selective HDACI, displays an amide
group in a conformation that does not match that of the class I-selective
HDACIs (Figure 3). The other molecular players are displayed in the

same fashion as in Figure 3.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1742-
4690-6-52-83.png]
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