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Abstract

The rate of HIV-1 gene expression is a key step that determines the kinetics of virus spread and
AIDS progression. Viral entry and gene expression were described to be the key determinants for
cell permissiveness to HIV. Recent reports highlighted the involvement of miRNA in regulating
HIV-I replication post-transcriptionally. In this study we explored the role of cellular factors
required for miRNA-mediated mRNA translational inhibition in regulating HIV-1 gene expression.
Here we show that HIV-1 mRNAs associate and co-localize with components of the RNA Induced
Silencing Complex (RISC), and we characterize some of the proteins required for miRNA-mediated
silencing (miRNA effectors). RCK/p54, GW 182, LSm-I and XRNI negatively regulate HIV-I gene
expression by preventing viral mRNA association with polysomes. Interestingly, knockdown of
RCK/p54 or DGCRS resulted in virus reactivation in PBMCs isolated from HIV infected patients

treated with suppressive HAART.

Background

RNA silencing (RNAi) is a new gene regulatory mecha-
nism conserved from plants to humans. RNAi mediators
are small non-coding RNAs (sncRNAs) that function
through sequence specific mRNA targeting to either
induce their degradation and/or inhibit translation [1,2].
In mammals, RNAi is mediated by different classes of
small non-coding RNAs including piRNAs, microRNAs

and siRNAs [3-5]. MicroRNAs are produced from a pri-
mary transcript (pri-miRNA) which is processed in the
nucleus by the microprocessor complex containing RNase
Drosha and DGCRS. The resulting product or pre-miRNA
is exported to the cytoplasm through the exportin-5 path-
way. Cytoplasmic pre-miRNA is processed by typelll
RNase Dicer to miRNA/miRNA* duplex of 19 to 25 nucle-
otides. miRNA/miRNA* is incorporated into the RNA-
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Induced Silencing Complex (RISC) where miRNA* is
degraded while miRNA serves as a guide for mRNA target-
ing [2]. Key components of miRISC are proteins of the
Argonaute family (Agol to Ago4) that are required for
miRNA-mediated silencing [6,7]. To ensure mRNA trans-
lational inhibition and decay, miRISC, loaded with
miRNA and its mRNA targets, associate with proteins
involved in mRNA processing [2]. A key factor in this
process is the GW182 protein that interacts directly with
Argonautel (Agol) [8], and the human homologs of
GW182 that interact with Ago1-4 [9]. GW182 orches-
trates both mRNA decapping, through the recruitment of
p54/RCK that regulates the activity of the decapping
enzymes DCP1/DCP2 [10], and mRNA deadenylation by
recruiting the CCR4-NOT1 complex [11]. mRNA decap-
ping and deadenylation leads to mRNA decay through the
action of XRN1, a 5'-3' exonuclease [10]. Interestingly,
RNAi effectors, including miRNAs and their target
mRNAs, Ago proteins, GW182, RCK/p54, LSm-1 and DCP
proteins co-localize in cytoplasmic structures called GW-
bodies or P-bodies suggesting that miRNA-mediated
silencing occurs at these sites [11-15]. Emerging evidence
suggests that miRNA-mediated gene regulation serves as a
defence mechanism against both RNA and DNA viruses in
mammals [16-20]. The present study was designed to
explore physical and functional interaction between effec-
tors of miRNA-mediated silencing and HIV-1 replication.

Results and discussion

To investigate whether RNAI effectors regulate HIV-1 rep-
lication, we analyzed virus replication in cells where
expression of RNAi effectors was reduced using specific
siRNA. Hela cells were transfected with siRNA specific to
RCK/p54, GW182, LSm-1 or XRN1. As controls, HelLa
cells were transfected with scrambled siRNA (Scr) or
CDKO specific siRNA and subsequently infected with HIV-
1 (Figure 1a). Knockdown of RCK/p54, GW182, LSm-1
and XRN1 enhanced virus replication by up to 10 fold
(Figure 1b). As we have previously shown, knockdown of
Drosha [21] and DGCRS (Figure 1b), the two subunits of
the microprocessor complex, increased virus production
while knockdown of the CDK9 subunit of the PTEFb com-
plex that is required for viral gene expression, reduced
HIV-1 production (Figure 1b). Interestingly, analysis of
HIV-1 cytoplasmic mRNA distribution on glycerol gradi-
ent showed that knockdown of RCK/p54 shifted HIV-1
mRNA from the non-polysomal fraction to polysomes as
compared to control siRNA transfected cells (Figure 2,
upper panel). As control, we analyzed the distribution of
endogenous mRNA expressed from a gene encoding
Hdm2. Knockdown of RCK/p54 did not affect Hdm2
mRNA distribution (Figure 2, lower panel). These experi-
ments show that GW182, RCK/p54, LSm-1 and XRN1,
factors required for RNAI, are repressors of HIV-1 gene
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expression that act by preventing HIV-1 mRNA transla-
tion.

We next investigated the physical interaction between
RNAI effectors and HIV-1 mRNA. 293 cells were mock
transfected or transfected with combinations of pNL4-3,
Myc-Ago2, a central component of the RISC complex, or
its RNA-binding mutant Myc-Ago2PAZ9 constructs as
indicated in figures 3 and 4. First, we verified that Myc-
Ago2 and Myc-Ago2PAZ9 were equally expressed (Figure
3a). Second, cytoplasmic extracts were prepared, and a
fraction was used for total RNA extraction while the rest
was subjected to immunoprecipitation using anti-Myc
antibody to purify Myc-Ago2 associated mRNP. Both total
RNA (Figure 3b, left panels) and Myc-Ago2 associated
RNA (Figure 3b, right panels) were reverse transcribed and
subjected to PCR amplification using oligonucleotides
specific for HIV-1 TAR RNA (a structured motif associated
with all HIV-1 mRNAs) or HIV-1 unspliced mRNA, Hdm?2
mRNA or GAPDH mRNA. PCR analysis of total RNA
showed that equal amounts of HIV-1, Hdm2 and GAPDH
mRNAs were present in all samples (Figure 3b, left pan-
els). HIV-1 mRNAs (both TAR and unspliced) were asso-
ciated with Myc-Ago2, but not with Myc-Ago2PAZ9
mutant (Figure 3b, right panels). In agreement with the
results shown in figure 2, Hdm2 mRNA was not detected
in Myc-Ago2 mRNPs, suggesting that under these condi-
tions Hdm?2 is not regulated by RNAi. A similar experi-
ment was performed to analyze the association of HIV-1
multispliced mRNA with Myc-Ago2 mRNPs. The RT-PCR
reactions were performed in the presence of 32P-o. ATP
and were analyzed by autoradiography (Figure 3¢). HIV-1
multispliced mRNAs associated with Myc-Ago2 (compare
lane 3 to 2) and weakly with Myc-Ago2PAZ9 (compare
lane 4 to lanes 3 and 2). Co-localization of HIV-1 mRNA
and effectors of RNAI such as Ago2 and RCK/p54 within
the P-bodies was also observed by immunofluorescence
using HIV-1 containing MS2 binding sites and MS2-GFP
constructs (Figure 4). Indeed, HIV-1 mRNAs visualized
through their binding to MS2-GFP colocalized with
endogenous RCK/p54 and ectopically expressed Myc-
Ago2 (Figure 4). Our results show that HIV-1 mRNAs
physically associate with Ago2, a central component of
RISC, and co-localize with cellular proteins required for
miRNA-mediated silencing such as RCK/p54 and Ago2 in
P-bodies. We observed that all HIV-1 mRNA species asso-
ciated with RISC. Accordingly, Huang et al. had identified
5 cellular miRNAs able to target the 3'UTR sequence
present in all HIV-1 mRNAs [22]. Additionally, other cel-
lular miRNAs able to target regions out side the 3'UTR
may also participate [23].

Emerging evidence suggests the physical and functional
interactions between P-bodies and the viral life cycles
[24]. Viral mRNA trafficking through P-bodies may repre-
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miRNA effectors are repressors of HIV-1 replication. Hela cells were transfected with siRNA as indicated. 48 hours
post transfection, cells were analyzed for RCK/p54, LSm-1, GW 182, XRN |, DGCR8, DROSHA and CDK9 expression by
Western blotting (a), or infected with a single round infectious virus (HIV-1-VSV-luc 200 ng/ml) and cell extracts were meas-
ured for luciferase activity 48 hours after infection (b). Results are presented as fold HIV production relative to Scr transfected
cells, and data are representative of three independent experiments.

sent a pool of translationally repressed viral transcripts
otherwise used for efficient packaging or formation of
viral-replication complexes. Indeed, yeast retrotrans-
posons Tyl and Ty3 mRNA associate with P-bodies, and
this association is required for efficient retrotransposition
[25-27]. In the case of BMV (Brome Mosaic Virus), forma-
tion of the virus replication complex occurs in P-bodies
[28]. In addition, P-bodies may also function in host
defences against viruses and transposable elements.
Indeed, the cellular factors APOBEC 3G (A3G) and 3F

(A3F), which are viral restriction factors, are found to
accumulate in P-bodies [29,30]. It has been suggested that
A3G and A3F mediated HIV-1 restriction may involve
viral mRNA targeting to P-bodies leading to their transla-
tional inhibition [30]. We, therefore, asked whether P-
bodies are positive or negative regulators of HIV-1 replica-
tion. Thus, we analyzed HIV-1 replication in cells where P-
bodies were disrupted by knocking down RCK/p54 or
LSm-1 [31]. HeLa CD4+ cells were transfected with RCK/
p54 or LSm-1 specific siRNA or control siRNA. Forty eight
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RCK/p54 restricts HIV-1 mRNA association with polysomes. Cytoplasmic extracts from Hela cells that were trans-
fected with the indicated siRNA and infected with HIV-1-VSVG-luc were run on glycerol gradient (7% to 47%). Fractions were
collected and their RNA contents were monitored by measuring absorbance at 254 nm. HIV-I mRNA (top panel) and Hdm?2
mRNA (lower panel) were quantified in all the fractions by Q-RT-PCR using specific oligonucleotides.

hours later, cells were infected with equal amounts of
HIV-1 viral particles (as measured by p24 assay). HIV-1
p24 antigen was measured in cell culture supernatant 48
hours post-infection. As shown in figure 5b, knockdown
of RCK/p54 or LSm-1 results in enhanced virus produc-
tion as compared to infection of control siRNA transfected
cells. To assess the infectivity of the produced viruses, an
equal volume of supernatant from Scr, RCK/p54 and
LSm-1 siRNAtransfected cells was used to infect Hela
CD4+ cells, and p24 release in the culture supernatant was
measured 48 hours later (Figure 5¢). Virus infectivity cor-

related with the amount of p24 produced (Figure 5b)
showing that virions produced in RCK/p54 and LSm-1
knocked down cells are fully competent for replication
and have no defect in steps such as RNA packaging. Since
the knockdown of RCK/p54 and LSm-1 was shown to
result in the disruption of P-bodies, we concluded from
these experiments that accumulation of HIV-1 mRNA in
P-bodies limits virus replication.

Next, we asked whether A3G-mediated HIV-1 restriction
requires effectors of miRNA-mediated mRNA transla-
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HIV-1 mRNAs associate with Argonaute 2. 293 cells were transfected with HIV-1 molecular clone pNL4-3, Myc-Ago2 or
Myc-AgoPAZ9 as indicated. 48 hours later cells were harvested and cytoplasmic extracts were prepared. Total RNA was puri-
fied from a fraction of harvested cells while the rest was subjected to immunoprecipitation using anti-Myc antibody. After
washing, a fraction was used to analyze the amount of Myc-Ago2 and Myc-Ago2PAZ9 immunoprecipitated by Western blotting
(2), and the rest of the Myc-IPs was used for RNA extraction. HIV-1 mRNAs (TAR and unspliced), Hdm2 and GAPDH mRNA
were quantified from total RNA (b, left panel) or from Myc immunoprecipitated mRNPs (b, right panel) by RT-PCR using spe-
cific oligonucleotides. c) Experiment was performed as in fig 3 except that 293 cells were transfected with HIV-1 APSP which
contains a partial gag/pol deletion but retains all the mRNA splicing sites [66], and 32P-labelled nucleotides were used in the

PCR reaction. PCR products were visualized by autoradiography.

tional inhibition. Thus, we compared A3G-mediated HIV-
1 restriction in cells where RCK/p54 or LSm-1 expression
was reduced compared to control cells. HelLa cells were
transfected with control siRNA or siRNA specific for RCK/
p54 or LSm-1 (Figure 6, right panel). Forty-eight hours
later, cells were transfected with an HIV-1 molecular clone
lacking the vif gene (pNL4-3Avif) either alone or with
wild-type A3G or A3G mutant lacking antiviral activity
(A3Gdm). HIV-1 p24 antigen was measured in culture
supernatant 48 hours post-transfection. Interestingly,
knock down of RCK/p54 or LSm-1 enhanced HIV-1 pro-
duction regardless of A3G (Figure 6, left upper panel).
Similarly, A3G but not A3Gdm reduced virus production
regardless of RCK/p54 or LSm-1 expression (Figure 6, left
upper panel). These results suggested that RCK/p54 or
LSm-1 and A3G -mediated HIV-1 repression involves dif-
ferent mechanisms. We then analyzed the infectivity of

HIV-1 produced from siRNA transfected cells. Equal
amounts of p24 were used to infected HeLa CD4+ cells,
and HIV-1 p24 antigen was measured in culture superna-
tant 48 hours post-infection. As shown in figure 6 (lower
panel), virus produced in Scr siRNA transfected cells in the
presence of A3G showed lower infectivity than those pro-
duced in its absence or in the presence of A3Gdm. Similar
HIV-1-restriction activity of A3G was observed when the
virus was produced in RCK/p54 or LSm-1 knocked down
cells. This experiment showed that A3G-mediated HIV-1
restriction is independent of RNAi effectors RCK/p54 and
LSm-1 and does not require P-bodies.

Taken together, our results show a physically repressive
interaction between RNAI effectors and HIV-1 mRNA.
Since cellular miRNAs were shown to play a role in HIV-1
latency [22], we asked whether RCK/p54, which is

Page 5 of 11

(page number not for citation purposes)



Retrovirology 2009, 6:26

http://www.retrovirology.com/content/6/1/26

24 MS2 binding sites

MS2-GFP-NLS

Hoechst

Figure 4

RCK/p54

Myc-Ago2

Merge

HIV-1 mRNA co-localizes with RCK/p54 and Ago2. Hela cells were transfected with Myc-Ago2 expression vector
either alone (top panels) or co-transfected with HIV-1 vector containing 24 repeats of MS2 binding sites and MS2-GFP expres-
sion vectors [64,65] (lower panels). Endogenous RCK/p54 and transfected Myc-Ago2 were visualized using specific primary
antibodies and appropriate secondary antibodies coupled with Cy5 (shown in blue) and Cy3 (red) respectively. HIV-1 RNA
bound to MS2-GFP is shown in green. Green, blue and red merged images are shown.

required for miRNA-mediated mRNA translational inhi-
bition, contributes to HIV-1 silencing in vivo. Thus,
PBMCs isolated from 3 HAART-treated HIV-1-infected
patients with undetectable viremia were transfected with
control siRNA or with siRNA specific for Drosha, DGCR8
or RCK/p54. Transfected cells were co-cultured with PHA/
IL2-activated PBMCs isolated from healthy donors. Virus
production was monitored every 3 days by measuring p24
antigen in the culture supernatant (Figure 7). As we have
previously shown, knockdown of Drosha resulted in virus
reactivation in PBMCs isolated from 3 HAART-treated
HIV-1-infected patients [21]. Remarkably, viral replica-
tion from its natural reservoir resumed also when DGCR8
or RCK/p54 was silenced. No virus was isolated from con-
trol siRNA transfected PBMCs suggesting that virus pro-
duction observed in Drosha, DGCR8 and RCK/p54 knock
down was not due to actively infected PBMCs relieved
from drug pressure. These results show that endogenous

levels of Drosha, DGCR8 and RCK/p54 contribute to HIV-
1 latency and/or its maintenance in infected patients.

Conclusion

The outcome of HIV-1 infection results from complex
interactions between viral components and host cell fac-
tors [32-35]. In most cases, HIV-1 successfully hijacks cel-
lular pathways and bypasses restriction factors for optimal
replication leading to continuous rounds of infection,
replication, and cell death. Continuous viral replication
causes the loss of CD4+T cells and progression to immu-
nodeficiency in infected individuals. HAART treatment
revealed the existence of a pool of resting memory CD4+
T cells harbouring integrated, but silent HIV-1 provirus
[36,37]. This latent reservoir is believed to be the major
obstacle for virus eradication by HAART. Therefore, it is
critical to understand how HIV-1 latency is established
and maintained [38]. Post-integration latency takes place
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Disruption of P-bodies through knockdown of RCK/p54 and LSm-1 leads to enhanced production of infectious
HIV-1 virions. HeLa CD4+ cells were transfected with siRNA as indicated. 48 hours post transfection cells were analyzed for
RCK/p54 and LSm-1| expression by Western blotting (a) and infected with equal amounts of HIV-1 (200 ng/ml). b) Virus pro-
duction was monitored 48 hours post infection by measuring p24 antigen in culture supernatant. c) To analyze the infectivity of
new progeny virions, equal volumes of supernatant from siRNA transfected Hela CD4+cells were used to re-infect Hela
CD4+ cells. P24 antigen was measured in culture supernatant 48 hours post infection.

at both transcriptional and post-transcriptional levels
[39]. Transcriptional latency involves different mecha-
nisms ranging from integration position effect [40-42],
limitation in transcription factors [43-46], establishment
of chromatin repressive marks and recruitment of chro-
matin silencers [47-51]. Post-transcriptional silencing
involves defects in mRNA export and translation [52-54].
All together, these studies show that HIV-1 post-integra-
tion latency is a multi-factorial process. In the present
study, we show that HIV-1 gene expression is additionally
regulated by the miRNA pathway. HIV-1 mRNA associates
with components of the RISC complex by a mechanism
that does not involve APOBEC3G, but does need
sncRNAs. Accordingly, it has been recently shown that the
suppressor of RNAi P19 from tomato bushy stunt virus,
known to bind and sequester sncRNAs including miRNA,
enhances HIV-1 replication [55]. Additionally, the RNAi
suppressor function of HIV-1 Tat [56] could be comple-
mented by VP35 from Ebola virus [57] and the NS3 pro-
tein of rice hoja blanca virus through sequesteration of
small non-coding RNAs [58]. HIV-1 mRNAs associated
with RISC are sequestered in the non-polysomal fraction,
thereby preventing translation. In agreement with two
previous reports [19,21,22], we show that knockdown of
RCK/p54, a protein required for miRNA-mediated silenc-
ing, led to virus reactivation from PBMCs isolated from
HIV-1 infected patients who were undergoing suppressive
HAART.

A challenge in AIDS treatment is the need to activate latent
viral reservoirs in order to eradicate these viruses through
HAART. In this respect, targeting the miRNA processing
pathway could offer a strategy that could be exploited to
activate latent viral reservoirs, for instance, during HAART.
Several molecules have been used to reactivate viral reser-
voirs [59]. However, none of these approaches provides
the sequence specific targeting that can be achieved using
siRNA. Recent data suggest that siRNA can be used thera-
peutically in vivo in certain mouse disease models [60]
and more recently in non-human primates [61,62]. It
remains to be explored whether, as suggested here, the in
vivo targeting of miRNA-effectors using siRNA can assist in
activating latent HIV-1 reservoirs for eradication by
HAART.

Methods

Constructs

HIV-1 molecular clone pNL4-3Avif and expression plas-
mids for APOBEC3G were gift from Olivier Schwartz (Pas-
teur, France). APOBEC3G HG65R/H257R mutant was
previously described [63]. HIV-1 vector containing MS2
binding sites and MS2-GFP expression plasmids [64,65]
were gift from Alessandro Marcello (ICGEB. Trieste, Italy)
and Edouard Bertrand (IGMM. Montpellier, France)

Transfections
PBMCs were transfected with siRNA or miRNA using the
Nucleofector Il Device with the appropriate Nucleofection
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RNA.:i effectors and APOBEC 3G-mediated HIV-I repression involve different pathways. HeLa CD4+ cells were
transfected with the indicated siRNA. 48 hours later cells were analyzed for RCK/p54 and LSm-1 expression (right panel) or
co-transfected with | ng of pNL4-3Avif (lacking vif gene) and pcDNA or expression vectors for wild-type APOBEC3G or
APOBEC3G double mutant lacking both deaminase and antiviral activity, A3G H65R/H257R [63]. HIV-1 production was meas-
ured 24 hours post-transfection in culture supernatant by quantifying p24 antigen (top left panel). Numbers on the top of the
columns are fold increase relative to the respective Scr. Numbers on the top of Scr samples in A3Gwt and A3Gdm represent
fold increase relative to Scr in pCDNA transfected cells. Infectivity assay was performed using equal amounts of p24 antigen to
infect HeLa CD4+ cells. HIV-1 p24 antigen was measured 48 hours post infection (lower left panel). A representative experi-

ment out of five is shown.

solution according to the manufacturer's instructions
(Amaxa). siRNA corresponding to DGCR8 (5'-CAUCG-
GACAAGAGUGUGAU(dTdT)-3'), Drosha (5-CGA-
GUAGGCUUCGUGACUU(dTdT)-3'), RCK/p54 (5'-
GCAGAAACCCUAUGAGAUUUU(ATAT)-3"), LSm-1 (5'-
GUGACAUCCUGCCACCUCACUU(dTdT)-3"), GW182
(5-UAGCGGACCAGACAUUUCU(ATdT)-3"), XRN1 (5'-
AGA UGA ACU UAC CGU AGA A(dTdT)-3') and CDK9
(5'-CCAAAGCUUCCCCCUAUAATT(dTdT)-3") were syn-
thesized (MWG). Expression level of knock down pro-
teins was analyzed by Western blotting 48 hours after
transfection. Briefly, cell-extracts were resolved on SDS-
PAGE gels. Proteins were transferred to PVDF membrane
by semi-dry electroblotting and probed overnight at 4°C
with the primary antibody (anti-Drosha, LSm1, GW182
(Abcam), DGCRS8 (Proteintech Group), anti-RCK/p54
(Bethyl)or anti-CDK9 (Santa Cruz), washed and incu-
bated with the appropriate secondary antibody (Amer-
sham) for 1 hour. Proteins were visualized by
chemiluminescence according to the manufacturer's pro-
tocol (Pierce).

PBMC isolation and co-culture assay for virus production
Peripheral blood mononuclear cells of HIV-1 infected
patients were isolated by lymphocyte separation medium
density centrifugation (Lonza). PBMCs from healthy
donors were pre-activated using 5 pg/ml PHA (phytohe-
magglutinin-P, DIFCO)/10 U/ml IL-2 (interleukin-2,
Roche) for 72 hours. They were then washed once with
PBS and once with RPMI medium before co-culture assay.
siRNA transfected HIV-infected PBMC (10°¢ cells/ml) were
co-cultured with pre-activated PBMC (106 cells/ml) from
the same healthy donor in the presence of 10 U/ml IL-2.
The culture medium was collected every 3 or 4 days. Fresh
pre-activated healthy PBMCs were added to the culture
every 7 days. Viral production was measured by quantify-
ing the amounts of p24 in the culture medium using an
ELISA kit (Ingen).

Pseudotyped virion production and single-round infections
The plasmid pNL4-3-env-Luc* harboring a luciferase gene
(obtained from the NIAID AIDS Reagent Program) was
co-transfected with the envelope plasmid pMD.2G encod-
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Implication of RNAI in HIV-I latency. PBMCs were isolated from three patients undergoing active HAART. Isolated
PBMCs were transfected with the indicated siRNA and either analyzed for RCK/p54, DGCR8 and DROSHA expression by
Western blotting 48 hours after transfection (right panel) or co-cultured with activated PBMCs obtained from healthy donors.
Virus replication was monitored every 3 to 4 days post co-culture by measuring p24 antigen in culture supernatant. Shown is
the amount of p24 antigen at day |5 post co-culture. No virus was isolated from Scr transfected-PBMCs for up to 27 days.

ing the G protein of vesicular stomatitis virus (VSV.G) into
human embryonic kidney cells-293T. The virions, named
HIV-1VSV-Luc, were collected and filtered using 0.45 um
filters 48 hours post-transfection. HeLa or HeLa CD4+
cells were infected over-night at 37°C, washed and resus-
pended in DMEM containing 10% FCS. Virus production
was monitored in culture supernatant by measuring p24
antigen (Ingen) and by following luciferase activity
according to the manufacturer's instructions (Promega).

Cytoplasmic extracts analysis on sucrose gradients

To isolate cytoplasmic extracts, cells were lysed for 10
minutes in buffer B (5 mM Tris-HCI pH 7.4, 1.5 mM KCl,
2.5 mM MgCl,, 0.5% NP40 and protease inhibitor).
Nuclei were pelleted by centrifugation for 10 minutes at
10,000 rpm. 2 mg of cytoplasmic extracts were loaded on
a 7-47% sucrose gradient. Briefly, 5 layers of 7 to 47%
sucrose were prepared in sucrose buffer (20 mM Tris-HCI
pH7.4, 80 mM NaCl, 5 mM MgCl,, 1 mM DTT and pro-
tease inhibitors) and diffused at 4°C for 16 hours to
obtain a linear sucrose gradient. 2 mg of cytoplasmic
extracts were loaded on the top of the column, and centri-
fuged for 3 hours at 36,000 rpm in a SW41Ti rotor. After
ultracentrifugation, 28 fractions were collected and OD at
254 nm was measured in each fraction using a Nanodrop
apparatus (Labtech).

RNA immunoprecipitation

293 cells were grown in 60 mm dishes and transfected
with the indicated plasmids using calcium-phosphate.
Cells were harvested 48 hours after transfection, lysed for
15 minutes in RIP buffer (20 mM Hepes, pH 7.5, 150 mM

NacCl, 2.5 mM MgCl, x 6H,0, 250 mM sucrose, 0.05%
NP40, 0.5% Triton X-100) containing RNASIN (Promega)
and 1 mM DTT, and centrifuged to pellet debris. Superna-
tants were incubated overnight with mouse anti-Myc mAb
9E10 (Amersham) at 4 °C followed by 2 hours incubation
with protein G-Sepharose. Immunoprecipitates were
washed with RIP buffer, and nucleic acids were extracted
with phenol/chloroform/isoamyl alcohol, isopropanol-
precipitated, ethanol-washed and resuspended in RNase-
free water. Total RNA was DNase I treated and reverse-
transcribed using SuperScript First-Strand Synthesis Sys-
tem for RT-PCR (Invitrogen). RT products were PCR-
amplified using either GAPDH (GAPDH forward: GTA
TTG GGC GCC TGG TCA CC; reverse: CGC TCC TGG
AAG ATG GTG ATG G), HIV-1 (HIV-1 forward: TAG TGT
GTG CCC GTC TGT T; reverse: CTC TGG TTIT CCC TTT
CGCTIT C or Gag-reverse: GAT GGT TGT AGC TGT CCC
AG for unspliced HIV RNA), or HDM2 specific oligonu-
cleotides (HDM2 forward: GTA CCT GAG TCC GAT GAT
TCG; reverse: ACC TAC TGA TGG TGC TGT AAC). PCR
products were resolved on 1.5% agarose/TAE gels contain-
ing ethidium bromide. In vivo splicing assay and oligonu-
cleotides BSS and SJ4.7A have been described [66]
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