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Abstract

Background: To study the dynamics of wild-type and drug-resistant HIV-1 RT variants, we developed a methodology that
follows the fates of individual genomes over time within the viral quasispecies. Single genome sequences were obtained from 3
pigtail macaques infected with a recombinant simian immunodeficiency virus containing the RT coding region from HIV-I (RT-
SHIV) and treated with short-course efavirenz monotherapy 13 weeks post-infection followed by daily combination
antiretroviral therapy (ART) beginning at week 17. Bioinformatics tools were constructed to trace individual genomes from the
beginning of infection to the end of the treatment.

Results: A well characterized challenge RT-SHIV inoculum was used to infect three monkeys. The RT-SHIV inoculum had 9
variant subpopulations and the dominant subpopulation accounted for 80% of the total genomes. In two of the three monkeys,
the inoculated wild-type virus was rapidly replaced by new wild type variants. By week |3, the original dominant subpopulation
in the inoculum was replaced by new dominant subpopulations, followed by emergence of variants carrying known NNRTI
resistance mutations. However, during ART, virus subpopulations containing resistance mutations did not outgrow the wide-
type subpopulations until a minor subpopulation carrying linked drug resistance mutations (KI03N/M184l) emerged. We
observed that persistent viremia during ART is primarily made up of wild type subpopulations. We also found that
subpopulations carrying the V75L mutation, not known to be associated with NNRTI resistance, emerged initially in week 13 in
two macaques. Eventually, all subpopulations from these two macaques carried the V75L mutation.

Conclusion: This study quantitatively describes virus evolution and population dynamics patterns in an animal model. The fact
that wild type subpopulations remained as dominant subpopulations during ART treatment suggests that the presence or
absence of at least some known drug resistant mutations may not greatly affect virus replication capacity in vivo. Additionally,
the emergence and prevalence of V75L indicates that this mutation may provide the virus a selective advantage, perhaps escaping
the host immure system surveillance. Our new method to quantitatively analyze viral population dynamics enabled us to observe
the relative competitiveness and adaption of different viral variants and provided a valuable tool for studying HIV subpopulation
emergence, persistence, and decline during ART.
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Background

Antiretroviral therapy (ART) suppresses HIV-1 replication
in vivo but does not eradicate the virus. Consequentially,
drug resistance remains a major obstacle to effective ther-
apy [1]. Recent evidence indicates that mucosal transmis-
sion of HIV-1 infection usually involves the establishment
of systemic infection by only a single viral variant [2-5].
After transmission, the virus is able to diversify into com-
plex subpopulations due to its rapid replication cycle and
high mutation rate. In a ten year period, HIV-1 genomes
in an infected patient can be 3000 generations removed
from the initial infecting virus [1]. Understanding HIV
population dynamics and evolution is therefore impor-
tant for understanding AIDS pathogenesis and the emer-
gence of drug resistance mutations [6,7].

The intra-patient evolution of HIV-1 subpopulations can
be shaped by several selective forces, including host
immune surveillance, ART, and competition between dif-
ferent virus variants for host resources [8,9]. A major fac-
tor affecting HIV-1 evolution in treated patients is the
emergence of drug resistant mutations, which have been
reported for all effective antiviral drugs developed to date
[10]. Mutations conferring escape from both humoral and
cellular immune responses are also frequent [11,12]. To
date, there have been few longitudinal studies on the
dynamics of virus subpopulations within infected indi-
viduals, including their emergence, persistence, preva-
lence, and decline during infection and treatment.
Charpentier et al. followed the emergence of drug resist-
ance mutations in patients treated with protease inhibi-
tors and described the dynamics of the major HIV-1
subpopulations [13]. Ball et al proposed a mathematical
model to describe intra-host HIV evolution in terms of
mutation, competition, and strain replacement [14,15].
However, quantitative documentation of virus popula-
tion structure and dynamics during the course of infection
is rare in the literature. One particular difficulty with HIV-
1 in infected patients is that the virus population structure
at the time of infection, and shortly thereafter, cannot be
directly assessed. For this reason, we have analyzed
plasma from macaques infected with a well-defined SIV
chimeric virus containing the RT coding region of HIV-1
(RT-SHIV,,,..) [16]. In an earlier study, we reported the fre-

Table I: Treatment and sampling intervals for the 3 macaques.
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quency of drug resistance mutations in virus isolated from
longitudinal plasma samples after infection and during
treatment [17]. We report here the analysis of multiple
single genome sequences to quantify the number of sub-
populations (populations consisting of identical virus
variants) and to analyze the complex dynamics of these
populations during the course of infection and treatment.

Results

Population structures in early stages of RT-SHIV infection
and treatment of animal M03250

HIV-1 RT subpopulation dynamics were analyzed in the
plasma of 3 pigtail macaques infected with RT-SHIV
(Table 1). Samples were obtained from a previous study
aimed at evaluating the effects of prior exposure to NNRTI
monotherapy on subsequent combination ART [17], sim-
ilar to the use of single-dose nevirapine to prevent mother
to child transmission [18-21]. The animals were treated
with a short course of efavirenz (EFV) at week 13, fol-
lowed by daily combination therapy of tenofovir (TNF),
emtracitabine (FTC), and EFV from weeks 17-37 post-
inoculation. Frequent and convenient sampling, access to
the virus inoculum, and lack of adherence issues make the
RT-SHIV macaque model ideal for investigating viral pop-
ulation dynamics prior to initiating therapy, after initiat-
ing short-course monotherapy, and during ART.

Macaque M03250 failed the combination therapy with
the appearance of multidrug resistant virus starting at
week 22, 5 weeks after combination ART was initiated.
Viremia in the other two macaques remained suppressed
during the course of therapy. In each virus population,
dominant and minor subpopulations were found among
the sequences obtained by single-genome sequencing
(SGS) at the time points shown in Table 1. The sequence
of each subpopulation of M03250 was used to construct a
neighbor-joining tree (Figure 1), with subpopulations
from the same week labeled with a symbol of the same
color and shape and each subpopulation represented by a
leaf in the tree. In this animal, RT-SHIV evolved into a very
complex population in which subpopulations from early
time points persisted over the course of infection, while
other subpopulations were lost. Subpopulations contain-
ing the drug resistance mutations K103N (AAC and AAT)

Number of samples? EFV <« ART -
Week of sampling 0 | 12 13b 17 17.5 19 22 23 24 25 26 37 39 40
M03250 39 24 37 40 44 41 35 33 37 43 41
M04007 39 12 20 38 32
M04008 39 33 23 41 19 31
2 Number of sequences obtained at each time point.
bWeek 13 was sampled before EFV treatment.
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Phylogenetic analysis of RT-SHIV subpopulations of macaque M03250. The left panel is a neighbor-joining tree of all
subpopulations of M03250. Each subpopulation is shown as a single sequence for this tree construction. Subpopulations from
each week are represented by symbols coded with the same color and shape. The internal nodes from which subpopulation
clusters containing drug resistant mutations appeared are marked as clusters A, B, C, D, and E, shown enlarged to the right.

formed 5 clusters in the phylogeny (Figure 1 Clusters A-E),  to AAC)) and B (AAA to AAT)) and at week 17.5 in clusters
indicating that they emerged independently. The earliest ~ C, D, and E (Figure 1).

subpopulations containing the EFV resistance mutation

K103N were observed at week 17 in both clusters A (AAA
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Neighbor joining trees were also constructed from all
sequences obtained for each time point. Figure 2 shows
the RT-SHIV population from week 0, week 13 (just prior
to EFV monotherapy), and week 17 from monkey
M03250. Several distinct subpopulations were evident,
some consisting of only one sequence with others com-
prising multiple identical sequences (up to 10). At week 0,
there was one dominant subpopulation (subpopulation
1, solid dark green circles). At week 13, the virus popula-
tion was characterized by two dominant subpopulations,
(subpopulations 2 and 3) each comprising 24% of the
total population (solid green diamonds and solid blue
diamonds) while the remaining 52% comprised minor
subpopulations of unique sequences (Figure 2, hollow
diamonds). However, at week 17 following EFV mono-
therapy, there was only one dominant subpopulation
(subpopulation 3, solid light green squares), although
two members of subpopulation 2 were still present. At the
same time, 6 variants containing K103N (AAC) or K103N
(AAT) were detected, which formed 4 subpopulations.
Subpopulation 5 (solid black squares) comprised 3 virus
sequences while the other 3 each had only one sequence
(hollow colored squares, Figure 2). In all samples ana-
lyzed from each of the infected monkeys, we consistently
found one or two dominant subpopulations, along with
many minor subpopulations.

Subpopulation dynamics in monkey M03250

Figure 3 shows the fates of selected RT-SHIV subpopula-
tions in M03250, expressed as percentages of the whole
viral population at each sampling week and Figure 4
shows the same subpopulations as viral RNA copies/ml
plasma. As shown in Figures 3 and 4, the dominant sub-
population found in the original virus challenge stock
(sub1l, week 0) was also the dominant subpopulation in
the first plasma sample collected from M03250 (Figure 3,
sub 1 at week 0 and week 1). This variant, however, was
not found by week 13 as new subpopulations emerged. It
was replaced by two new wild type dominant subpopula-
tions emerging at week 13 prior to EFV treatment (sub2,
24% and sub3, 24%; Figure 3). The frequency of sub2
declined significantly between weeks 13 and 17, and the
two remained relatively constant throughout a 5 weeks
period on combination therapy and a 3-log decline in
viremia, even though neither subpopulation carried any
known drug resistant mutation. They subsequently
became minor species at weeks 23 and 24 (Figure 3).

During the course of infection and treatment, many sub-
populations carrying drug resistant mutations emerged.
However, none became dominant before the emergence
and expansion (to about 75% of the virus population) of
the double mutant K103N/M184I (resistant to both EFV
and FTC), beginning at week 23 and coincident with the
onset of virologic failure. EFV resistance mutations

http://www.retrovirology.com/content/6/1/101

(K103N) initially were observed at week 17, the first sam-
ple after EFV monotherapy: an AAC allele (sub5, Figures 3
and 4) and an AAT allele (sub6, Figures 3 and 4). The AAC
subpopulation remained minor until week 22, after
which time it became undetectable. The AAT subpopula-
tion was detected at week 17 and never became dominant.
The same was true at weeks 22 and 23 for a variant carry-
ing two drug resistance mutations: K65R/K103N(AAC)
(Figure 3, sub7), encoding resistance to TNF as well as
EFV. Overall, at week 23, 6 weeks after the initiation of
ART, 11 out of 23 subpopulations contained K103N and
4 out of 23 subpopulations contained K65R (3 as K65R/
K103N). Subpopulations with a single K103N mutation
(without linkage to another drug resistance mutation)
were 30% of all viral populations of week 23 (Additional
file 1) and none was the dominant subpopulation (Figure
3). In the neighbor joining tree, subpopulations contain-
ing K103N(AAC)/K65R or K103N(AAC)/M184I and sev-
eral others containing K103N(AAC) formed a cluster.
Several subpopulations containing K103N(AAT) and
K103N(AAC) formed another cluster (Figure 1). In total,
5 of 9 subpopulations contained K103N at week 24, all
existing as minor subpopulations. The subpopulations
containing only K103N were 2.7% of the population at
this week, declining from 30.1% at week 23 (Additional
file 1), a result of the takeover by the doubly resistant sub-
population 8.

The subpopulation that led to virologic failure in this
macaque carried the linked drug resistant mutations
K103N(AAC)/M184I. This species was observed at week
23 as two subpopulations: week 23-26 (sub8) and week
23-32 (Additional file 1), one becoming undetectable the
very next week (week 23-32 in Additional file 1), and one
persisting and leading to virologic failure at weeks 25 and
26 (sub8 in Figures 3 and 4). Interestingly, a wild-type
subpopulation first appeared as a minor species at week
13 (Figure 3, sub4) and became dominant (50%) after
failure of combination therapy in week 24. This subpopu-
lation did not carry any drug resistance mutations, yet it
persisted and even increased about 9-fold in frequency
and 300-fold in terms of its absolute amount over the
course of infection and treatment through week 26 (Fig-
ures 3 and 4).

Another mutation not associated with drug resistance at
position 75 in RT (V75L) was detected first in every sub-
population at week 13 in animal M03250 prior to EFV
treatment. This mutation was also present in almost all
subpopulations at later time points (Additional file 1). It
was not detected by SGS in the challenge stock used to
infect this macaque and was not seen at week 1. It was
possible that this variant existed in the challenge stock at
a frequency below our detection sensitivity by SGS. There-
fore, we used 454 pyrosequencing to increase the sensitiv-
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Figure 2

Structure of RT-SHIV populations from macaque M03250. The tree shows sequences from weeks 0 (circles), |13 (dia-
monds), and 17 (squares). Subpopulations consisting of multiple sequences are marked with solid shapes while subpopulations
consisting of single sequence are marked with hollow shapes. Different subpopulations containing KIO3N are also labeled with
solid shapes. Subpopulation designations (subpopulations 1, 2, 3, 5, and 6) correspond to those in Figures 3 and 4. Subpopula-
tions not shown in Figures 3 and 4 were not given a subpopulation designation.
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Dynamics of major subpopulations in macaque M03250. The major subpopulations present at the weeks shown on the
x-axis are represented by colored bars. Subpopulations with identical sequences at different times have the same number and
color and drug resistant populations are labeled. The left y-axis shows the percentage of a subpopulation in the total popula-
tion. The right y-axis shows the viral load (diamond symbols) for the whole population at each week. Treatments are shown
with arrows at the top of the figure along with the week post-infection (week 0 denotes the RT-SHIV challenge stock). Hori-
zontal red bars show the percentage of all subpopulations with drug resistant mutations (K65R, K103N, M184l, and M184V) in

the population of each week.

ity of detecting the V75L mutation in the viral inoculum.
We obtained 10,836 pol sequences from the virus chal-
lenge stock by 454 pyrosequencing and none contained
the V75L mutation (data not shown). This data show that
V75L emerged after inoculation.

In addition, we observed changes in the frequency of a
polymorphic allele (L/F) at position 214. The challenge
stock and all viral variants at week 1 had 100% L at this
position. At week 13, about 41% of variants had 214F and
its frequency increased each week thereafter, reaching
100% at week 25 and 93% at week 26 (Additional file 1).

Subpopulation dynamics in macaque M04008

Macaque M04008 received the same ART treatment regi-
men as M03250. Again, drug resistant mutations first
appeared as minor subpopulations at week 17, following
short course EFV monotherapy. In contrast to M03250,
none led to virologic failure on combination therapy,
although their overall frequency at week 17 was similar in
the two macaques (Additional files 1 and 2). As in
MO03250, the original wild type subpopulation (Figure 5,
subl) was also dominant one week after infection. It
declined to a minor subpopulation in subsequent sam-
ples. Another wild type subpopulation replaced it as the
dominant subpopulation in week 13 (Figure 5, sub4). In
this macaque, several subpopulations carrying drug resist-
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Figure 4

Dynamics of major subpopulations expressed as normalized viral load from macaque M03250. The y-axis shows
the normalized viral load (frequency X viral RNA copies/ml plasma) of a subpopulation. The subpopulation designation and

color code are the same as shown in Figure 3.

ant mutations emerged during treatment. For example, 5
of the 17 minor subpopulations carried K103N by week
17 (Additional file 2). At week 39, 5 of 14 subpopulations
carried K103N (3 with AAT and 2 with AAC), together
accounting for about 35% of the total sequences obtained
at week 39 (Additional file 2). The initial K103N subpop-
ulations in M04008 did not persist, but rather new vari-
ants containing K103N appeared and replaced previous
subpopulations. For example, only one minor subpopula-
tion with K103N at week 17 (sub7) was present at week
39. Subpopulations with more than one resistance muta-
tion were never seen. Throughout the entire treatment his-
tory the dominant subpopulation in M04008 was a wild
type virus variant (Figure 5, sub4), although there was an
apparent but not statistically significant increase in the
overall K103N mutant frequency during the course of
treatment.

As in macaque M03250, the V75L and L214F mutations
were observed in M04008. V75L first appeared at week 13
(Additional file 2) and was found in 79% of subpopula-
tions present at this time point. At week 17, 81% of sub-
populations had the V751 mutation and by week 39, all
the subpopulations contained V75L (Additional file 2). In
this animal 214L was somewhat more stable than in

M03250, and we only observed 5% 214F at week 17 and
34% 214F at week 39.

Subpopulation dynamics in macaque M04007

Although M04007 received the same ART treatment as
MO03250 and M04008, no drug resistance mutations were
detected in this animal following the short-course EFV
monotherapy or during ART. The original wild type dom-
inant subpopulation (sub1, Figure 6) instead persisted as
the dominant subpopulation throughout the observation
period. This dominant subpopulation was present at a fre-
quency of 90% at week 1 and plateaued at around 50% at
subsequent time points. At the same time, another wild
type subpopulation emerged in week 13 (sub4, Figure 6)
that accounted for about 20% of the total population and
persisted at weeks 17 and 40. Several minor subpopula-
tions arose over time (sub3 and sub5, Figure 6), but none
had drug resistant mutations and none became dominant.
In contrast to macaques M03250 and M04008, only one
subpopulation containing V75L was found in M04007
(week 17, 5%) (data not shown), and L214F was not seen
at all.
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Dynamics of major subpopulations in macaque M04008. The major subpopulations present at the weeks shown on the
x-axis are represented by colored bars. Subpopulations with identical sequences at different times have the same number and
color and drug resistance mutations are labeled. The left y-axis shows the percentage of a subpopulation in the total popula-
tion. The right y-axis shows the viral load (diamond symbols) for the whole population of each week. Treatments are shown
with arrows at the top of the figure along with the week post-infection (week 0 denotes the RT-SHIV challenge stock). Hori-
zontal red bars show the percentage of all subpopulations with drug resistant mutations (K65R, K103N, M184Il, and M184V) in

the population of each week.

Discussion

Because of its high mutation rate, large population size,
and rapid replication cycle, HIV-1 is able to diversify into
a complex genetic population after transmission to a new
host. Its pathogenicity in a tractable animal model with a
well characterized challenge inoculum, and its sensitivity
to widely-used RT inhibitors make the RT-SHIV model a
valuable tool for modeling HIV-1 diversity and evolution
of resistance to RT inhibitors. Our results showed that RT-
SHIV populations in the infected macaques comprised
both dominant and minor subpopulations. Similar
genetic structures have been revealed by analysis of HIV-1
populations within and between different patient ana-
tomical compartments [22,23]. In most cases, we
observed one or two dominant subpopulations and many
minor subpopulations in each plasma sample. The domi-
nant subpopulations usually accounted for at least 20% of
each virus population.

All three macaques were treated identically, with short
course EFV, followed by combination therapy 4 weeks
later. Nevertheless, three different patterns of virological
response were observed. In M03250, at least 4 subpopula-
tions that encode EFV resistance appeared that contained
either of the K103N alleles (AAT or AAC). This occurred
following monotherapy. This animal subsequently failed
combination therapy, at which time the virus population
was characterized by the appearance of viruses with addi-
tional mutations, initially K65R (conferring TNF resist-
ance) followed by a clonal subpopulation containing
K103N and M184I (conferring FTC resistance), which
rapidly became dominant. M04008 had a similar
response to the initial monotherapy, with similar propor-
tions of multiple subpopulations containing both AAT
and AAC detected by week 17. However, the plasma
viremia remained low in this animal, and no new subpop-
ulations containing additional resistance mutations were
detected during ART. Macaque M04007, by contrast, con-
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Dynamics of major subpopulations in macaque M04007. The major subpopulations present at the weeks shown on the
x-axis are represented by colored bars. Subpopulations with identical sequences have the same number and color and drug
resistant mutations are labeled. The left y-axis shows the percentage of a subpopulation in the total population. The right y-axis
shows the viral load (diamond symbols) for the whole population of each week. Treatments are shown with arrows at the top
of the figure along with the week post-infection (week 0 denotes the RT-SHIV challenge stock). Horizontal red bars show the
percentage of all subpopulations with a single KI03N mutation in the population of each week. Identical subpopulation were

given the same subpopulation designation and color code.

tained no subpopulations with drug resistance mutations,
despite having been treated identically to the other two
animals. M02350 had a much higher viral load than the
other two macaques prior to therapy. Although the other
two animals had similar viral loads at the time of mono-
therapy, M04008 had much higher viremia (more than 1
log) at weeks 2 to 10 post-infection. We hypothesize that
the patterns observed reflect the relative population sizes
of productively infected cells in these animals, with higher
viremia in M03250 correlating with the presence and
selection of multiple subpopulations of K103N variants
by EFV monotherapy and the appearance of additional
drug resistance mutations (K65R and M184I1/V) within
the population containing one of the K103N alleles. The
amount of virus replication prior to week 13 in M04007
may have been too small for any K103N mutants to be
present in the replicating population at that time or the
frequency of K103N in week 13 was too low to be detected

with our sampling size. However, this mutation was also
not detected by allele specific real-time PCR (ASP) assay
[17].

Subpopulations with both K103N alleles were present as
early as one week after treatment with EFV in M03250 and
M04008. These subpopulations comprised about 20% of
the total virus population, as detected by allele specific
PCR [17]. However, none of these subpopulations
increased in frequency and persisted as a stable subpopu-
lation like the dominant wild-type subpopulation (sub3
in Figure 3) during combination therapy. This persistent
stability indicated that a single drug resistance mutation
either does not confer a significant selective advantage
under this condition or a potential reduced replicative
capacity caused by the drug resistance mutation [1,24]
allowed additional compensatory mutations to accumu-
late. For example, in M03250 at weeks 23 and 25, 6-8
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weeks after initiation of combination therapy, 11 of 23
minor subpopulations contained K103N mutations and
totaled 25-30% of the entire population. A similar phe-
nomenon was observed in monkey M04008, which did
not fail therapy. Therefore, even during drug treatment,
when virus replication was suppressed, the dominant sub-
populations were still wild type. For the most part, there
was little change in the composition of the subpopula-
tions during ART in the three animals. Prior to therapy
failure, the dominant subpopulations were wild type even
during ART. This analysis is supported by other reports,
indicating that wild type virus may be preserved during
therapy and reemerges after selective pressure is stopped

(4)

The presence of a variety of RT-SHIV subpopulations con-
taining K103N in M02350 and M04008 following EFV
monotherapy (Additional files 1 and 2), which never
became dominant, indicates that K103N alone did not
confer a growth advantage to the virus in either the pres-
ence or absence of therapy. The existence of multiple
minor subpopulations carrying either K103N AAC or AAT
suggests that different subpopulations acquired them
independently, rather than from a common ancestor,
implying that a large effective population size must have
been present pre-therapy. By contrast, the outgrowth of a
single clonal subpopulation resistant to both EFV and FTC
that resulted in therapeutic failure implies that the K103N
population may have been so small that the M184I vari-
ant was present at a low frequency at the time of initiation
of combination therapy. Similarly, a singe clonal popula-
tion containing both K103N and K65R was present only
briefly during combination therapy.

Remarkably, before the doubly resistant population
became dominant in macaque M02350, a wild type sub-
population (sub4, Figure 3) present at low frequency
before week 22 became the dominant species. Indeed its
growth in the population between weeks 23 and 24 was
both in relative terms (about 18 to 50% of all popula-
tions) and in absolute terms (1620 to 33810 ¢/ml, Figure
4), indicative of replication and not simply due to popu-
lation shift. This subpopulation then declined rapidly (at
least relatively) to 5% at week 25 and 2% at week 26. It
could be that there were beneficial features not directly
involved in drug resistance in this variant. Understanding
the reason for this phenomenon will await further experi-
mentation.

All monkeys in this study were inoculated with a cell cul-
ture supernatant containing RT-SHIV, which was a mix-
ture containing a dominant subpopulation that
accounted for 80% of the virus in the challenges. In the
two monkeys, M03250 and M04008, this dominant cell
supernatant subpopulation was rapidly replaced by new

http://www.retrovirology.com/content/6/1/101

dominant subpopulations (Figures 3 and 5) characterized
by the V75L mutation not detected in the inoculum. In
M04007, the dominant cell supernatant subpopulation
persisted throughout the study (Figure 6). The different
fates of the challenge virus within the different animals
are perhaps due to differences in host genetics or immu-
nity. V75 is polymorphic in untreated HIV-1 infected
patients and it has been suggested that its side chain stabi-
lizes the fingers domain of RT and that its peptide back-
bone interacts with single-stranded DNA templates [25].
It was also reported in other macaque RT-SHIV studies
[26,27], without quantitative analysis. While V75T causes
resistance to dideoxyribonucleoside RT inhibitors [28],
V75L has not been reported to be a drug resistance muta-
tion. It has, however, been implicated as a secondary
mutation for quinoxaline (an NNRTI inhibitor) in vitro
[29]. V75L appeared in that study after the introduction of
the quinoxaline resistant mutation G190Q. In our study,
V75L appeared before the emergence of any drug resistant
mutations, and it spread to almost all subpopulations in
later time points. This pattern suggests that V75L probably
conferred a selective advantage to the virus on its own,
rather than being secondary to known drug resistant
mutations. In M04007 V75L was not detected at week 13
and the only V75L subpopulation found in week 17 did
not persist or spread to other subpopulations at later time
points, suggesting that the selective advantage it confers
may be host specific. Since ultradeep sequencing showed
that this mutation was present at less than 0.01% of the
genomes in the inoculum, it must have arisen de novo
and been selected in all three macaques. V75 has been
shown to be within a human A3 supertype CTL epitope
(Los Alamos HIV Immunology Database). Further studies
are needed to investigate if this mutation is also within a
macaque CTL epitope.

We observed a rapid increase in the frequency of another
common polymorphism, L214F, in M03250 from 0% at
week 0 to 41% at week 10, and 100% at week 25. The fre-
quency of 214F increased much more slowly in M04008,
and 214F was not observed at all in M04007. The 214F
mutation is associated with nucleoside analogue muta-
tion cluster 2 (D67N+K70R+K219Q+T215F) and nega-
tively associated with nucleotide analogue mutation
cluster 1 (M41L+L210W+T215Y) [30,31]. Our data indi-
cate that 214F might be associated with a negative virolog-
ical response to NNRTI treatment because of its low
frequency in M04008 and M04007, which responded well
to the NNTRI treatment, and its rapidly increasing fre-
quency in M03250, which failed the treatment. L214F was
reported in previous RT-SHIV studies [26,27], although
no quantitative analysis was reported.
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Conclusion

This study quantitatively describes virus evolution and
population dynamics patterns in an animal model. Our
quantitative approach of viral population dynamics
allows us to observe the relative competitiveness of differ-
ent viral variants prior to and during antiretroviral treat-
ment. Our results imply that RT-SHIV in infected
macaques provides a valuable model for understanding
the shifting patterns of HIV subpopulations in infected
humans and the roles played by factors including popula-
tion size, selection and drift, and antiviral therapy. Further
studies will be needed to determine how well this model
recapitulates the behavior of HIV-1 in patients treated
with ART.

Methods

Three pigtail macaques that were housed at the Washing-
ton National Primate Research Center according to Amer-
ican Association for Accreditation of Laboratory Animal
Care standards were infected intravenously with 105 infec-
tious units of RT-SHIV,,. [16,17]. The macaques were
treated orally with 200 mg EFV (Sustiva; Bristol Myers-
Squibb, Princeton, NJ) on days 1, 2, and 4 at 13 weeks
post-infection. The animals subsequently received daily
ART consisting of TNF (20 mg/kg, subcutaneous; Gilead
Sciences, Foster City, CA), FTC (50 mg/kg, subcutaneous;
Gilead), and EFV (200 mg, oral) for 20 weeks beginning
at week 17. Plasma samples were collected weekly
throughout the study.

SGS was used to sequence the viral RNA. Briefly, viral RNA
was extracted for cDNA synthesis as described previously
[32,33]. To obtain PCR products for SGS, the cDNA was
diluted until approximately 30% of the PCR reactions
yielded DNA product. cDNA was added to the PCR mix
containing primers 2195F (5' AAA CAA TGG CCA TTG
ACA GAA GA 3') and 2818R (5' CCA AAG GAATGG AGG
TTC TTT CTG 3'), and then nested PCR primers B2203F
(5' ATG GCC ATT GAC AGA AGA AAA AAT 3') and
B2814R (5' AGG AAT GGA GGT TCTTTC TGA TGT TT 3")
to amplify a 620 nucleotide fragment of HIV-1 RT. In
most cases, more than 30 sequences were obtained from
each sample. Sequence subpopulation analyses were per-
formed using an in-house computer program written in
Perl scripting language (available upon request) and using
MEGA 4 [34]. Sequences obtained from each plasma sam-
ple were compared to identify unique subpopulations. A
unique subpopulation was defined as one or more virus
genome fragments of identical sequence. The dominant
virus subpopulation was defined as the subpopulation
containing the largest number of sequences at each time
point. Subpopulations from each sample were compared
to analyze the population dynamics of HIV-1 RT prior to
and during ART. Drug resistant mutations were identified

http://www.retrovirology.com/content/6/1/101

based on Stanford HIV Drug Resistance Database defini-

tions http://hivdb.stanford.edu.
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