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Abstract

Background: Despite the large amount of data available on the molecular mechanisms that
regulate HIV-I transcription, crucial information is still lacking about the interplay between
chromatin conformation and the events that regulate initiation and elongation of viral transcription.
During transcriptional activation, histone acetyltransferases and ATP-dependent chromatin
remodeling complexes cooperate with histone chaperones in altering chromatin structure. In
particular, human Nucleosome Assembly Protein-1 (hNAP-1) is known to act as a histone
chaperone that shuttles histones H2A/H2B into the nucleus, assembles nucleosomes and promotes
chromatin fluidity, thereby affecting transcription of several cellular genes.

Results: Using a proteomic screening, we identified hNAP-1 as a novel cellular protein interacting
with HIV-1 Tat. We observed that Tat specifically binds hNAPI, but not other members of the
same family of factors. Binding between the two proteins required the integrity of the basic domain
of Tat and of two separable domains of hNAP-1 (aa 162-290 and 290-391). Overexpression of
hNAP-1 significantly enhanced Tat-mediated activation of the LTR. Conversely, silencing of the
protein decreased viral promoter activity. To explore the effects of hNAP-| on viral infection, a
reporter HIV-1 virus was used to infect cells in which hNAP-1 had been either overexpressed or
knocked-down. Consistent with the gene expression results, these two treatments were found to
increase and inhibit viral infection, respectively. Finally, we also observed that the overexpression
of p300, a known co-activator of both Tat and hNAP-1, enhanced hNAP- | -mediated transcriptional
activation as well as its interaction with Tat.

Conclusion: Our study reveals that HIV-1 Tat binds the histone chaperone hNAP-I both in vitro
and in vivo and shows that this interaction participates in the regulation of Tat-mediated activation
of viral gene expression.
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Background

Efficient packaging of DNA in a highly organized chroma-
tin structure inside the cell is one of the most remarkable
characteristics of all eukaryotic organisms. Chromatin
assembly and disassembly are dynamic biological proc-
esses that increase chromatin fluidity and regulate the
accessibility of the genome to all DNA transactions,
including transcription, DNA replication and DNA repair.
The basic structural unit of eukaryotic chromatin is the
nucleosome, formed by the wrapping of DNA around an
octamer of core histone proteins. By restricting the access
to DNA-binding factors and impeding elongation by RNA
polymerase II (RNAPII), the nucleosome is not only a
structural unit of the chromosome, but perhaps the most
important regulator of gene expression (for recent
reviews, see refs. [1,2]). Chromatin structure is modulated
by the covalent modifications of the N-termini of the core
histones in nucleosomes and by the action of ATP-
dependent chromatin remodeling complexes. In particu-
lar, histone acetylation at the promoter of genes, mediated
by histone acetyltransferases (HATs), has been shown to
be necessary, albeit not sufficient, for transcriptional acti-
vation [2,3].

Chromatin assembly is a stepwise process which requires
histone chaperones to deposit histones on forming nucle-
osomes (reviewed in refs. [4-7]). The Nucleosome Assem-
bly Protein-1 (NAP-1) is one of the major histone
chaperones involved in this process. This factor belongs to
the NAP family of proteins, which is characterized by the
presence of a NAP domain [8]. NAP-1 is conserved in all
eukaryotes from yeast to humans [9-12], and is responsi-
ble for the incorporation of two histone H2A-H2B dimers
to complete the nucleosome (reviewed in ref. [7]). The
protein acts as a nucleo-cytoplasmic shuttling factor that
delivers H2A-H2B dimers from cytoplasm to the chroma-
tin assembly machinery in the nucleus [13]. In addition,
NAP-1 has been involved in the regulation of cell-cycle
progression [14-16], incorporation and exchange of his-
tone variants [17-19], and promotion of nucleosome slid-
ing [20].

Most relevant to the regulation of gene expression, the
chromatin-modifying activity of histone chaperones also
facilitates transcription. In particular, recent information
suggests that HAT complexes as well as ATP-dependent
chromatin remodeling complexes cooperate with histone
chaperones in altering chromatin structure during tran-
scriptional activation [21-24]. In addition, NAP proteins
have been reported to interact with the histone acetyl-
transferase (HAT) and transcriptional coactivator p300/
CBP [25-27], suggesting that NAPs may augment activa-
tion by all the transcription factors that use p300/CBP as
a co-activator. Accordingly, a yeast two-hybrid screen
revealed that hNAP-1 forms a complex with the HPV E2
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transcription factor, and a complex formed by hNAP-1, E2
and p300 proved able to activate transcription in vitro
[28].

One of the promoters that show exquisite sensitivity to
regulation by chromatin structure and its modifications is
the long terminal repeat (LTR) of the Human Immunode-
ficiency Virus type 1 (HIV-1) (reviewed in ref. [29]). Fol-
lowing infection of susceptible cells, the HIV-1 provirus
becomes integrated into the host genome and, for still
poorly understood reasons, the LTR promoter enters a
latent state and becomes silenced by chromatin confor-
mation [29,30]. Independent of the site of integration,
two distinct nucleosomes are precisely positioned in the 5'
LTR, separated by a nuclease-hypersensitivity region con-
taining the enhancer and basal promoter elements [31-
34]. Genomic footprinting experiments performed in
either activated or latently infected cells have revealed that
most of the critical protein-DNA interactions in the pro-
moter region are preserved, independent from the LTR
activation state [35,36]. This observation first indicated
that the transcriptional activation of the integrated LTR is
not primarily restricted by DNA target site accessibility,
but occurs through the modulation of chromatin confor-
mation. Indeed, Nuc-1, which is positioned near the viral
mRNA start site, appears to exert a repressive role on tran-
scription; this nucleosome becomes remodelled when
HIV-1 transcription is activated [37,38]. Which are the fac-
tors involved in chromatin remodelling during transcrip-
tional activation, besides the recruitment of several HATs
[39], is a still poorly addressed question.

One of the key factors involved in transcriptional activa-
tion of the provirus is the HIV-1 Tat protein, a highly unu-
sual transactivator that binds an RNA element (TAR)
positioned at the 5' end of the primary proviral transcript
[40]. Tat activates HIV-1 transcription by promoting the
assembly of transcriptionally active complexes at the LTR
by multiple protein-protein interactions. Over the last few
years, a number of cellular proteins have been reported to
interact with Tat and to mediate or modulate its activity.
Among these interacting partners, a major role can be
ascribed to the P-TEFb complex [41-43] and to several cel-
lular HATS, including p300/CBP, P/CAF and GCNS5 [44-
47]. P-TEFb promotes processive transcription by phos-
phorylating the RNAPII carboxy-terminal domain (CID)
[48,49], while HATs induce the activation of chromati-
nized HIV-1 LTR through the acetylation of histones [39].
Of interest, optimal Tat-mediated activation of viral gene
expression also requires the function of ATP-dependent
chromatin-remodelling complexes [50].

In this work we address the issue of identifying novel cel-
lular interactors of Tat through a proteomic screening. We
identify human NAP-1 as a major Tat partner and show
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that the interaction between the two proteins is important
for Tat-mediated transcriptional activation and for effi-
cient viral infection.

Results

Identification of cellular factors binding to HIV-I Tat by
proteomic analysis

With the aim of identifying cellular partners of HIV-1 Tat
through a proteomic approach, we used an expression
vector encoding the open reading frame of full length Tat
(101 aa) fused with a C-terminal Flag tag. This epitope-
tagged version of Tat was active in HIV-1 LTR transactiva-
tion similar to the wild type protein (data not shown).
Extracts from HEK 293T cells transfected with Flag-
Tat101, as well as from mock-transfected cells, were
immunoprecipitated with M2 Flag antibody conjugated
to agarose beads. Affinity purified Tat-Flag protein and co-
purifying cellular factors were subsequently eluted with
an excess of Flag peptide, run on a 6-15% gradient SDS-
PAGE gel and stained with silver stain (Figure 1). Individ-
ual bands that were apparent only in the sample from Tat-
Flag transfected cells were excised and their identification
attempted by ESI-MS/MS (Electrospray tandem Mass
Spectrometry) analysis of peptides obtained after trypsin
digestion. Five bands were unequivocally identified, as
shown in Figure 1. One corresponding to Tat-Flag itself;
B23/nucleophosmin, a nucleolar protein possibly associ-
ated with ribosome assembly and/or transport [51]; the
p32 protein, an inhibitor of the ASF/SF2 splicing regulator
[52], also known as Tat-associated protein (TAP) [53,54];
ribosomal protein S4 and the histone chaperone NAP-1
(Nucleosome Assembly Protein-1). The proteomic analy-
sis was repeated and the results were also confirmed by
sequencing proteins directly from the Flag beads, rather
than from gel-excised bands.

Since overexpressed Tat is known to accumulate in the
nucleoli, probably due to its unspecific RNA binding
capacity, and given the observation that the same pro-
teomic assay resulted in the identification of a number of
other ribosomal proteins when performed in the absence
of RNase (data not shown), no further work was per-
formed on the B23/nucleophosmin and ribosomal S4
proteins. In this respect, other investigators have already
shown that Tat binds B23/nucleophosmin when both
proteins are overexpressed [55] and that B23/nucleophos-
min protein is required for Tat nucleolar localization but
not for promoter transactivation [56]. The rest of our
research was therefore focused on the characterization of
the hNAP-1/Tat interaction.

HIV-1 Tat interacts with hNAP-1 in vivo

A schematic representation of hNAP-1 is shown in Figure
2A. The protein has 391 amino acids, contains three acidic
domains and has a long KIX-binding domain. This

http://www.retrovirology.com/content/5/1/8

A IP o-Flag

»
o& ,,j<\
AN
66.3 —
4 hNAP-1
55.4 — |
—1
36.5— - o
2
31— - 3
<« Tat-Flag
h
M

1 MADIDNKEQS ELDQDLDDVE EVEEEETGEE TKLKARQLTV QMMQNPQILA
51 ALQERLDGLV ETPTGYIESL PRVVKRRVNA LKNLQVKCAQ IEAKFYEEVH
101 DLERKYAVLY QPLFDKRFEI INAIYEPTEE ECEWKPDEED EISEELKEKA
151 E;E;EKKDEE KEDPKGIPEF WLTVFKNVDL LSDMVQEHDE PILKHLKDIK
201 VKFSDAGQPM SFVLEFHFEP NEYFTNEVLT KTYRMRSEPD DSDPFSFDGP
251 EIMGCTGCQI DWKKGKNVTL KTIKKKQKHK GRGTVRTVTK TVSNDSFEFNF
301 FAPPEVPESG DLDDDAEAIL AADFEIGHFL RERIIPRSVL YFTGEAIEDD
351 DDDYDEEGEE ADEEGEEEGD EENDPDYDPK KDONPAECKQ Q

Figure |

Identification of Tat-interacting proteins by mass
spectrometry. A. Flag-immunoprecipitated material from
Tat-Flag- and mock-transfected HEK 293T cells was resolved
by 6-10% gradient SDS-PAGE gel, followed by silver staining.
Protein bands present exclusively in the sample transfected
with Tat-Flag were excised from the gel and their identifica-
tion attempted by ESI-MS/MS. The identified proteins, in
addition to hNAP-I and Tat-Flag, are indicated (I: B23/nucle-
ophosmin; 2: pre-mRNA splicing factor SF2p32 — Tat-associ-
ated protein TAP; 3: ribosomal protein S4). B. Amino acid
sequence of the human NAP-1| protein (locus NP_631946) —
391 aa. The underlined amino acid sequences correspond to
peptides obtained from MS/MS analysis of three independent
preparations (P = 7.8 x 10-19).

domain and the C-terminal acidic domain are very con-
served in other members of the NAP family of histone
chaperones, including SET-TAF-I (47% and 68% amino
acid homology in the two regions respectively [57,58];
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Co-immunoprecipitation of Tat with transfected and endogenous hNAP-I. A. Schematic representation of hNAP-1
structure. The acidic domains of the protein are shown by black boxes, with the indication of their boundary amino acids. The
localization of nuclear export and nuclear localization signals (NES and NLS respectively) are indicated. B. Schematic represen-
tation of the regions of amino acid homology between hNAP-1 and hSET/TAF-I. C. Co-immunoprecipitation of transfected
hNAP-| with Tat. The plasmids indicated on top of the figure were transfected into HEK 293T cells. The upper two panels
show western blots with the indicated antibodies after immunoprecipitation using an anti-Flag antibody; the lower two panels
show western blotting controls from whole cell lysates (WCL) from transfected cells to show the levels of expression of the
transfected proteins. D. Co-immunoprecipitation of endogenous hNAP-| with Tat. The experiment was performed by trans-
fecting HEK 293T cells with plasmids encoding GFP-Tat or GFP alone, followed by co-immunoprecipitation with anti-GFP anti-
body. GFP-Tat retains full transcriptional and trafficking capacities as wt Tat [69, 74, 75]. E. GST-pulldown experiment using
GST-Tat and HEK 293T whole cell lysates. GST-Tat, but not control GST protein, pulled down endogenous hNAP-1.

Figure 2B).

The interaction between HIV-1 Tat and hNAP-1 was con-
firmed by co-immunoprecipitation analysis. When
expression vectors for Tat-Flag and for an N-terminal HA-
tagged version of hNAP-1 (HA-NAP-1) were transfected
into HEK 293T, HA-NAP-1 was co-immunoprecipitated
with Tat using anti-Flag antibody (Figure 2C). The specif-
icity of interaction of the two proteins is underlined by the
observation that no co-immunoprecipitation was
observed when Tat was co-expressed with HA-hSET/TAF-I,
despite its sequence homology with hNAP-1 (Figure 2C).

Tat was also found to bind endogenous hNAP-1. As
shown in Figure 2D, an anti-GFP antibody was able to
precipitate endogenous hNAP-1, as detected with an anti-
hNAP-1 antibody, from extracts of cells transfected with

GFP-Tat but not from extracts of cells transfected with
control GFP.

Finally, a bacterially expressed and purified GST-Tat
recombinant protein was also able to pull-down endog-
enous hNAP-1 from a HEK 293T cell extract (Figure 2E).

Binding domain analysis

The domains within hNAP-1 and HIV-1 Tat that were
responsible for the interaction were defined by in vitro
GST-pulldown assays. A series of N- and C-terminal dele-
tion mutants of hNAP-1 (Figure 3A) was expressed after
fusion to GST, and incubated with 35S-labeled full-length
HIV-1 Tat obtained by in vitro translation. All deletants
lacking the N-terminus of the protein up to aa 161 bound
Tat as efficiently as the full length protein; in contrast,
binding was impaired when the hNAP-1 domain from
residues 163 to 289 as well as the C-terminal region from
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Figure 3

Mapping of hNAP-1 and Tat interacting domains. A. Schematic representation of hNAP-| protein and of its deletion
mutants obtained as GST fusion proteins. The capacity of binding to Tat — see experiment in panel B — is indicated on the right
side of each mutant. The two dotted boxes indicate the hNAP-1 domains interacting with Tat. B. Representative GST pull-
down experiment using the indicated hNAP-1 mutants and radiolabelled Tatl0I protein. The autoradiography shows the
amount of Tat binding to each mutant; the histogram on top shows densitometric quantification of data, expressed as fold bind-
ing with respect to background binding to GST alone (set as |). The lower panel shows the Coomassie stained gel at the end
of the binding experiment. The experiment was repeated at least three times with similar results. C. Schematic representation
of HIV-1 Tat protein and of its mutants obtained as GST fusion proteins. The capacity of binding to hNAP-| — see experiment
in panel D —is indicated on the right side of each mutant. The dotted box corresponds to the basic domain of Tat, which binds
hNAP-I. D. Representative GST pulldown experiment using the indicated Tat mutants (obtained as GST fusion proteins) and
in vitro transcribed and translated hNAP-I protein. The autoradiography shows the amount of hNAP-1 binding to each
mutant; the histogram on top shows densitometric quantification of data, expressed as fold binding with respect to background
binding to GST alone (set as |). The lower panel shows the Coomassie stained gel at the end of the binding experiment. The
experiment was repeated at least three times with similar results.

residues 290 to 391 were deleted (Figure 3B). These
results indicate that Tat binds two separable domains
within hNAP-1, one internal from amino acids 162 to 290
and one C-terminal from residues 290 to 391.

Next we analyzed the domains of Tat responsible for the
interaction with hNAP-1. GST pull-down experiments
were performed using wild type Tat (101 aa), Tat72 (lack-

ing the second exon), Tat86 (HXB2 clone), and mutated
derivatives of Tat86 carrying cysteine to alanine mutations
at positions 22, 25 and 27 in the cysteine-rich domain or
arginine to alanine mutations at positions 49, 52, 53, 55,
56 and 57 in the basic domain (Tat86 C(22-27)A and
R(49-57)A respectively); Figure 3C. These proteins,
obtained as C-terminal fusions to GST, were used to pull-
down 35S-methionine-labelled hNAP-1 obtained by in
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vitro transcription/translation. The results obtained dem-
onstrated that hNAP-1 bound the basic domain of HIV-1
Tat (Figure 3D).

hNAP-I and Tat cooperate in the activation of HIV-1 gene
expression

One of the essential molecular events that parallel Tat-
driven transcriptional activation is the modification of
chromatin structure at the HIV-1 promoter [34,39]. We
therefore investigated whether NAP-1 might contribute to
Tat transactivation. A reporter construct containing the U3
and R sequences of the HIV-1 LTR upstream of the luci-
ferase gene was co-transfected into HeLa cells, together
with vectors for HA-tagged hNAP-1 and HIV-1 Tat. As
shown in Figure 4A, hNAP-1, when co-transfected with
Tat, significantly enhanced Tat-mediated transactivation
of the LTR; hNAP-1 alone had no effect on promoter activ-

1ty.

To test the requirement for endogenous hNAP-1 protein
in Tat-mediated HIV-1 LTR transactivation, luciferase
assays were performed with Hela cells in which expres-
sion of hNAP-1 was down-regulated by RNAi. A specific
siRNA oligonucleotide was designed which was able to
silence ~80% of the expression of its target from 48 hours
after transfection onward, as assessed by western blot
analysis (Figure 4B). In hNAP-1-knock down cells, Tat
transactivation of the HIV-1 LTR was significantly
impaired, compared to cells treated with a control siRNA.

Collectively, the results of these experiments indicate that
hNAP-1 participates in Tat-mediated control of HIV-1
gene expression.

$p300, hNAP-I and Tat synergistically activate HIV-1
transcription

Previous work has indicated that NAP-1 interacts with the
cellular transcriptional co-activator and histone acetyl-
transferase p300 [25-27]. Since p300 is also an essential
co-factor for Tat transactivation, we investigated the
effects of hNAP-1 and p300 on Tat-mediated transactiva-
tion. For this purpose, HeLa cells were transfected with an
LTR-luciferase reporter plasmid and expression vectors for
p300 and hNAP-1 together with Tat. As previously
described [47], p300 enhanced Tat-driven transcriptional
activation; when hNAP-1 was co-transfected, transcrip-
tion was further increased (~3.5 fold Tat+hNAP-1+p300
over Tat alone; Figure 4C).

As shown in the co-immunoprecipitation experiment in
Figure 4D, the overexpression of p300 in the same exper-
imental conditions did not affect the levels of expression
of NAP-1 or Tat proteins (as shown in the anti-Flag immu-
noblot). However, in cells overexpressing p300, the
amount of hNAP-1 protein co-immunoprecipitating with

http://www.retrovirology.com/content/5/1/8

Tat was markedly increased, a result that is consistent with
the possibility that p300 might stabilize the formation of
the Tat-hNAP-1 complex in vivo.

Effect of ANAP-1 on HIV-I infection

To further examine the effect of hNAP-1 on viral replica-
tion, we used an HIV vector in which a portion of nef had
been replaced by the firefly luciferase gene; two frame-
shifts inactivate vpr and env in this clone, thus blocking
subsequent rounds of viral replication. Infectious virus,
pseudotyped with VSV-G, was produced by transfections
of HEK 293T cells, and used to infect HeLa cells in which
hNAP-1 had been earlier either overexpressed or knocked
down by RNAI. As shown in Figure 5A, the overexpression
of hNAP-1 (as assessed by western blot analysis) resulted
in a 5-fold increase of luciferase activity in HA-hNAP-1-
transfected cells compared to mock-transfected cells. Con-
versely, in cells in which the levels of hNAP-1 had been
reduced to <20% by RNAI, viral luciferase activity was
reduced 3-fold compared to control-treated cells (Figure
5B).

Taken together, these results support the conclusion that
hNAP-1 also plays an important activating role in the con-
text of HIV-1 infection.

Discussion

Activation of the HIV-1 LTR is a complex event involving
the coordinated function of several cellular proteins act-
ing by both releasing the negative inhibition that chroma-
tin imposes on the promoter and inducing the
recruitment of elongation-competent RNPII-containing
complexes. Tat appears to exert an essential activating
function for both these processes. In the last decade, a
number of laboratories have reported the identification of
various cellular factors that mediate Tat function. These
factors fall in several broad categories, including members
of the basal transcriptional machinery, among which
RNAPII itself, ubiquitous transcription factors, transcrip-
tional co-activators, histone-acetyltransferases, and others
[29,59,60]. Our proteomic screening led to the identifica-
tion of yet another cellular partner, hNAP-1, that appears
to be essentially involved in mediating Tat function. We
could confirm the interaction between Tat and hNAP-1
both in vitro and inside the cells, and demonstrate its spe-
cificity by showing that Tat was not able to co-precipitate
hSET/TAF 1, another member of the NAP family of pro-
teins. The relevance of the detected interaction between
Tat and hNAP-1 was further reinforced by the observa-
tions that the overexpression of hNAP-1 stimulated Tat-
mediated transactivation of the LTR as well as increased
HIV-1 infection. Conversely, the down-regulation of the
protein by RNAi impaired both transcription and viral
infection. To our knowledge, this is the first demonstra-
tion of an interaction between Tat and a histone chaper-
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Figure 4

hNAP-I cooperates with Tat in LTR transactivation. A. hNAP-| synergizes with Tat in transcriptional activation. HelLa
cells were cotransfected with a reporter construct containing the HIV-1 LTR upstream of the luciferase gene, and with vectors
for HA-tagged hNAP-I (100 ng) and HIV-I Tat (5 and 25 ng), as indicated. The histogram shows mean % s.d. of at least three
independent experiments; the results are shown as fold transactivation over LTR-luciferase reporter alone. The co-expression
of hNAP-1 significantly increased Tat transactivation of the LTR promoter. The western blot at the bottom shows the levels of
transfected hNAP-I protein in a representative experiment. B. hNAP-| knock down decreases Tat transactivation. Hela cells
were transfected with a specific siRNA against hNAP-1 or a control siRNA, and then transfected with the LTR-luciferase
reporter together with Tat (5 and 25 ng). The histogram shows mean * s.d. of at least three independent experiments; the
results are shown as fold transactivation over LTR-luciferase reporter alone. The western blot at the bottom shows the levels
of endogenous hNAP-| protein and of tubulin as a control in a representative experiment. C. hNAP-1, Tat and the acetyltrans-
ferase p300 synergistically activate viral transcription. Hela cells were transfected with LTR-luciferase reporter plasmid and
with vectors for HIV-1 Tat (5 ng), HA-hNAP-1 (100 ng) and p300 (100 ng), as indicated. After 24 h from transfection, luciferase
assays were performed. The histogram shows mean = s.d. of at least three independent experiments; the results are shown as
fold transactivation over LTR-luciferase reporter alone. D. p300 enhances Tat-hNAP-1 interaction in vivo. The plasmids indi-
cated on top of the figure were transfected into HEK 293T cells. The upper panel shows western blots with the indicated anti-
bodies after immunoprecipitation using an anti-Flag antibody; the lower three panels show western blotting controls from
whole cell lysates (WCL) from transfected cells to show the levels of expression of the transfected proteins.
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Figure 5

Effect of hANAP-1 on HIV-I infection. A. Overexpres-
sion of hNAP-| enhances LTR transcription upon HIV-|
infection. Hela cells were transfected with an expression
vector for HA-hNAP-I or with a control vector, and then
infected with VSG-luciferase HIV-I vector. Luciferase activity
was measured after 24 h post-infection. The mean * s.d. of at
least three different experiments is shown. The panel on the
right side shows anti-HA western blottings to assess HA-
hNAP-1 expression in a representative experiment. B.
Silencing of hNAP-1 impairs LTR transcription upon HIV-I
infection. Hela cells were treated with an siRNA directed
against hNAP-1 or a control siRNA. Forty-eight hours after
the beginning of siRNA treatment, cells were infected with
the luciferase reported virus, and luciferase assays were per-
formed on cell lysates 24 hours later. The mean % s.d. of at
least three different experiments is shown. The panel on the
right side shows anti-hNAP-1 western blottings to assess the
levels of endogenous hNAP-I and tubulin expression in a
representative experiment.

one and a first proof of the involvement of this class of
proteins in the regulation of proviral transcription.

Of notice, and in contrast to our expectations, our pro-
teomic screening did not detect several of the cellular pro-
teins previously reported to associate with Tat and to
mediate some of its functions. There are several possible
explanations for this outcome. Our proteomic screening
was conducted by immunoprecipitating a Flag epitope-
tagged version of Tat (which was fully active transcription-
ally) followed by RNase/DNase treatment, elution with a
Flag peptide and resolution of Tat-associated proteins by
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gradient gel electrophoresis. In particular, we found that
RNase treatment was essential to avoid the purification of
a vast number of RNA-binding proteins unspecifically co-
immunoprecipitating with Tat (data not shown). It might
well be envisaged, however, that this clearing step might
also affect the binding of Tat to some of its known part-
ners, the interaction of which is strengthened by RNA
bridging. In addition, RNA removal also frees the basic
domain of Tat, thus rendering this region available for the
interaction with hNAP-1. An additional explanation for
the lack of other known Tat partners in our screening
relates to the relative abundance of hNAP-1 in the cells,
compared to other proteins such as p300 and P/CAF
HATSs, or Cyclin T1. Since our method relied on the iden-
tification of protein bands in silver-stained gels, a likely
possibility is that we missed the detection of lower abun-
dance proteins. Finally, it is worth however noting that
other proteomic screenings aimed at the identification of
cellular partners to other proteins also failed in identify-
ing obvious candidates, while successfully discovering
new factors essential for the function of the investigated
proteins (see, among others, refs. [53,61]).

The basic region of Tat was found to bind two separable
domains within hNAP-1, one internal from amino acids
162 to 290 and one C-terminal from residues 290 to 391.
These domains correspond to a series of alternate a helix/
B sheet regions known to be involved in the interaction
with histones and other cellular proteins (see ref. [8,62]
and citations therein). Of notice, the observation that Tat
does not bind the highly acidic protein hSET/TAF I,
another member of the NAP family with high structural
and functional homology to hNAP-1 [57,58], argues in
favor of a specific interaction between Tat and hNAP-1
which is not merely based on electrostatic interactions.

There is growing evidence that hNAP-1 plays important
roles during transcriptional activation [21-24]. In particu-
lar, hANAP-1 and other histone chaperones both cooperate
with ATP-dependent chromatin remodeling complexes
[25,63] and participate in the formation of protein com-
plexes also containing p300/CBP [25-28]. Taken together,
these observations clearly suggest that hNAP-1 may serve
as an interaction hub between transcriptional coactivators
and chromatin. As far as p300/CBP is specifically con-
cerned, p300 has been shown to directly bind the C-termi-
nus of hNAP-1, namely the same region that is also
involved in binding to Tat. Since the basic domain of Tat
is also involved in binding to p300 [47], we cannot rule
out the possibility that p300 might act as a scaffold for the
simultaneous interaction with the two proteins. While
further biochemical studies are clearly needed to ascertain
this possibility, it is of interest to observe that the overex-
pression of all the three proteins together determined an
increase in the levels of LTR transcription that is higher
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than those obtained by overexpression of either p300 or
hNAP-1 alone together with Tat. In addition, expression
of p300 did not affect the levels hNAP-1 or Tat proteins,
but markedly increased their binding in vivo. This obser-
vation is again in favor of the possibility that p300 might
exert a stabilizing role on the Tat-hNAP-1 interaction. This
possibility would be consistent with the proposed func-
tion for hNAP-1 in regulating transcription in all p300-
dependent promoters [27,28].

What might be the actual mechanism by which hNAP-1
might facilitate Tat transactivation? First, overexpression
of hNAP-1 significantly increases the overall levels of Tat
inside the cells. This result is consistent with the possibil-
ity that the interaction with hNAP-1 might increase the
stability of Tat. Second, and more relevant to a specific
and direct role of hNAP-1 on the LTR promoter, previous
results have indicated that the acetylation of histones by
p300 helps transfer histones H2A and H2B from nucleo-
somes to hNAP-1 [26], and that, at least in vitro, the
absence of these histones correlates with increased gene
activity, probably by decreasing the level of chromatin
folding [64,65]. On the basis of these observations, we
can speculate that hNAP-1 and p300, brought to the LTR
promoter through their interaction with Tat, might coop-
erate in the creation of an open-chromatin environment,
favorable for gene expression. Of interest, a recent
genome-wide analysis in fission yeast has revealed that
chromatin remodeling factors and NAP-1 colocalize
within promoter regions, where they disassemble nucleo-
somes near the transcriptional start site, an event that is
linked to changes in the levels of histone acetylation [24].

Conclusion

In conclusion, this proteomic study reveals that the his-
tone chaperone hNAP-1 is an important cellular factor
specifically binding HIV-1 Tat. The interaction between
the two proteins is involved in the regulation of Tat-medi-
ated activation of viral gene expression, exerting a positive
role on transcription. In particular, our findings indicate
that HIV-1 Tat, hNAP-1 and p300 functionally cooperate
to induce transcriptional activation of the HIV-1 LTR pro-
moter.

Methods

Protein purification and identification

Twenty-four hours after transfection, ~2 x 108 HEK 293T
cells were washed once in phosphate-buffered saline
(PBS) and lysed on ice in lysis buffer (150 mM NaCl/20
mM HEPES pH 7.9/0.5% NP-40/1 mM EDTA/1 mM DTT/
protease inhibitor cocktail-Roche). The cell extract was
sonicated once and then centrifuged for 15" at 14,000 rpm
at 4°C. An aliquot of the cleared extract was kept as input,
while the rest was incubated with 100 ul of packed and
pre-equilibrated Flag M2 agarose beads overnight at 4°C.
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Beads were rinsed twice in lysis buffer, before treatment
with DNAse 1 (Invitrogen, according to manufacturer's
instructions) and RNAse A (150 mM NaCl/10 mM Tris
HCI pH 7.5/5 mM EDTA/10 units RNAse A, for 30" at
37°C) and then washed in the same buffer three times.
Immunocomplexes were eluted by adding 500 pg/ml Flag
peptide (Sigma) in lysis buffer. The eluate was concen-
trated by standard trichloroacetic acid precipitation and
resuspended in 1X sodium dodecylsulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) protein loading buffer.
Proteins were then subjected to 6-15% gradient SDS-
PAGE and then stained with silver stain. Stained proteins
were excised and processed for in-gel trypsin digestion fol-
lowing standard protocols. The resulting peptides were
extracted and purified on C18-Ziptips (Millipore) accord-
ing to the manufacturer's protocol and resuspended in 10
pl of 30% methanol, 0.5% acetic acid. Protein identifica-
tion was performed by the ICGEB Proteomics Facility by
analyzing the purified peptides by MALDI-TOF mass spec-
trometry using an ABI 4800 TOF/TOF instrument
(Applied Biosystems). The remaining sample was ana-
lyzed by LC-MS/MS using an LCQDeca mass spectrometer
(Thermo-Finnigan).

Cell cultures, plasmids and siRNAs

Hela and HEK 293T cells were cultured in Dulbecco's
modified Eagle's medium with Glutamax (Life Technolo-
gies, Inc.) supplemented with 10% fetal bovine serum
(Life Technologies, Inc.) and gentamicin (100 pug/ml) at
37°C in a humidified 95% air-5% CO, incubator.

All hNAP-1 encoding plasmids (wild type and mutants)
were a kind gift by G. Steger [28]. All other plasmids used
have already been described elsewhere [47,66-69].

RNA interference (RNAi) with hNAP-1 was performed
against the target sequence 5' AAGGAACACGAUGAACC
UAUU 3'. An siRNA targeted against the GFP RNA was
used as a control (5' GGCTACGTCCAGGAGCGCACC 3').
Synthetic double-stranded RNA oligonucleotides were
purchased by Dharmacon.

Co-immunoprecipitation

For co-immunoprecipitation analyses, HEK 293T cells
where transfected with the indicated plasmids using the
standard calcium phosphate coprecipitation method.
Twenty-four hours after transfection cells were washed
once in PBS and lysed on ice in 1 ml/dish lysis buffer (150
mM NaCl/20 mM HEPES pH 7.9/0.5% NP-40/1 mM
EDTA/1 mM DTT/protease inhibitor cocktail-Roche).
After sonication, cleared cell extracts were incubated with
pre-equilibrated Flag M2 agarose beads on a rotating
wheel for 4 hours at 4°C. Beads were washed twice with 1
ml of lysis buffer, treated with DNase 1 (Invitrogen,
according to manufacturer's instructions) and RNAse A
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(150 mM NaCl/10 mM Tris HCI pH 7.5/5 mM EDTA/10
units RNAse A, for 30' at 37°C) and then washed in the
same buffer three times.

Antibodies

Anti-hNAP-1 mouse monoclonal antiserum was a kind
gift from Y. Ishimi [70]. Mouse monoclonal anti-Flag M2
antibody, mouse monoclonal anti-tubulin, and mouse
monoclonal anti-Flag M2 agarose-conjugated beads were
purchased from Sigma. Rat monoclonal anti-HA high
affinity (3F10) antibody was purchased from Roche diag-
nostics. Rabbit polyclonal anti-GFP antibody SC8334 was
purchased from Santa Cruz Biotechnology.

Recombinant proteins

Glutathione S-transferase (GST), GST-Tat, GST-hNAP-1,
GST-Tat mutants and GST-hNAP-1 mutants were prepared
as already described [71]. Plasmids pcDNA3-Tat101 and
pcDNA3-HA-NAP-1 were used as templates to produce
the in vitro 35S-labeled Tat and hNAP-1 proteins, respec-
tively, by using the TNT Reticulocyte Lysate System
(Promega) according to the manufacturer's protocol.

GST pull-down assay

GST and GST-Tat recombinant proteins immobilized on
agarose beads were pre-treated with nucleases (see
below). HEK293T cells were lysed in 150 mM NaCl/20
mM HEPES pH 7.9/0.5% NP-40/1 mM EDTA/1 mM DTT/
protease inhibitors (Roche). Recombinant proteins and
cell extracts were incubated 1 hour and 30 minutes at 4°C,
and washed four times in lysis buffer.

In vitro binding assay

To remove contaminant bacterial nucleic acids, recom-
binant proteins were pretreated with nucleases (0.25 U/ul
DNase I and 0.2 pg/pl RNase) for 1 hour at 25°C in 50
mM Tris HCI, pH 8.0/5 mM MgCl,/2.5 mM CaCl,/100
mM NaCl/5% glycerol/1 mM DTT. Subsequently, GST
fusion proteins immobilized on agarose beads were
washed and resuspended in NETN buffer (20 mM Tris
HCI, pH 7.5/100 mM NaCl/1 mM EDTA/0.5% NP-40/1
mM DTT/1 mM PMSF) supplemented with 0.2 mg/ml
ethidium bromide to block the possible formation of
non-specific interactions between residual DNA and pro-
teins. 35S-labeled hNAP-1 or Tat101 proteins (400 cpm)
were added and incubated at 4°C on a rotating wheel.
After 90 min, bound proteins were washed twice with 0.3
ml of NETN with ethidium bromide, three times with 0.3
ml of NETN without ethidium bromide and once with 0.3
ml of 10 mM Tris HCI pH 8.0/100 mM NaCl. Finally,
bound proteins were separated by electrophoresis on a
12% SDS-polyacrylamide gel. Gels were stained and fixed
for 1 hour with 10% acetic acid/40% methanol/0.1%
Coomassie Brilliant blue G250, and destained with 10%
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acetic acid/40% methanol. Dried gels were quantitated by
Instant Imager (Packard).

Luciferase assay

Reporter gene assays were performed using pLTR-luci-
ferase plasmid as a reporter and pcDNA3-Tat101 as an
effector in the presence or absence of plasmids pcDNA3-
hNAP-1 and pCMV-p300. Hela cells were transfected
using Effectene Reagent (Quiagen, according to manufac-
turer's protocol), with 100 ng of pLTR-luciferase, 50 ng of
pcDNA3-hNAP-1 and 5 or 25 ng of pcDNA3-Tat101. A
Renilla luciferase expression plasmid, in which reporter
gene expression was driven by the CMV promoter, was
cotransfected to standardize each experiment for the effi-
ciency of gene transfer. Cells were harvested 48 hours post
transfection, and luciferase activity was measured with
Luciferase assay kit (Promega). The measured activities
were standardized by the activities of Renilla, and transac-
tivation was expressed as fold activation compared with
the basal activity of LTR-luciferase without effectors. All
experiments were performed in duplicate and repeated at
least three times.

For the transactivation experiments following RNAi, siR-
NAs were transfected using Oligofectamin Reagent (Invit-
rogen, according to manufacturer's protocol). After 36
hours from the beginning of siRNA treatment, cells were
transfected with LTR-luciferase and CMV-Renilla plasmids
and increasing amounts of pcDNA3-Tat101. Thirty-six
hours later luciferase assays were performed on cell
lysates.

In the case of infection with VSV-G-luciferase vectors, luci-
ferase assays were performed 24 hours after the beginning
of infection. For the gene-silencing experiments, cells were
infected 48 hours after siRNA transfection. To normalize
luciferase measures, protein concentrations in the lysates
were determined with Bradford reagent (BioRad, accord-
ing to manufacturer's protocol).

Virus production and infections

To produce VSV-G-luciferase vectors, HEK 293T cells were
transfected with pNL4.3-luciferase plasmid [72,73] and
VSV-G encoding plasmid at a ratio 3:1, according to a
standard calcium phosphate coprecipitation method.
Supernatants were collected 48 hours after the beginning
of transfections, centrifuged and filtered with a 45 pm
syringe.

Infections with viral supernatants was carried out for 6
hours in the presence of polybrene (Sigma) at a final con-
centration of 5 ug/ml.
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