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Abstract

Background: HIV-1 nucleoside reverse transcriptase inhibitors (NRTIs) have been used in the
clinic for over twenty years. Interestingly, the complete resistance pattern to this class has not been
fully elucidated. Novel mutations in RT appearing during treatment failure are still being identified.
To unravel the role of two of these newly identified changes, E40F and K43E, we investigated their
effect on viral drug susceptibility and replicative capacity.

Results: A large database (Quest Diagnostics database) was analysed to determine the
associations of the E40F and K43E changes with known resistance mutations. Both amino acid
changes are strongly associated with the well known NRTI-resistance mutations M41L, L210W and
T215Y. In addition, a strong positive association between these changes themselves was observed.
A panel of recombinant viruses was generated by site-directed mutagenesis and phenotypically
analysed. To determine the effect on replication capacity, competition and in vitro evolution
experiments were performed. Introduction of E40F results in an increase in Zidovudine resistance
ranging from nine to fourteen fold depending on the RT background and at the same time confers
a decrease in viral replication capacity. The K43E change does not decrease the susceptibility to
Zidovudine but increases viral replication capacity, when combined with E40F, demonstrating a
compensatory role for this codon change.

Conclusion: In conclusion, we have identified a novel resistance (E40F) and compensatory (K43E)
change in HIV-1 RT. Further research is indicated to analyse the clinical importance of these

changes.
Background not understood. Multiple studies have identified muta-
Shortly after the introduction of Zidovudine (AZT) in  tions at (at least) six codons in the reverse transcriptase
1987 it became clear that HIV-1 is able to develop resist-  (RT) enzyme (thymidine analogue associated mutations

ance to this drug [1,2]. Now, after twenty years of NRTI (TAMs); M41L, D67N, K70R, L210W, T215Y/F and
usage in the clinic the complete pattern of resistance is still ~ K219Q/E) that can cause a decrease in Zidovudine suscep-
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tibility [3-7]. HIV-1 develops these TAMs by two distinct
pathways: the TAM-1 pathway consisting of T215Y, M4 1L,
L210W and sometimes D67N or the TAM-2 pathway
including T215F, K70R, K219Q/E and D67N [8-10].
These substitutions cluster around the dNTP binding
pocket and confer resistance by increasing the excision of
the incorporated nucleoside analogue from the DNA
chain by a pyrophosphorolysis-like mechanism [11,12].

Recently, multiple epidemiological studies have identi-
fied novel mutations in HIV-1 RT showing a strong asso-
ciation with NRTI-treatment. These mutations include the
K20R, V35M, T39A, E40F, K43E/Q/N, A98G, K122E,
G196E, E203K/D, H208Y, D218E, H221Y, K223E/Q and
L228H/R changes [13-20]. Statistical methods have
shown positive associations with NRTI-resistance for
these substitutions. The appearance of a lysine to glutamic
acid change at position 43 (K43E) is strongly associated
with NRTI-treatment [20]. This mutation has an even
higher association with NRTI treatment when compared
to specific known drug-resistance mutations such as
M41L, K219E and K65R (Stanford HIV Drug Resistance
database). Yet, it is unknown why this mutation is being
selected. The glutamic acid to phenylalanine change at
codon 40 (E40F) is the result of as much as three transver-
sions and is absent in the untreated population. Both
changes are particularly interesting since they are located
in close proximity of the known M41L drug resistance
mutation.

Novel amino acid changes can be selected during (NRTI)
treatment for several reasons. They can reduce susceptibil-
ity to particular drugs and/or they can act as compensatory
mutations by improving the viral replication capacity
(RC). Alternatively, they can appear as a result of escape
from immunological pressure on wild type amino acids
[21]. It is important to understand the role of each of
these single mutations for the management of therapy-
failing patients and new drug development.

In this study we have investigated which mechanisms
explain the appearance of the E40F and K43E substitu-
tions during NRTI-treatment by generating a panel of site
directed mutants and analysing their replication capacity
as well as their drug sensitivities.

We have demonstrated that the E40F change results in an
increase in Zidovudine resistance and a decrease in RC.
The K43E does not decrease Zidovudine susceptibility but
increases RC, when combined with E40F, acting as a com-
pensatory mutation.

http://www.retrovirology.com/content/5/1/20

Results

Association of the E40F and K43E changes with NRTI-
treatment and resistance

To better understand the role of the E40F and K43E sub-
stitutions we analyzed the frequencies of these substitu-
tions in the Quest Diagnostics reference laboratory
database containing more than 160,000 (RT) sequences
from patients across the United States (1/1/1999-12/31/
2005). Forty percent of these samples showed no geno-
typic evidence of resistance, according to the Quest Diag-
nostics resistance algorithm [22].

The overall variability at codon 40 and 43 was 1.2% and
6.9% respectively (Table 1). Among all changes at posi-
tion 40, two occurred frequently either as a mixture or as
homogenous population; the aspartic acid (D) was
observed with a relative frequency of 52% and the pheny-
lalanine (F) with a relative frequency of 29% (Table 1).
The presence of E40F was limited to samples that con-
tained additional (RTI) resistance-associated mutations
(0.6%; Odds ratio: 363; p < 0.0001) however the fre-
quency of E40D was not significantly different in pre-
dicted ARV-resistant and ARV-sensitive samples. The most
prevalent change at position 43 was the glutamic acid (E),
appearing in 47% of all mutant codons (Table 1). Also the
K43E change was found in 5.3% of samples with other
resistance mutations but only 0.1% of samples with no
predicted resistance (OR = 52, p < 0.0001). Likewise,
K43Q (resistant virus: 3.3%; OR: 23, p < 0.0001) and
K43N (resistant virus: 1.8%; OR: 11; p < 0.0001) were
found predominantly in association with other resistance
mutations.

We investigated the association of the E40F and K43E
changes with each other and with the known thymidine
associated mutations (M41L, D67N, K70R, L210W,
T215Y/F and K219Q/E; Table 2). HIV-1 strains harbour-
ing E40F and/or K43E showed the strongest association
with all TAM-1 pathway mutations (M41L, L210W and
T215Y). Mutations from the TAM-2 pathway (DG67N,
K70R, T215F and K219Q/E) were only weakly or even
negatively associated with the E40F and K43E changes,
with the exception of the D67N substitution, which has
also been associated with the TAM-1 pathway. Interest-
ingly, the E40F substitution change showed the highest
association with K43E (OR of 38.2 and phi-value of
0.287, p < 0.0001).

We also noted a positive association between K43E and
amino acid changes E44A, V1181, H208Y, K219N/R and
V75M (data not shown; p values were highly significant at
an FDR level of 0.01 in all cases).
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Table I: Amino acid variation at codons 40 and 43 in HIV-1 reverse transcriptase

Codon 40 Number pct of mut pct of total Codon 43 Number pct of mut pct of total
D 732 38.0% 0.452% E 4262 38.1% 2.631%
F 541 28.1% 0.334% Q 2444 21.8% 1.509%
E/D 264 13.7% 0.163% N 1516 13.5% 0.936%
K 54 2.8% 0.033% K/E 836 7.5% 0.516%
K/E 53 2.8% 0.033% K/Q 699 6.2% 0.432%
A 50 2.6% 0.031% R 379 3.4% 0.234%
E/Q 33 1.7% 0.020% K/N 333 3.0% 0.206%
E/G 27 1.4% 0.017% K/R 285 2.5% 0.176%
E/A 27 1.4% 0.017% E/IQ 122 1.1% 0.075%
Q 21 I.1% 0.013% K/D/N/E 41 0.4% 0.025%
\ 21 1.1% 0.013% A 37 0.3% 0.023%
VIF 10 0.5% 0.006% T 36 0.3% 0.022%
SIF 10 0.5% 0.006% K/H/N/Q 34 0.3% 0.021%
<10 examples 8l 4.2% 0.050% ™M 33 0.3% 0.020%

K/T 20 0.2% 0.012%
Total 1924 100.0% 1.188% S 19 0.2% 0.012%

N/H 14 0.1% 0.009%

K/AITIE 10 0.1% 0.006%

<10 examples 69 0.6% 0.043%

Total 11189 100.0% 6.908%

In a total of 161974 sequences the amino acid variation at codons 40 and 43 in reverse transcriptase was determined. Shown are the percentages of
the specified amino acid change of all mutations at that position (pct of mut) and in the total population (pct of total).

Resistance to Zidovudine (AZT)

Both mutations are co-varying with TAM-1 pathway muta-
tions and therefore we determined the effect of the E40F
and K43E changes on thymidine analogue resistance
(Zidovudine) in a set of clinically relevant reference
viruses (Table 3). The introduction of the E40F change in
the background of M41L and T215Y resulted in a 14-fold
further increase in Zidovudine-resistance when compared
to the M41L+T215Y double mutant. Introduction of the
K43E change did not lead to a change in ICs,, for Zidovu-
dine in the viruses that were tested.

Furthermore, a virus clone containing the N-terminal part
of RT of a patient-derived virus isolate (Pat A) containing
both E40F and K43E changes was made. This clone dis-
played high-level resistance to the thymidine analogue
Zidovudine (129-fold increase in ICs,) when compared to
the wild type reference strain HXB2 (Table 3).

Changing codon 40 back to wild type in the patient A-
derived virus clone (Pat A-WT40) resulted in a 9-fold
decrease in IC;, for Zidovudine. This indicates that this
single amino acid change is responsible for a 9-fold fur-
ther increase in Zidovudine resistance in the highly resist-
ant Pat A-derived virus clone (Table 3). In contrast,
changing codon 43 back to wild type (Pat A-WT43) did
not lead to a change in Zidovudine resistance.

Effect of E40F change on RC

We determined whether the E40F change causes resistance
at the cost of reducing replicative capacity by performing
competition experiments. Indeed, the introduction of the
E40F change in the background of M41L and T215Y
resulted in a gradual reduction of the M41L+T215Y+E40F,
indicating that the E40F change results in a clear decrease
in RC (Fig. 1A). Also, changing the mutation back to wild
type at codon 40 in the patient-derived virus clone (Pat A-
WT40) improved the RC of this virus (Fig. 1B).

Effect of K43E change on RC

To determine if the K43E change has a compensatory role
by increasing the viral RC, replication competition exper-
iments were performed using a panel of site-directed
mutants. Changing the mutant K43E codon to the wild
type codon in the Pat A virus clone (Pat A-WT43) resulted
in a reduction of viral RC (Fig. 2A), clearly indicating that
the K43E change has a compensatory role in this patient-
derived virus clone. In addition, we determined its effect
in the wild type reference virus or the recombinant virus
M41L+T215Y (Fig. 2B and 2C). These assays did not
reveal any effect of the K43E change in the wild type or the
M41L+T215Y background.

Association between E40F and K43E

We hypothesized that the K43E substitution could be
compensatory for the E40F substitution, since these
changes are highly associated with each other (Table 2).
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Table 2: Association of 40F and 43E with thymidine analogue-
associated mutations

posl  pos2 phi OR % pos2 in pos| P value
40F 43E 0.287 382 84% <10E-09
40F 4IL 0.125 6.9 99% <10E-09
40F 210w 0.162 11.2 97% <I0E-09
40F 215Y 0.124 72 94% <10E-09
40F 67N 0.107 6.6 79% <10E-09
40F 70R 0.001 1.1 9% NS
40F 215F -0.001 0.9 4% NS
40F 219E 0.032 4.6 14% <10E-09
40F 219Q -0.003 0.8 4% NS
43E 40F 0.287 382 10% <10E-09
43E 4IL 0.326 6.3 91% <10E-09
43E 210W 0.367 9.0 78% <10E-09
43E 215Y 0.31 6.4 82% <10E-09
43E 67N 0.211 48 58% <10E-09
43E 70R -0.002 0.9 9% NS
43E 215F 0.014 1.4 7% 9.7E-08
43E 219E 0.009 1.4 4% NS
43E 219Q 0.004 1.1 6% NS

Binomial correlation coefficients (phi) and Odds Ratios (OR) were
calculated for 57 amino acid substitutions at 34 reverse transcriptase
codons to study the association of E40F and K43E with each other
and with known thymidine analogue associated mutations.

Phi: binomial correlation coefficient (1.0 = perfect pairwise
correlation). OR: Odds Ratio — the observed frequency of the pair
divided by the product of the individual mutation frequencies. P-value:
chisquare probability was evaluated for significance at a Benjamini-
Hochberg false discovery rate (FDR) of 0.0l for 1,566 multiple
comparisons.

NS: Not significant at FDR 0.01.

Sequences with a phi value of 0.15 or greater, an odds ratio of > 2 and
FDR of 0.01 were considered to be co-varying.

The K43E change was found in 84% of all E40F-contain-
ing viruses. To determine if the K43E change is indeed
compensatory for the deleterious effect of the E40F muta-
tion on viral RC, the additional effect of K43E in the back-
ground of M41L+T215Y+E40F was determined. Indeed,

Table 3: Zidovudine susceptibility analysis

http://www.retrovirology.com/content/5/1/20

replication competition experiments showed that the
addition of K43E resulted in an increase in viral RC (Fig.
2D). Again, we found that the introduction of the K43E
change in the M41L+T215Y+E40F virus did not lead to a
significant change in Zidovudine resistance (Table 3),
indicating that the effect of K43E (in the presence of E40F)
is compensatory on the viral RC.

In vitro evolution experiments

In vitro evolution experiments in the absence of drugs
were performed for all virus clones (Table 4). In one out
of four experiments the presence of the K43E change
could lead to the acquisition of a change at position 215
(T-to-I, Table 4). This may indicate that the RC of this
virus can be improved by a change at position 215 and
may suggest an interplay between position 43 and 215 in
RT.

Introducing the wild type amino acid at codon 43 in the
Pat A-virus clone (Pat A-WT43) could lead to a change of
the E40F amino acid change (E40F/L) in one out of four
experiments. This may indicate that in the absence of the
positive effect of the K43E change on RC, the virus can
improve its RC by removal of the E40F change.

Discussion

In the present study the reasons for appearance of two
novel changes at codon 40 and 43 in HIV-1 RT in patients
failing nucleoside therapy were investigated. The E40F
and K43E changes belong to a growing list of newly iden-
tified mutations that are associated with primary NRTI-
resistance [13-20]. In this study we show that these E40F
and K43E changes are highly associated with mutations
from the TAM-1 pathway (M41L, L210W and T215Y) and
less with the amino acid changes from the TAM-2 pathway
(D67N, K70R, T215F and K219Q/E) (Table 2). This nicely
confirms the previous described association of K43E,
K43N and K43Q with some TAM-1 mutations [20].

Resistance-associated amino acid in RT 40 41 43 184 210 215 219 Average Fold
Consensus B E M K M L T K IC50 (nM) Increase
Wild type (HXB2) . . . 114 = 10

Wild type+K43E . . E . 90 =+ 36 Ix
M4IL+T215Y . L Y 1544 = 402 14x
M4|L+T215Y+E40F F L . Y 21307 =+ 8810 187x
M41L+T215Y+K43E . L E Y 1556 =+ 496 14x
M4[L+T215Y+E40F+K43E F L E Y 15350 =+ 5022 135%
Pat A F L E \' w Y T 14739 =+ 3105 129%
Pat A-WT40 . L E \ wW Y T 1596 =+ 377 14x
Pat A-WT43 F L \% w Y T 13127 =+ 4582 I15%

Pat A-derived virus clone revealed additional amino acid changes including T200I, R21 1K, V245T, E248D, 1293V and E297H
The mean ICg, values of at least two experiments are shown (+ standard error of the mean); in the most right column the fold increase compared

to the wild type HIV-1 HXB2 reference strain is shown.
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Figure |

Replication competition experiments with E40F site-directed mutants. Replication competition experiments were
performed in SupT| cells in at least two independent experiments. After four days and after 2, 4 and 6 passages the relative
presence of both viruses in the culture was determined by sequencing. Shown are two representative experiments. The varia-
bility in each independent experiment is indicated by * standard error of the mean (SEM). A: M4IL+T2I5Y versus
M41L+T215Y+E40F B: Pat A (E40F, M41L, K43E, M184V, L210W, T215Y and K219T) versus Pat A-WT40 (M41L, K43E,

MI84V, L210W, T215Y and K219T).

Although mutations in the TAM-1 pathway have demon-
strated to confer high-level NRTI-resistance, there also
appears to be a selective pressure that allows generation
and selection of these novel mutations. It could be possi-
ble that these mutations were overlooked in the past, but
another, perhaps more plausible, explanation is the cur-
rent widespread use of highly active antiretroviral therapy
(HAART). Before 1995, four NRTIs (Zidovudine, Didano-
sine, Zalcitabine and Stavudine) were the only HIV-drugs
approved for usage in the clinic and the well known TAMs
were identified in this time period [3-7]. Hereafter Lami-
vudine, several non-nucleoside RTIs (NNRTIs) and pro-
tease inhibitors were approved by the Food and Drug
Administration. 3TC and NNRTIs have been shown to
select respectively for changes such as M184V and Y181C
that resensitize TAM-containing HIV-1 RT to Zidovudine

by decreasing the excision of this drug [12,23-26]. In
agreement, Gonzales et al. have demonstrated that the fre-
quency of K43E correlated with the number of previously
received NRTI [15,20].

We hypothesize that the current HIV-treatment regimens
force HIV to select for novel resistance patterns to further
increase resistance. At the same time these resistant viruses
may have a considerable loss in replicative capacity and
could therefore select for additional changes that compen-
sate the losses in RC.

To unravel the specific roles of the E40F and K43E we
investigated their effect on drug susceptibility and replica-
tion by studying recombinant viral isolates as well as site
directed mutants.
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Figure 2

Replication competition experiments with K43E site-directed mutants. Replication competition experiments were
performed in SupT| cells in at least two independent experiments. After four days and after 2, 4 and 6 passages the relative
presence of both viruses in the culture was determined by sequencing. Shown are two representative experiments. The varia-
bility in each independent experiment is indicated by + standard error of the mean (SEM). A: Pat A (E40F, M41L, K43E, M 184V,
L210W, T215Y and K219T) versus Pat A-WT43 (E40F, M41L, M184V, L210W, T215Y and K219T). B: wild type versus wild
type+K43E. C: M41L+T215Y versus M41L+T215Y+K43E. D: M41L+T215Y+E40F versus M41L+T2|5Y+E40F+K43E.
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Table 4: In vitro evolution experiments
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214 215 219 245 248 272 277 293 297
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M4I1L+T2I15Y start - L - - -
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experiment A

experiment B

experiment C
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experiment A

experiment B

experiment C
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start - - E - -

experiment A

experiment B

experiment C
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start - L E - -

experiment A

experiment B

experiment C

experiment D . . . . .
start F L E - -
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Pat A

Pat A-WT40

K43E only

M4I1L+T215Y+K43E

M4IL+T215Y+
E40F+K43E
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experiment B

experiment C

experiment D . . . . .
Pat A-WT43 start F L - K \4

experiment A .
experiment B F/L
experiment C
experiment D

- - - Y - - . - - . .

T

Shown are all amino acid changes present at start of the experiment compared to wild type (HXB2) and after 10 passages compared to baseline. All
evolution experiments were performed in four independent experiments (A-D).

We have shown that the mechanisms explaining their
appearance were different for both amino acid substitu-
tions. Selection of the E40F change is driven by an
increase in resistance to Zidovudine (nine to fourteen-
fold). An increase in IC50 value was observed each time
this change was introduced. This resistance effect
appeared at the cost of a loss in RC for all combinations
carrying this change.

In contrast, the appearance of the K43E change can be
explained mainly by effects on the replicative capacity.

This change appears to be a compensatory mutation that
allows the resistant virus to increase its replicative capac-

ity.

Compensatory mutations that increase viral replicative
capacity without an effect on resistance have been
described extensively for protease inhibitor resistance.
Although a few studies have reported the compensatory
effect of some mutations in RT, such as changes at codon
163, 74, 75, 63, 189, 230 and 396, this concept is rela-
tively new for RTI resistance [27-32]. Considering the
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error-prone nature of HIV replication, a reverse tran-
scriptase mutant will, similar to a Pl-resistant virus, evolve
towards a more fit virus in its environment if this is possi-
ble. Thus, although one could argue that for yet unknown
reasons it may be more difficult for the virus to develop
compensatory changes, it is more likely that compensa-
tory changes in RT have not been sufficiently studied.

Considering the much lower prevalence of E40F com-
pared to K43E, the selection of the latter mutation can not
be explained solely in terms of compensation for the E40F
change. This could imply that there are more changes in
RT that cause a reduction in RC and as such could benefit
from the appearance of the compensatory change at posi-
tion 43. For instance, mutations at codons 44 and 118
associated with dual resistance to Zidovudine and 3TC are
much more common than E40F [33-35]. The association
of K43E with changes at these codons or H208Y, K219N/
R and V75M changes may potentially involve a compen-
satory interaction, but further studies will be necessary to
investigate this relationship.

Also, host (cellular) factors can be a reason for selection of
amino acid changes in RT. Viral cytotoxic T lymphocyte
(CTL) escape mutations that can be selected may prevent
proteasomal cleavage, confer a decrease in transporter
associated with antigen processing (TAP) transport effi-
ciency, prevent MHC-I binding or lower CTL recognition.
Several reports have shown that selection of the M41L
change makes the epitope ALVEICTEM(EK) (amino acid
33 to 41/43) more immunogenic [36,37]. We hypothe-
sized that the K43E change may (partially) compensate
for this increased immunogenicity. Predictions using
Netchop, a neural network based prediction method, sug-
gested that addition of the K43E change in the back-
ground of M41L reduces the chance of proteasomal
cleavage [38,39]. The resulting effect on CTL escape might
positively influence the selection of the K43E change in
patients with specific HLA-types. In conclusion, our
results suggest that an RC-compensating mutation (K43E)
could have an additional effect on CTL escape. Thus, we
have to be aware of the interplay between the selection
pressure of the immune system and viral replication
capacity during (suboptimal) treatment. Further research
is warranted to determine the influence of the immune
system on the selection of novel mutations in RT.

The observation that the E40F and K43E substitutions are
highly associated with TAM-1 changes, suggests that the
biochemical mechanism of action is most likely an inter-
action with these changes. Modelling these mutations
into the 3D structure of the RT catalytic complex did nei-
ther immediately suggest a structural basis for the mecha-
nisms of resistance nor for any compensatory effects [40].
Although both mutations are located in close vicinity to
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the M41L residue, the structural basis for resistance to
Zidovudine for the latter mutation itself is not obvious.
This is because residue 41 is positioned ~8A from the
putative site for the ATP used in Zidovudine excision and
thus cannot apparently directly influence ATP binding
[41]. Rather M41L may have a more indirect effect on ATP
binding perhaps via alteration of van der Waals contacts
with F116, itself a site of a resistance mutation as well as
being adjacent to the nucleotide interacting residue Y115.
We speculate that the aromatic residue at codon 40 (F)
could exert a similar indirect mechanism to affect excision
of Zidovudine. However, further studies are warranted to
determine the structural and biochemical explanation for
their effects.

Conclusion

We have identified a novel resistance (E40F) and compen-
satory (K43E) amino acid change in HIV-1 RT. Further
studies are warranted to understand the mechanism of
compensation. For clinical management it is important to
be aware of novel resistance patterns such as the one con-
ferred by the E40F that is currently not represented in the
algorithms that are used to manage patients failing nucle-
oside therapies.

Methods

Analysis of E40F and K43E prevalence and associations

A dataset of 161,974 deidentified HIV-1 subtype B clinical
samples sequenced at Quest Diagnostics Nichols Institute,
San Juan Capistrano, CA from 1999 through 2005 was
used to determine the prevalence of amino acid substitu-
tions at reverse transcriptase codons 40 and 43.

A further more recent dataset of 139,443 samples col-
lected as above between 2002 and June 2006 were used to
analyze covariation between 40F, 40D, 43E and 43Q and
53 reverse transcriptase amino acid substitutions at 32
additional RT codons associated with resistance. Mixed
amino acid calls were excluded from the analysis. Bino-
mial correlation coefficients were calculated for 1,566
amino acid pairs. Chi square values were corrected for
multiple comparisons with the Benjamini Hochberg cor-
rection (Benjamini and Hochberg 1995) with a false dis-
covery rate (FDR) set to 0.01.

Patient

Patient A was originally described by Nijhuis et al. as
patient C0011 [42]. This patient was treated with Lamivu-
dine (3TC) monotherapy and selected the M184V change.
Subsequently, Zidovudine (AZT) was added to the regi-
men and a temporary decline in HIV-1 RNA levels was
observed. Genotyping revealed that the increase in RNA
load was associated with the appearance of M41L, L210W
and T215Y. Later on, a further increase in HIV-1 RNA level

Page 8 of 11

(page number not for citation purposes)



Retrovirology 2008, 5:20

was observed and the viral genotype showed the appear-
ance of the E40F and K43E changes.

Cells

MT2 cells and SupT1 cells were cultured in RPMI 1640
medium, supplemented with L-glutamine (Cambrex,
Verviers, Belgium), 10% heat-inactivated foetal calf serum
(FCS, Invitrogen) and 10 pg/ml gentamicin (Invitrogen)
and passaged twice a week. 293T cells were cultured in
Dulbecco's modified Eagle's medium (DMEM, Cambrex),
supplemented with 10% FCS and 10 pg/ml gentamicin.
All cells were maintained at 37°C and 5% CO,.

Generation of recombinant virus clones

HIV-1 nucleic acids were isolated according to the method
described by Boom et al and the N-terminal part of RT was
amplified as previously described [43,44].

The amplified N-terminal part of RT was used to generate
recombinant virus clones containing amino acid 25 to
314 from RT in a wild type (HXB2) backbone as described
previously [44].

Site-directed mutagenesis

To determine the influence of the E40F and/or K43E
amino acid substitutions, these changes were introduced
in a wild type reference strain (HIV-1 HXB2) and a virus
clone harbouring the M41L and T215Y amino acid
changes. Furthermore, these substitutions were changed
to wild type in the patient A-derived recombinant virus
clone. The N-terminal part of RT of the corresponding
plasmid was amplified by Vent® polymerase (New Eng-
land Biolabs) with RT-Ball (5'ATG GCC CAA AAG TTA
AAC AAT GG-3', nucleotides 2599-2621), RT-21 (5'-CTG
TAT TTC TGC TAT TAA GTC TTT TGA TGG-3', nucleotides
3539-3510) and a third primer introducing the nucle-
otide change(s).

To introduce the E40F change in the M41L+215Y refer-
ence plasmid primers 40F-RT1 (5' GAA ATT TGT ACATAG
CTG GAA AAG G-3', nucleotides 2655-2679), 40F-RT2 5'
GAA ATT TGT ACA TTG CTG GAA AAG G-3', nucleotides
2655-2679) and 40F-RT3new 5' GAA ATT TGT ACA TIT
CTG GAA AAG GA-3', nucleotides 2655-2680) were used.
To change the E40F substitution to wild type in the
patient A-derived virus clone (Pat A-WT40) primer 40E-RT
(5'-GAA ATT TGT ACA GAG TTG GAA GAG G-3', nucle-
otides 2655-2679) was used.

To introduce the K43E change in respectively the wild type
plasmid, the plasmid containing M41L+T215Y or the
M41L+T215Y+E40F plasmid, the primers HXB2-43E (5'
ACA GAG ATG GAA GAG GAA GGG AAA A-3', nucle-
otides 2664-2688), 43E-RT (5' ACA GAG CTG GAA GAG
GAA GGG AAA A-3', nucleotides 2664-2688) and 43E-
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RTA (5" ACATIT CTG GAA GAG GAA GGG AA-3', nucle-
otides 2664-2686) were used. To delete the K43E substi-
tution from the patient A-derived virus clone (Pat A-
WT43), the corresponding plasmid was amplified with as
third primer 43K-RT (5'-ACA TIT TTG GAA AAG GAA
GGA AA-3', nucleotides 2664-2686).

Plasmid DNA was denatured for 2 minutes at 94°C, fol-
lowed by 30 cycles of 30 seconds denaturation at 94°C,
30 seconds annealing at 55°C and 2 minutes extension at
72°C. The latter 20 cycles had an extension of 5 seconds
for each elongation step and the amplicons were further
elongated for 5 minutes at 72°C. Following genotypic
analysis, virus clones were generated containing the
desired amino acid change(s), while the remaining part of
the genome was unchanged.

Drug susceptibility analysis

The susceptibility for Zidovudine was determined using a
cell-killing assay in MT2 cells, essentially as described
before [45]. Phenotypic resistance was determined by
measuring the fold increase in 50% inhibitory concentra-
tion (ICs,) compared with the IC,, of the wild type HIV-1
HXB2 reference strain.

Replication competition experiments

To determine the relative RC of several virus variants,
competition experiments were performed in SupT1 cells
by mixing two recombinant viruses based on TCID [46].
In a total volume of 1 ml, 2 x 106 SupT1 cells were infected
at a total multiplicity of infection (m.o.i.) of 0.001. After
2 hours of infection at 5% CO, and 37°C, cells were
washed and subsequently cultured in 10 ml fresh culture
medium. When full-blown syncytia were present in the
culture ca. 50 pl virus supernatant was used to infect 2 x
10° new SupT1 cells until six passages were performed.
RNA was extracted from culture supernatant at several
time points during the experiment and the N-terminal
part of RT was amplified and sequenced as described
before. The relative presence of both variants in the popu-
lation was determined by estimating the relative peak
heights of the electropherograms. For each experiment a
forward and reverse primer was analysed and the mean
value (+ SEM) is shown in the figure.

In vitro evolution experiments

To determine the potential evolutionary pathways of the
virus clones we performed in vitro evolution experiments.
Therefore, 2 x 105 SupT1 cells were infected with 50 pl of
a recombinant virus clone in 2 ml culture medium. The
virus replication was monitored by determining the cyto-
pathic effect. When most of the cells formed syncytia, the
viral supernatant was harvested (10 minutes at 1800 g)
and ca. 50-100 pl viral supernatant was used for a new
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passage. After ten passages, the N-terminal part of RT was
sequenced as described before.

Abbreviations
RT(I): reverse transcriptase (inhibitor)

RC: replication capacity
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