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Abstract
Background: Human immunodeficiency virus type 1 (HIV-1) infects cells by means of ligand-
receptor interactions. This lentivirus uses the CD4 receptor in conjunction with a chemokine
coreceptor, either CXCR4 or CCR5, to enter a target cell. HIV-1 is characterized by high sequence
variability. Nonetheless, within this extensive variability, certain features must be conserved to
define functions and phenotypes. The determination of coreceptor usage of HIV-1, from its protein
envelope sequence, falls into a well-studied machine learning problem known as classification. The
support vector machine (SVM), with string kernels, has proven to be very efficient for dealing with
a wide class of classification problems ranging from text categorization to protein homology
detection. In this paper, we investigate how the SVM can predict HIV-1 coreceptor usage when it
is equipped with an appropriate string kernel.

Results: Three string kernels were compared. Accuracies of 96.35% (CCR5) 94.80% (CXCR4) and
95.15% (CCR5 and CXCR4) were achieved with the SVM equipped with the distant segments kernel
on a test set of 1425 examples with a classifier built on a training set of 1425 examples. Our datasets
are built with Los Alamos National Laboratory HIV Databases sequences. A web server is available
at http://genome.ulaval.ca/hiv-dskernel.

Conclusion: We examined string kernels that have been used successfully for protein homology
detection and propose a new one that we call the distant segments kernel. We also show how to
extract the most relevant features for HIV-1 coreceptor usage. The SVM with the distant segments
kernel is currently the best method described.

Background
The HIV-1 genome contains 9 genes. One of the genes, the
env gene, codes for 2 envelope proteins named gp41 and
gp120. The gp120 envelope protein must bind to a CD4
receptor and a coreceptor prior to cell infection by HIV-1.

Two coreceptors can be used by HIV-1: the CCR5 (chem-
okine receptor 5) and the CXCR4 (chemokine receptor 4).
Some viruses are only capable of using the CCR5 corecep-
tor. Other viruses can only use the CXCR4 coreceptor.
Finally, some HIV-1 viruses are capable of using both of
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these coreceptors. The pathology of a strain of HIV-1 is
partly a function of the coreceptor usage [1]. The faster
CD4+ cell depletion caused by CXCR4-using viruses [2]
makes the accurate prediction of coreceptor usage medi-
cally warranted. Specific regions of the HIV-1 external
envelope protein, named hypervariable regions, contrib-
ute to the turnover of variants from a phenotype to
another [3]. HIV-1 tropisms (R5, X4, R5X4) are often (but
not always) defined in the following way. R5 viruses are
those that can use only the CCR5 coreceptor and X4
viruses are those that can use only the CXCR4 coreceptor.
R5X4 viruses, called dual-tropic viruses, can use both core-
ceptors. Tropism switch occurs during progression
towards AIDS. Recently, it has been shown that R5 and X4
viruses modulate differentially host gene expression [4].

Computer-aided prediction
The simplest method used for HIV-1 coreceptor usage pre-
diction is known as the charge rule [5,6]. It relies only on
the charge of residues at positions 11 and 25 within the V3
loop aligned against a consensus. The V3 loop is the third
highly variable loop in the retroviral envelope protein
gp120. Nonetheless, other positions are also important
since the removal of these positions gave predictors with
comparable (but weaker) performance to those that were
trained with these positions present [1]. Other studies [7-
12] also outlined the importance of other positions and
proposed machine learning algorithms, such as the ran-
dom forest [11] and the support vector machine (SVM)
with structural descriptors [10], to built better predictors
(than the charge rule). Available predictors (through web-
servers) of HIV-1 coreceptor usage are enumerated in [13].

An accuracy of 91.56% for the task of predicting the
CXCR4 usage was obtained by [10]. Their method, based
on structural descriptors of the V3 loop, employed a single
dataset containing 432 sequences without indels and
required the multiple alignment of all V3 sequences.
However, such a prior alignment before learning might
remove information present in the sequences which is rel-
evant to the coreceptor usage task. Furthermore, a prior
multiple alignment done on all the data invalidates the
cross-validation method since the testing set in each fold
has been used for the construction of the tested classifier.
Another drawback of having an alignment-based method
is that sequences having too many indels (when com-
pared to a consensus sequence) are discarded to prevent
the multiple alignment from yielding an unacceptable
amount of gaps. In this paper, we present a method for
predicting the coreceptor usage of HIV-1 which does not
perform any multiple alignment prior to learning.

The SVM [14] has proven to be very effective at generating
classifiers having good generalization (i.e., having high
predicting accuracy). In particular, [1] have obtained a sig-

nificantly improved predictor (in comparison with the
charge rule) with an SVM equipped with a linear kernel.
However, the linear kernel is not suited for sequence clas-
sification since it does not provide a natural measure of
dissimilarity between sequences. Moreover, a SVM with a
linear kernel can only use sequences that are exactly of the
same length. Consequently, [1] aligned all HIV-1 V3 loop
sequences with respect to a consensus. No such alignment
was performed in our experiments. In contrast, string ker-
nels [15] do not suffer from these deficiencies and have
been explicitly designed to deal with strings and
sequences of varying lengths. Furthermore, they have
been successfully used for protein homology detection
[16] – a classification problem which is closely related to
the one treated in this paper.

Consequently, we have investigated the performance of
the SVM, equipped with the appropriate string kernel, at
predicting the coreceptor used by HIV-1 as a function of
its protein envelope sequence (the V3 loop). We have
compared two string kernels used for protein homology
detection, namely the blended spectrum kernel [15,17]
and the local alignment kernel [16], to a newly proposed
string kernel, that we called the distant segments (DS) ker-
nel.

Applications
Bioinformatic methods for predicting HIV phenotypes
have been tested in different situations and the concord-
ance is high [18-21].

As described in [18], current bioinformatics programs are
underestimating the use of CXCR4 by dual-tropic viruses
in the brain. In [19], a concordance rate of 91% was
obtained between genotypic and phenotypic assays in a
clinical setting of 103 patients. In [20], the authors
showed that the SVM with a linear kernel achieves a con-
cordance of 86.5% with the Trofile assay and a concord-
ance of 79.7% with the TRT assay. Recombinant assays
(Trofile and TRT) are described in [20].

Further improvements in available HIV classifiers could
presumably allow the replacement of in vitro phenotypic
assays by a combination of sequencing and machine
learning to determine the coreceptor usage. DNA sequenc-
ing is cheap, machine learning technologies are very accu-
rate whereas phenotypic assays are labor-intensive and
take weeks to produce readouts [13]. Thus, the next gener-
ation of bioinformatics programs for the prediction of
coreceptor usage promises major improvements in clini-
cal settings.

Methods
We used the SVM to predict the coreceptor usage of HIV-1
as a function of its protein envelope sequence. The SVM is
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a discriminative learning algorithm used for binary classi-
fication problems. For these problems, we are given a
training set of examples, where each example is labelled as
being either positive or negative. In our case, each example
is a string s of amino acids. When the binary classification
task consists of predicting the usage of CCR5, the label of
string s is +1 if s is the V3 loop of the protein envelope
sequence of a HIV-1 virion that uses the CCR5 coreceptor,
and -1 otherwise. The same method applies for the predic-
tion of the CXCR4 coreceptor usage. When the binary clas-
sification task consists of predicting the capability of
utilizing CCR5 and CXCR4 coreceptors, the label of string
s is +1 if s is the V3 loop of the protein envelope sequence
of a HIV-1 virion that uses both the CCR5 and CXCR4
coreceptors, and -1 if it is a virion that does not use CCR5
or does not use CXCR4.

Given a training set of binary labelled examples, each gen-
erated according to a fixed (but unknown) distribution D,
the task of the learning algorithm is to produce a classifier
f which will be as accurate as possible at predicting the
correct class y of a test string s generated according to D
(i.e., the same distribution that generated the training set).
More precisely, if f (s) denotes the output of classifier f on
input string s, then the task of the learner is to find f that

minimizes the probability of error . A clas-

sifier f achieving a low probability of error is said to gener-
alize well (on examples that are not in the training set).

To achieve its task, the learning algorithm (or learner)
does not have access to the unknown distribution D, but
only to a limited set of training examples, each generated
according to D. It is still unknown exactly what is best for
the learner to optimize on the training set, but the learn-
ing strategy used by the SVM currently provides the best
empirical results for many practical binary classification
tasks. Given a training set of labelled examples, the learn-
ing strategy used by the SVM consists at finding a soft-
margin hyperplane [14,22], in a feature space of high
dimensionality, that achieves the appropriate trade-off
between the number of training errors and the magnitude
of the separating margin realized on the training examples
that are correctly classified (see, for example, [15]).

In our case, the SVM is used to classify strings of amino
acids. The feature space, upon which the separating hyper-
plane is built, is defined by a mapping from each possible

string s to a high-dimensional vector ϕ (s). For example, in
the case of the blended spectrum kernel [15], each compo-

nent ϕα (s) is the frequency of occurrence in s of a specific

substring α that we call a segment. The whole vector ϕ (s)
is the collection of all these frequencies for each possible

segment of at most p symbols. Consequently, vector ϕ (s)

has  components for an alphabet Σ containing

|Σ| symbols. If w denotes the normal vector of the separat-
ing hyperplane, and b its bias (which is related to the dis-
tance that the hyperplane has from the origin), then the
output f (s) of the SVM classifier, on input string s, is given
by

f (s) = sgn (�w, ϕ (s)� + b),

where sgn(a) = +1 if a > 0 and -1 otherwise, and where �w,

ϕ (s)� denotes the inner product between vectors w and ϕ

(s). We have �w, ϕ (s)� =  for d-

dimensional vectors. The normal vector w is often called
the discriminant or the weight vector.

Learning in spaces of large dimensionality
Constructing a separating hyperplane in spaces of very
large dimensionality has potentially two serious draw-
backs. The first drawback concerns the obvious danger of
overfitting. Indeed, with so many degrees of freedom for a
vector w having more components than the number of
training examples, there may exist many different w hav-
ing a high probability of error while making very few
training errors. However, several theoretical results
[15,22] indicate that overfitting is unlikely to occur when
a large separating margin is found on the (numerous) cor-
rectly classified examples – thus giving theoretical support
to the learning strategy used by the SVM.

The second potential drawback concerns the computa-
tional cost of using very high dimensional feature vectors

ϕ (s1), ϕ (s2),..., ϕ(sm) of training examples. As we now

demonstrate, this drawback can elegantly be avoided by
using kernels instead of feature vectors. The basic idea con-
sists of representing the discriminant w as a linear combi-
nation of the feature vectors of the training examples.
More precisely, given a training set {(s1, y1), (s2, y2),..., (sm,

ym)} and a mapping ϕ (·), we write .

The set {α1,..., αm} is called the dual representation of the

(primal) weight vector w. Consequently, the inner prod-

uct �w, ϕ (s)�, used for computing the output of an SVM
classifier, becomes

Pr ( ( ) )
( , )~s y D

f s y≠

| |Σ i
i

p
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where  defines the kernel function asso-

ciated with the feature map ϕ (·). With the dual represen-
tation, the SVM classifier is entirely described in terms of

the training examples si having a non-zero value for αi.

These examples are called support vectors. The so-called
"kernel trick" consists of using k (s, t) without explicitly

computing �ϕ (s), ϕ (t)� – a computationally prohibitive
task for feature vectors of very large dimensionality. This

is possible for many feature maps ϕ (·). Consider again,
for example, the blended spectrum (BS) kernel where each

component ϕα (s) is the frequency of occurrence of a seg-

ment α in string s (for all words of at most p characters of

an alphabet Σ). In this case, instead of performing

 multiplications to compute explicitly �ϕ (s), ϕ

(t)�, we can compute, for each position i in string s and
each position j in string t, the number of consecutive sym-
bols that matches in s and t. We use the big-Oh notation
to provide an upper bound to the running time of algo-
rithms. Let T (n) denote the execution time of an algo-
rithm on an input of size n. We say that T (n) is in O (g
(n)) if and only if there exists a constant c and a critical n0

such that T (n) ≤ cg (n) for all n ≥ n0. The blended spec-

trum kernel requires at most O (p·|s|·|t|) time for each

string pair (s, t) – an enormous improvement over the Ω
(|Σ|p) time required for the explicit computation of the
inner product between a pair of feature vectors. In fact,
there exists an algorithm [15] for computing the blended
spectrum kernel in O (p·max (|s|, |t|)) time.

The distant segments kernel
The blended spectrum kernel is interesting because it con-
tains all the information concerning the population of
segments that are present in a string of symbols without
considering their relative positions. Here, we propose the
distant segments (DS) kernel that, in some sense, extends
the BS kernel to include (relative) positional information
of segments in a string of symbols.

If one considers the frequencies of all possible segment
distances inside a string as its features, then a precise com-
parison can be done between any pair of strings. Remote
protein homology can be detected using distances
between polypeptide segments [23]. For any string s of
amino acids, these authors used explicitly a feature vector
ϕ (s) where each component ϕd, α, α' (s) denotes the
number of times the (polypeptide) segment α' is located
at distance d (in units of symbols) following the (polypep-
tide) segment α. They have restricted themselves to the

case where α and α' have the same length p, with p ≤ 3.
Since the distance d is measured from the first symbol in
α to the first symbol in α', the d = 0 components of ϕ (s),
i.e., ϕ0,α,α' (s), are non-zero only for α = α' and represent
the number of occurrences of segment α in string s. Con-
sequently, this feature vector strictly includes all the com-
ponents of the feature vector associated with the BS kernel
but is limited to segments of size p (for p ≤ 3). By working
with the explicit feature vectors, these authors were able to
obtain easily the components of the discriminant vector w
that are largest in magnitude and, consequently, are the
most relevant for the binary classification task. However,
the memory requirement of their algorithm increases
exponentialy in p. Not surprisingly, only the results for p ≤
3 were reported by [23].

Despite these limitations, the results of [23] clearly show
the relevance of having features representing the fre-
quency of occurrences of pairs of segments that are sepa-
rated by some distance for protein remote homology
detection. Hence, we propose in this section the distance
segments (DS) kernel that potentially includes all the fea-
tures considered by [23] without limiting ourselves to p ≤
3 and to the case where the words (or segments) have to
be of the same length. Indeed, we find no obvious biolog-
ical motivation for these restrictions. Also, as we will
show, there is no loss of interpretability of the results by
using a kernel instead of the feature vectors. In particular,
we can easily obtain the most significant components of
the discriminant w by using a kernel. We will show that
the time and space required for computing the kernel
matrix and obtaining the most significant components of
the discriminant w are bounded polynomially in terms of
all the relevant parameters.

Consider a protein as a string of symbols from the alpha-

bet Σ of amino acids. Σ* represents the set of all finite

strings (including the empty string). For μ ∈ Σ*, |μ|

denotes the length of the string μ. Throughout the paper,

s, t, α, μ and ν will denote strings of Σ*, whereas θ and δ
will be lengths of such strings. Moreover, μ ν will denote

the concatenation of μ and ν. The DS kernel is based on

the following set. Given a string s, let  be the set

of all the occurrences of substrings of length δ that are

beginning by segment α and ending by segment α'. More
precisely,

Note that the substring length δ is related to the distance
d of [23] by δ = d + |α'| where d = |α| + |ν| when |α| and

k s t s t( , ) ( ), ( )= 〈 〉
def

φ φ

| |Σ i
i

p

=∑ 1

α α
δ

, ( )′ s

α α
δ μ α ν α μ μανα μ α α ν δ, ( ) {( , , , , ) : | | | | | |′ = ′ ′ = ′ ′ ∧ ≤ ∧ ≤ ′ ∧ ≤ ∧s s
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1 1 0 == − − ′| | | | | |}.s μ μ
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|α'| do not overlap. Note also that, in contrast with [23],
we may have |α| ≠ |α'|. Moreover, the segments α and α'
never overlap since μανα' μ' equals to the whole string s
and 0 ≤ |ν|. We have made this choice because it appeared
biologically more plausible to have a distance ranging
from the end of the first segment to the beginning of the
second segment. Nevertheless, we will see shortly that we
can include the possibility of overlap between segments
with a very minor modification of the kernel.

The DS kernel is defined by the following inner product

where  is the feature vector

Hence, the kernel is computed for a fixed maximum value

θm of segment sizes and a fixed maximum value δm of sub-

string length. Note that, the number of strings of size θ of

Σ* grows exponentially with respect to θ. Fortunately, we
are able to avoid this potentially devastating combinato-

rial explosion in our computation of . Figure 1

shows the pseudo-code of the algorithm. In the pseudo-
code, s [i] denotes the symbol located at position i in the

string s (with i ∈ {1, 2,..., |s|}). Moreover, for any integers

i, j,  denotes  if 0 ≤ i ≤ j, and 0 otherwise.

Admittedly, it is certainly not clear that the algorithm of

Figure 1 actually computes the value of  given

by Equation 2. Hence, a proof of correctness of this algo-
rithm is presented at the appendix (located after the con-
clusion). The worst-case running time is easy to obtain
because the algorithm is essentially composed of three

imbricated loops: one for js ∈ {0,..., |s|-1}, one for jt ∈

{0,..., |t|-1}, and one for i ∈ {1,..., min(|s|, |t|, δm)}. The

time complexity is therefore in O (|s|·|t|·min(|s|, |t|,

δm)).

Note that the definition of the DS-kernel can be easily

modified in order to accept overlaps between α and α'.
Indeed, when overlaps are permitted, they can only occur

when both α and α' start and end in {js + i0,..., js + i1-1}.

The number of elements of  for which i2r ≤ δ <i2r+1

is thus the same for all values of r, including r = 0. Conse-

quently, the algorithm to compute the DS kernel, when
overlaps are permitted, is the same as the one in Figure 1
except that we need the replace the last two lines of the
FOR loop, involved in the computation of c, by the single
line:

Similar simple modifications can be performed for the
more restrictive case of |α| = |α'|.

Extracting the discriminant vector with the distant 
segments kernel

We now show how to extract (with reasonable time and
space resources) the components of the discriminant w

that are non-zero. Recall that  when the

SVM contains l support vectors {(s1, y1),..., (sl, yl)}. Recall

also that each feature ϕδ, α, α' (si) is identified by a triplet (δ,

α, α'), with δ ≥ |α| + |α'|. Hence, to obtain the non-zero
valued components of w, we first obtain the non-zero val-

ued features ϕδ, α, α' (si) from each support vector (with

Algorithm EXTRACT-FEATURES of Figure 2) and then col-
lect and merge every feature of each support vector by

multiplying each of them by αiyi (with Algorithm

EXTRACT-DISCRIMINANT of Figure 3).

k s t s tDS DS DS
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The algorithm for computing Figure 1

The algorithm for computing .k s tDS
m mδ θ, ( , )
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We transform each support vector ϕ (si) into a Map of fea-
tures. Each Map key is an identifier for a (δ, α, α') having
ϕδ, α, α' (si) > 0. The Map value is given by ϕδ, α, α'(si) for each
key.

The worst-case access time for an AVL-tree-Map of n ele-
ments is O (log n). Hence, from Figure 2, the time com-
plexity of extracting all the (non-zero valued) features of a

support vector is in . Moreo-

ver, since the total number of features inserted to the Map
by the algorithm EXTRACT-DISCRIMINANT is at most

, the time complexity of extracting all the non-

zero valued components of w is in

.

SVM
We have used a publicly available SVM software, named
SVMlight [24], for predicting the coreceptor usage. Learning
SVM classifier requires to choose the right trade-off
between training accuracy and the magnitude of the sepa-
rating margin on the correctly classified examples. This
trade-off is generally captured by a so-called soft-margin
hyperparameter C.

The learner must choose the value of C from the training
set only – the testing set must be used only for estimating
the performance of the final classifier. We have used the
(well-known) 10-fold cross-validation method (on the
training set) to determine the best value of C and the best
values of the kernel hyperparameters (that we describe
below). Once the values of all the hyperparameters were
found, we used these values to train the final SVM classi-
fier on the whole training set.

Selected metrics
The testing of the final SVM classifier was done according
to several metrics. Let P and N denote, respectively, the
number of positive examples and the number of negative
examples in the test set. Let TP, the number of "true posi-
tives", denote the number of positive testing examples
that are classified (by the SVM) as positive. A similar defi-
nition applies to TN, the number of "true negatives". Let
FP, the number of "false positives", denote the number of
negative testing examples that are classified as positive. A
similar definition applied to FN, the number of "false neg-
atives". To quantify the "fitness" of the final SVM classi-
fier, we have computed the accuracy, which is (TP+TN)/
(P+T), the sensitivity, which is TP/P, and the specificity,
which is TN/N. Finally, for those who cannot decide how
much to weight the cost of a false positive, in comparison

O s sm m m m(| | log(| | ))θ δ θ δ2 2⋅

l s m m⋅ ⋅| | θ δ2

O l s l sm m m m( | | log( | | ))θ δ θ δ2 2⋅

The algorithm for extracting the features of a string s into a MapFigure 2
The algorithm for extracting the features of a string s into a Map. Here, s (i : j) denotes the substring of s starting at position i 
and ending at position j.
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with a false negative, we have computed the "area under
the ROC curve" as described by [25].

Unlike the other metrics, the accuracy (which is 1 – the
testing error) has the advantage of having very tight confi-
dence intervals that can be computed straightforwardly
from the binomial tail inversion, as described by [26]. We
have used this method to find if whether or not the
observed difference of testing accuracy (between two clas-
sifiers) was statistically significant. We have reported the
results only when a statistically significant difference was
observed with a 90% confidence level.

Selected string kernels
One of the kernel used was the blended spectrum (BS)
kernel that we have described above. Recall that the fea-
ture space, for this kernel, is the count of all k-mers with 1
≤ k ≤ p. Hence p is the sole hyperparameter of this kernel.

We have also used the local alignment (LA) kernel [16]
which can be thought of as a soft-max version of the
Smith-Waterman local alignment algorithm for pair of
sequences. Indeed, instead of considering the alignment
that maximizes the Smith-Waterman (SW) score, the LA
kernel considers every local alignment with a Gibbs distri-
bution that depends on its SW score. Unfortunately, the
LA kernel has too many hyperparameters precluding their

optimization by cross-validation. Hence, a number of
choices were made based on the results of [16]. Namely,
the alignment parameters were set to (BLOSUM 62, e =
11, d = 1) and the empirical kernel map of the LA kernel
was used. The hyperparameter β was the only one that was
adjusted by cross-validation.

Of course, the proposed distant segments (DS) kernel was
also tested. The θm hyperparameter was set to δm to avoid
the limitation of segment length. Hence, δm was the sole
hyperparameter for this kernel that was optimized by
cross-validation.

Other interesting kernels, not considered here because
they yielded inferior results (according to [16], and [23])
on the remote protein homology detection problem,
include the mismatch kernel [27] and the pairwise kernel
[28].

Datasets
The V3 loop sequence and coreceptor usage of HIV-1 sam-
ples were retrieved from Los Alamos National Laboratory
HIV Databases http://www.hiv.lanl.gov/ through availa-
ble online forms.

Every sample had a unique GENBANK identifier.
Sequences containing #, $ or * were eliminated from the

The algorithm for merging every feature from the set S = {(s1, y1), (s2, y2),Figure 3
The algorithm for merging every feature from the set S = {(s1, y1), (s2, y2), ..., (sl, yl)} of all support vectors into a Map represent-
ing the discriminant w.
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dataset. The signification of these symbols was reported
by Brian Foley of Los Alamos National Laboratory (per-
sonal communication). The # character indicates that the
codon could not be translated, either because it had a gap
character in it (a frame-shifting deletion in the virus RNA),
or an ambiguity code (such as R for purine). The $ and *
symbols represent a stop codon in the RNA sequence.
TAA, TGA or TAG are stop codons. The dataset was first
shuffled and then splitted half-half, yielding a training
and a testing set. The decision to shuffle the dataset was
made to increase the probability that both the training
and testing examples are obtained from the same distribu-
tion. The decision to use half of the dataset for testing was
made in order to obtain tight confidence intervals for
accuracy.

Samples having the same V3 loop sequence and a differ-
ent coreceptor usage label are called contradictions. Contra-
dictions were kept in the datasets to have prediction
performances that take into account the biological reality
of dual tropism for which frontiers are not well defined.

Statistics were compiled for the coreceptor usage distribu-
tion, the count of contradictions, the amount of samples
in each clades and the distribution of the V3 loop length.

Results
Here we report statistics on our datasets, namely the dis-
tribution, contradictions, subtypes and the varying
lengths. We also show the results of our classifiers on the
HIV-1 coreceptor usage prediction task, a brief summary
of existing methods and an analysis of the discriminant
vector with the distant segments kernel.

Statistics
In Table 1 is reported the distribution of coreceptor usages
in the datasets created from Los Alamos National Labora-
tory HIV Databases data. In the training set, there are 1225
CCR5-utilizing samples (85.9%), 375 CXCR4-utilizing
samples (26.3%) and 175 CCR5-and-CXCR4-utilizing
samples (12.2%). The distribution is approximatly the
same in the test set. There are contradictions (entries with
the same V3 sequence and a different coreceptor usage) in
all classes of our datasets. A majority of viruses can use
CCR5 in our datasets.

In Table 2, the count is reported regarding HIV-1 subtypes,
also known as genetic clades. HIV-1 subtype B is the most
numerous in our datasets. The clade information is not an
attribute that we provided to our classifiers, we only built
our method on the primary structure of the V3 loop.
Therefore, our method is independant of the clades.

The V3 loops have variable lengths among the virions of a
population. In our dataset (Table 3), the majority of
sequences has exactly 36 residues, although the length
ranges from 31 to 40.

Coreceptor usage predictions
Classification results on the three different tasks (CCR5,
CXCR4, CCR5-and-CXCR4) are presented in Table 4 for
three different kernels.

For the CCR5-usage prediction task, the SVM classifier
achieved a testing accuracy of 96.63%, 96.42%, and
96.35%, respectively, for the BS, LA, and DS kernels. By
using the binomial tail inversion method of [26], we find
no statistically significant difference, with 90% confi-
dence, between kernels.

For the CXCR4-usage prediction task, the SVM classifier
achieved a testing accuracy of 93.68%, 92.21%, and
94.80%, respectively, for the BS, LA, and DS kernels. By
using the binomial tail inversion method of [26], we find
that the difference is statistically significant, with 90%
confidence, for the DS versus the LA kernel.

For the CCR5-and-CXCR4-usage task, the SVM classifier
achieved a testing accuracy of 94.38%, 92.28 %, and
95.15%, respectively, for the BS, LA, and DS kernels.
Again, we find that the difference is statistically signifi-
cant, with 90% confidence, for the DS versus the LA ker-
nel.

Overall, all the tested string kernels perform well on the
CCR5 task, but the DS kernel is significantly better than
the LA kernel (with 90% confidence) for the CXCR4 and
CCR5-and-CXCR4 tasks. For these two prediction tasks,
the performance of the BS kernel was closer to the one
obtained for the DS kernel than the one obtained for the
LA kernel.

Table 1: Datasets. Contradictions are in parenthesis.

Coreceptor usage Training set Test set
Negative examples Positive examples Total Negative examples Positive examples Total

CCR5 200 (13) 1225 (12) 1425 (25) 225 (22) 1200 (16) 1425 (38)
CXCR4 1050 (44) 375 (18) 1425 (62) 1027 (28) 398 (21) 1425 (38)
CCR5 and CXCR4 1250 (57) 175 (30) 1425 (87) 1252 (48) 173 (35) 1425 (83)
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(page number not for citation purposes)



Retrovirology 2008, 5:110 http://www.retrovirology.com/content/5/1/110
Classification with the perfect deterministic classifier
Also present in Table 4 are the results of the perfect deter-
ministic classifier. This classifier is the deterministic classi-
fier achieving the highest possible accuracy on the test set.
For any input string s in a testing set T, the perfect deter-
minist classifier (h*) returns the most frequently encoun-
tered class label for string s in T. Hence, the accuracy on T
of h* is an overall measure of the amount of contradic-
tions that are present in T. There are no contradictions in
T if and only if the testing accuracy of h* is 100%. As
shown in Table 4, there is a significant amount of contra-
dictions in the test set T. These results indicate that any
deterministic classifier cannot achieve an accuracy greater
than 99.15%, 98.66% and 97.96%, respectively for the
CCR5, CXCR4, and CCR5-and-CXCR4 coreceptor usage
tasks.

Discriminative power
To determine if a SVM classifier equipped with the distant
segments (DS) kernel had enough discriminative power
to achieve the accuracy of perfect determinist classifier, we
trained the SVM, equipped with the DS kernel, on the test-
ing set. From the results of Table 4, we conclude that the
SVM equipped with the DS kernel possess sufficient dis-
criminative power since it achieved (almost) the same
accuracy as the perfect deterministic classifier for all three
tasks. Hence, the fact that the SVM with the DS kernel
does not achieve the same accuracy as the perfect deter-
minist classifier when it is obtained from the training set
(as indicated in Table 4) is not due to a lack of discrimina-
tive power from the part of the learner.

Discriminant vectors
The discriminant vector that maximizes the soft-margin
has (almost always) many non-zero valued components
which can be extracted by the algorithm of Figure 3. We
examine which components of the discriminant vector
have the largest absolute magnitude. These components

give weight to the most relevant features for a given classi-
fication task. In Figure 4, we describe the most relevant
features for each tasks. Only the 20 most significant fea-
tures are shown.

A subset of positive-weighted features shown for CCR5-
utilizing viruses are also in the negative-weighted features
shown for CXCR4-utilizing viruses. Furthermore, a subset
of positive-weighted features shown for CXCR4-utilizing
viruses are also in the negative-weighted features reported
for CCR5-utilizing viruses. Thus, CCR5 and CXCR4 discri-
minant models are complementary. However, since 3 tro-
pisms exist (R5, X4 and R5X4), features contributing to
CCR5-and-CXCR4 should also include some of the fea-
tures contributing to CCR5 and some of the features con-
tributing to CXCR4. Among shown positive-weighted
features for CCR5-and-CXCR4, there are features that also
contribute to CXCR4 ([8, R, R], [13, R, T], [9, R, R]). On
another hand, this is not the case for CCR5. However,
only the twenty most relevant features have been shown
and there are many more features, with similar weights,
that contribute to the discriminant vector. In fact, the clas-
sifiers that we have obtained depend on a very large
number of features (instead of a very small subset of rele-
vant features).

Discussion
The proposed HIV-1 coreceptor-usage prediction tool
achieved very high accuracy in comparison with other
existing prediction methods. In view of the results of Pillai
et al, we have shown that the SVM classification accuracy
can be greatly improved with the usage of a string kernel.
Surprisingly, the local alignment (LA) kernel, which
makes an explicit use of biologically-motivated scoring
matrices (such as BLOSUM 62), turns out to be outper-
formed by the blended spectrum (BS) and the distant seg-
ments (DS) kernels which do not try to exploit any
concept of similarity between residues but rely, instead,
on a very large set of easily-interpretable features. Thus, a

Table 2: HIV-1 subtypes.

Subtype Training set Test set Total

A 39 46 85
B 955 943 1898
C 168 149 317
02_AG 12 15 27
O 11 11 22
D 69 95 164
A1 25 18 43
AG 5 5 10
01_AE 97 106 203
G 7 7 14
Others 37 30 67

Total 1425 1425 2850

Table 3: Sequence length distribution. The minimum length is 31 
residues and the maximum length is 40 residues.

Residues Training set Test set Total

31 1 0 1
32 0 0 0
33 2 2 4
34 18 22 40
35 210 189 399
36 1142 1162 2304
37 30 31 61
38 11 10 21
39 11 8 19
40 0 1 1

Total 1425 1425 2850
Page 9 of 14
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weighted-majority vote over a very high number of simple
features constitutes a very productive approach, that is
both sensitive and specific to what it is trained for, and
applies well in the field of viral phenotype prediction.

Comparison with available bioinformatic methods
In Table 5, we show a summary of the available methods.
The simplest method (the charge rule) has an accuracy of
87.45%. Thus, the charge rule is the worst method pre-
sented in table 5. The SVM with string kernels is the only
approach without multiple alignments. Therefore, V3
sequences with many indels can be used with our method,
but not with the other. These other methods were not
directly tested here with our datasets because they all rely
on multiple alignments. The purpose of those alignments
is to produce a consensus and to yield transformed
sequences having all the same length. As indicated by the
size of the training set in those methods, sequences having
larger indels were discarded, thus making these datasets
smaller. Most of the methods rely on cross-validation to
perform quality assessment but, as we have mentioned,
this is problematic when multiple alignments are per-
formed prior to learning, since, in these cases, the testing
set in each fold is used for the construction of the tested
classifier. It is also important to mention that the various
methods presented in Table 5 do not produce predictors

for the same coreceptor usage task. Indeed, the definition
of X4 viruses is not always the same: some authors refer to
it as CXCR4-only while other use it as CXCR4-utilizing. It
is thus unfeasible to assess the fitness of these approaches,
which are twisted by cross-validation, multiple align-
ments and heterogeneous dataset composition.

The work by Lamers and colleagues [12] is the first devel-
opment in HIV-1 coreceptor usage prediction regarding
dual-tropic viruses. Using evolved neural networks, an
accuracy of 75.50% was achieved on a training set of 149
sequences with the cross-validation method. However,
the SVM equipped with the distant segments kernel
reached an accuracy of 95.15% on a large test set (1425
sequences) in our experiments. Thus, our SVM outper-
forms the neural network described by Lamers and col-
leagues [12] for the prediction of dual-tropic viruses.

Los Alamos National Laboratory HIV Databases
Although we used only the Los Alamos National Labora-
tory HIV Databases as our source of sequence informa-
tion, it is notable that this data provider represents a meta-
resource, fetching bioinformation from databases around
the planet, namely GenBank (USA, http://
www.ncbi.nlm.nih.gov/Genbank/), EMBL (Europe, http:/
/www.ebi.ac.uk/embl/) and DDBJ (Japan, http://

Table 4: Classification results on the test sets. Accuracy, specificity and sensitivity are defined in Methods. See [25] for a description of 
the ROC area.

Coreceptor usage SVM parameter C Kernel parameter Support vectors Accuracy Specificity Sensitivity ROC area

Blended spectrum kernel
CCR5 0.04 3 204 96.63% 85.33% 98.75% 98.68%
CXCR4 0.7 9 392 93.68% 96.00% 87.68% 96.59%
CCR5 and CXCR4 2 15 430 94.38% 98.16% 67.05% 90.16%

Local alignment kernel
CCR5 9 1 200 96.42% 87.55% 98.08% 98.12%
CXCR4 0.02 0.05 321 92.21% 97.56% 78.39% 95.11%
CCR5 and CXCR4 0.5 0.1 399 92.28% 97.20% 56.64% 87.49%

Distant segments kernel
CCR5 0.4 30 533 96.35% 83.55% 98.75% 98.95%
CXCR4 0.0001 30 577 94.80% 97.56% 87.68% 96.25%
CCR5 and CXCR4 0.2 35 698 95.15% 99.20% 65.89% 90.97%

Perfect deterministic classifier
CCR5 - - - 99.15% 99.55% 99.08% -
CXCR4 - - - 98.66% 99.70% 95.97% -
CCR5 and CXCR4 - - - 97.96% 99.68% 85.54% -

Distant segments kernel trained 
on test set
CCR5 0.3 40 425 98.45% 92.88% 99.5% 99.17%
CXCR4 0.0001 35 611 98.66% 99.70% 95.97% 98.29%
CCR5 and CXCR4 0.0001 40 618 97.96% 99.68% 85.54% 96.27%
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www.ddbj.nig.ac.jp/). Researchers cannot directly send
their HIV sequences to LANL, but it is clear that this
approach makes this database less likely to contain errors.

Noise
The primary cause of contradictions (e.g. a sequence hav-
ing two or more phenotypes) remains uncharacterized. It
may be due to a particular mix, to some extent, of virion
envelope attributes (regions other than the V3) and of the
host cell receptor counterparts. As genotypic assays, based
on bioinformatics prediction software, rely on sequencing
technologies, they are likely to play a more important role
in clinical settings as sequencing cost drops. Next-genera-
tion sequencing platforms promise a radical improve-
ment on the throughput and more affordable prices.
Meanwhile, effective algorithmic methods with proven
statistical significance must be developed. Bioinformatics
practitioners have to innovate by creating new algorithms
to deal with large datasets and need to take into consider-
ation sequencing errors and noise in phenotypic assay rea-
douts. Consequently, we investigated the use of statistical
machine learning algorithms, such as the SVM, whose
robustness against noise has been observed in many clas-
sification tasks. The high accuracy results we have
obtained here indicate that this is also the case for the task
of predicting the coreceptor usage of HIV-1. While it
remains uncertain whether or not other components of
the HIV-1 envelope contribute to the predictability of the
viral phenotype, we have shown that the V3 loop alone
produces very acceptable outputs despite the presence of
a small amount of noise.

Web server
To allow HIV researchers to test our method on the web,
we have implemented a web server for the HIV-1 corecep-
tor usage prediction. The address of this web server is
http://genome.ulaval.ca/hiv-dskernel. In this setting, one
has to submit fasta-formatted V3 sequences in a web form.
Then, using the dual representation of the SVM with the
distant segments kernel, the software predicts the corecep-
tor usage of each submitted viral sequence. Those predic-
tions are characterized by high accuracy (according to
results in Table 4). Source codes for the web server and for
a command-line back-end are available in additional file
1.

Conclusion
To our knowledge, this is the first paper that investigates
the use of string kernels for predicting the coreceptor
usage of HIV-1. Our contributions include a novel string
kernel (the distant segments kernel), a SVM predictor for
HIV-1 coreceptor usage with the identification of the most
relevant features and state-of-the-art results on accuracy,
specificity, sensitivity and receiver operating characteris-
tic. As suggested, string kernels outperform all published

Features (20 are shown) with highest and lowest weights for each coreceptor usage prediction taskFigure 4
Features (20 are shown) with highest and lowest weights for 
each coreceptor usage prediction task.
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algorithms for HIV-1 coreceptor usage prediction. Large
margin classifiers and string kernels promise improve-
ments in drug selection, namely CCR5 coreceptor inhibi-
tors and CXCR4 coreceptor inhibitors, in clinical settings.
Since the binding of an envelope protein to a receptor/
coreceptor prior to infection is not specific to HIV-1, one
could extend this work to other diseases. Furthermore,
most ligand interactions could be analyzed in such a fash-
ion. Detailed features in primary structures (DNA or pro-
tein sequences) can be elucidated with the proposed
bioinformatic method. Although we have exposed that
even the perfect algorithm (entitled "Perfect determinist
classifier") can not reach faultless outcomes, we have also
empirically demonstrated that our algorithms are very
competitive (more than 96% with distant segments for
CCR5). It is thus feasible to apply kernel methods based
on features in primary structures to compare sequence
information in the perspective of predicting a phenotype.
The distant segments kernel has broad applicability in
HIV research such as drug resistance, coreceptor usage (as
shown in this paper), immune escape, and other viral
phenotypes.

Appendix
Proof of the correctness of the distant segments kernel

We now prove that the algorithm DISTANT-SEGMENTS-

KERNEL (s, t, δm, θ m) does, indeed, compute 

as defined by Equation 2.

Proof. For each pair (js, jt) such that s [js + 1] = t [jt + 1] and

each δ ≥ 2, let us define  to be the set of all triples

(δ, (μs, α, νs, α', ), (μt, α, νt, α', )) such that

Clearly,  is the sum of all the values of

| | over all the possible pairs (js, jt). Moreover, it is

easy to see that | | can be computed only from the

knowledge of the set of indices i ∈ {1,..., n} satisfying
property P (i) : = s [js + i] = t [jt + i]. Note that when the test

of the first WHILE loop is performed, the value of i is such
that P (i) is valid but not P (i - 1). Moreover, in the second
WHILE loop, P (i) remains valid, except for the last test.

Thus, s [js + i] = t [jt + i] if and only if i2r ≤ i <i2r+1 for some

r ∈ {0,..., k}. This, in turn, implies that each element of

 must be such that i2r ≤ δ <i2r+1 for some r. To

obtain the result, it is therefore sufficient to prove that
both of theses properties hold.

P1 The number of elements of , for which i0 <δ <i1,

is given by

P2 For r ∈ {1,..., k}, the number of elements of ,

for which i2r ≤ δ <i2r+1, is given by

To prove these properties, we will use the fact that, if 1 ≤ i

≤ k, then  counts the number of sequences �a1,..., ai�

satisfying 1 ≤ a1 <a2 < � <ai ≤ k where {a1, a2, ..., ai} are i

string positions. Moreover, for any substring u of s, let us
denote by bu the starting position of u in s, and by eu the
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Table 5: Available methods. The results column contains the metric and what the classifier is predicting.

Reference Learning method Training set Testing set Multiple alignments Results

Pillai et al. 2003 Charge rule [5,6] 271 - yes Accuracy (CXCR4): 87.45%
Resch et al. 2001 Neural networks 181 - yes Specificity (X4): 90.00%
Pillai et al. 2003 SVM 271 - yes Accuracy (CXCR4): 90.86%
Jensen et al. 2003 PSSM1 213 175 yes Specificity (CXCR4): 96.00%
Jensen et al. 2006 PSSM 279 - yes Specificity (CXCR4): 94.00%2

Sander et al. 2007 SVM 432 - yes Accuracy (CXCR4): 91.56%
Xu et al. 2007 Random forests 651 - yes Accuracy (R5): 95.10%
Lamers et al. 2008 Neural networks 149 - yes Accuracy (R5X4): 75.50%
This manuscript SVM 1425 1425 no Accuracy (CXCR4): 94.80%

1Position-specific scoring matrices
2Subtype C
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first position of s after the substring u (if s ends with u,
choose eu = |s| + 1).

We first prove P2. Fix an r. Since i0 = 1, we have that any s-
substring α of length ≤ θm with bα = js + i0 and eα ≤ js + i1
together with any s-substring α' of length ≤ θm such that

js + i2r ≤ bα' <eα' ≤ js + i2r+1,

will give rise to exactly one element of  with i2r ≤ δ

<i2r+1. Conversely, each element  such that i2r ≤ δ

<i2r+1 will have an α and an α' with these properties. Since

α has to start at js + i0, it is easy to see that the number of

such possible α is exactly min(θm, i1 - i0). Thus let us show

that the number of possible α' is exactly .

Since lr gives the number of positions from js + i2r to js +

i2r+1 inclusively,  counts all the possible, choices of bα'

and eα' with js + i2r ≤ bα' <eα' ≤ js + i2r+1. Thus  counts the

number of possible strings α' of all possible lengths

(including lengths > θm). On another hand, the number of

α' having a length > θm. is equal to . Indeed, if lr -

θm < 2,  = 0 as wanted, and otherwise, there is a

one-to-one correspondence between the set of all

sequences �a1, a2� such that 1 ≤ a1 <a2 ≤ lr - θm and the set of

all α' of length > θm. The correspondence is obtained by

putting bα' = i2r + a1 - 1 and eα' = i2r + θm + a2 - 1.

The proof for P1 is similar to the one for P2 except that we
have to consider the fact that both α and α' start and end
in {js + i0,..., js + i1 - 1}. Since no overlap is allowed and bα
= js + i0, we must have

js + i0 ≤ eα - 1 <bα' <eα' ≤ js + i1.

Since l0 gives the number of positions from js + i0 to js + i1

inclusively,  counts all the possible choices of α and

α' for all possible lengths. Recall that if l0 < 3, which can

only occur if i1 = i0 + 1, we have that , as wanted.

On another hand,  counts all the possible

choices of α of length > θm and of α' of arbitrary length.

This set of possible choices is non empty only if l0 - θm ≥ 3

and, then, the one-to-one correspondence between a

sequence �a1, a2, a3� such that 1 ≤ a1 <a2 <a3 ≤ l0 - θm and the

values of �eα, bα', eα'� is

eα - 1 = js + θm + a1, bα' = js + θm + a2 and eα' = js + θm + a3.

Similarly,  counts all the possible choices of α' of

length > θm and of α of arbitrary length, the correspond-

ence being eα - 1 = js + a1, bα' = js + a2 and eα' = js + θm + a3.

Finally,  counts all the possible choices of α and

α', both of length > θm. In the cases where such possible

choices exist (i.e., if l0 - 2θm ≥ 3), the correspondence is eα
- 1 = js + θm + a1, bα' = js + θm + a2 and eα' = js + 2θm + a3. Then,

property P1 immediately follows from the inclusion-
exclusion argument.
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