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Abstract

Background: Sexual transmission is the main route of HIV-1 infection and the CCR5-using (R5) HIV-1 is predominantly
transmitted, even though CXCR4-using (X4) HIV-1 is often abundant in chronic HIV-1 patients. The mechanisms
underlying this tropism selection are unclear. Mucosal Langerhans cells (LCs) are the first immune cells to encounter
HIV-1 and here we investigated the role of LCs in selection of R5 HIV-1 using an ex vivo epidermal and vaginal
transmission models.

Results: Immature LCs were productively infected by X4 as well as R5 HIV-1. However, only R5 but not X4 viruses
were selectively transmitted by immature LCs to T cells. Transmission of HIV-1 was depended on de novo
production of HIV-1 in LCs, since it could be inhibited by CCR5 fusion inhibitors as well as reverse transcription
inhibitors. Notably, the activation state of LCs affected the restriction in X4 HIV-1 transmission; immune activation
by TNF facilitated transmission of X4 as well as R5 HIV-1.

Conclusions: These data suggest that LCs play a crucial role in R5 selection and that immature LCs effectively
restrict X4 at the level of transmission.
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Background
Human immunodeficiency virus-1 (HIV-1) is the virus
causing acquired immunodeficiency syndrome (AIDS),
which is a worldwide pandemic. With an estimated 34
million people infected worldwide, HIV-1 is a major health
burden [1]. HIV-1 is a lentivirus that infects a variety of
immune cells such as CD4+ T cells, macrophages and
dendritic cells (DCs). Although CD4 is the main recep-
tor for infection, HIV-1 also requires chemokine recep-
tors for membrane fusion [2-4]. Chemokine receptor
type 5 (CCR5) and C-X-C chemokine receptor type 4
(CXCR4) are the most important co-receptors for the
two main HIV-1 variants, R5 and X4 viruses, respect-
ively. HIV-1 infection predominantly occurs with the R5
HIV-1 strains. In contrast, X4 HIV-1 strains are rarely
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found during primary infection [5-9] even though X4
HIV-1 is present in chronic infected patients. During
chronic infection, the virus tropism can switch from R5
to R5X4 or X4 viruses, which occurs in about 50% of in-
fected individuals [10]. Switching of co-receptor usage
is associated with an accelerated rate of loss of CD4 T
cells resulting in rapid progression to AIDS and death
[5-9]. Despite the presence of X4 viruses in the late
stage of infection, X4 variants are rarely transmitted
[5,8]. Indeed, both R5 and X4 HIV-1 variants have been
detected in body fluids including semen, blood, and cer-
vicovaginal secretions however only R5 HIV-1 variants
are generally transmitted and establish the primary infec-
tion [11,12]. R5 HIV-1 selective transmission can indicate
the existence of a “gatekeeper” that prevents transmission
of X4 HIV-1 variants and/or a facilitator that supports
transmission of R5 viruses [13,14], however, the under-
lying mechanisms remain unclear [15].
HIV-1 infection is categorized as a sexually transmitted

disease as more than 85% of HIV-1 infection occurs via
sexual contacts [16,17]. For transmission, HIV-1 needs
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to cross female and male genital, and intestinal mucosal
epithelium [18-21]. Langerhans cells (LCs) are a subset
of DCs that line the mucosa the genital tracts and are
therefore the first immune cells to encounter HIV-1
[22,23]. There are several reports that highlight a role
for LCs in HIV-1 transmission [23-26]. LCs act as a nat-
ural barrier against HIV-1 that capture HIV-1 through
the C-type lectin langerin leading to internalization and
degradation into Birbeck granules, limiting infection [27].
However blockage, saturation of langerin or inflammatory
conditions lead to the infection of LCs and these infected
LCs efficiently transmit HIV-1 to T cells [27-33].
LCs express HIV-1 receptor CD4 and the co-receptor

CCR5 [34,35]. Therefore it is expected that LCs are
mainly infected by R5 HIV-1 strains [24]. Several studies
have shown that LCs, under steady state, can only be
infected with R5 HIV-1 and transmit R5 viruses [24,36]
but not X4 viruses [32,37].
Here we have investigated whether primary LCs play a

role in the selective transmission of R5 HIV-1 variants
and the mechanism underlying this selection. We have
used an ex vivo tissue transmission model to investigate
transmission of X4 and R5 HIV-1 by LCs. Notably, our
data show that both variants infect LCs but immature
LCs selectively transmit R5 HIV-1 to target cells. Im-
mune activation changed this restriction and allowed
transmission of both X4 and R5 viruses by LCs. Thus,
immature LCs have an intrinsic restriction mechanism
preventing transmission of X4 HIV-1, which is abrogated
upon immune activation. Identification of this restriction
mechanism in LCs might provide novel targets for pre-
venting sexual HIV-1 transmission.

Results
Human primary LCs transmit predominantly R5 HIV-1
We have used an ex vivo tissue transmission model [30]
to investigate the role of LCs in transmission of X4 and
R5 HIV-1. Human epidermal sheets were exposed to dif-
ferent titers of X4 and R5 HIV-1, NL4.3 and NL4.3-BaL,
respectively. After 5 hours, unbound virus was washed
away and infected sheets were cultured for 3 days. Mi-
grated LCs were harvested and cocultured with CCR5
vector-transduced Jurkat T cells (CCR5 Jurkat T cells)
that are permissive for both R5 and X4 HIV-1. After 3
days transmission was determined by measuring infec-
tion of CCR5 Jurkat T cells by intracellular p24 staining.
R5 HIV-1 was efficiently transmitted by LCs to CCR5
Jurkat T cells (Figure 1A). In contrast, transmission of
X4 HIV-1 by LCs was low, even when high titers were
used. To exclude that target cell characteristics affected
HIV-1 transmission, we also investigated HIV-1 trans-
mission from LCs to another target cell-line TZM-bl,
which is also susceptible to both R5 and X4 HIV-1 [38].
Similarly, LCs transmitted R5 viruses to TZM-bl cells
much more efficiently than X4 HIV-1 (Figure 1B). The
predominant R5 HIV-1 transmission was not due to se-
lective infection of the target cells, since both CCR5 Jurkat
T cells and TZM-bl cells were efficiently infected by X4
and R5 HIV-1 (Figure 1C and D). To confirm that the
predominant transmission of R5 HIV-1 by LCs was not
dependent on the HIV-1 strains, epidermal sheets were
infected with additional X4 (SF2, LAI) and R5 (SF162)
strains. Similarly to NL4.3 and NL4.3-BaL, HIV-1 SF162
was transmitted more efficiently than HIV-1 SF2 and
LAI strains (Figure 1E). Next, we isolated LCs from va-
ginal mucosa and investigated transmission by these
LCs. Similar to epidermal LCs, vaginal LCs selectively
transmitted R5 HIV-1 (Figure 1F). These data strongly
suggest that primary human LCs efficiently transmit R5
but not X4 HIV-1 variants to T cells.

LCs are infected by X4 HIV-1
Next we investigated infection of LCs by X4 and R5
HIV-1 variants. Epidermal sheets were infected with X4
and R5 HIV-1 for 5 hours and epidermal sheet were
washed extensively and cultured for 3 days. At day 3, mi-
grated LCs were harvested and cultured for 3 additional
days. LC infection was analyzed by intracellular p24 ex-
pression in combination with LC-marker CD1a and T
cell-marker CD3. The majority of cells that migrated were
LCs. Hardly any T cells were present and these T cells
were not infected by HIV-1 [30]. Notably, LCs were in-
fected by both X4 and R5 HIV-1 variants. In fact, infection
with X4 HIV-1 was more efficient (Figure 2A). Similar
results were obtained with NL4.3-eGFP (X4) and NL4.3-
eGFP-BaL (R5) that express GFP only upon replication,
further supporting viral replication of both X4 and R5
HIV-1 variants in LCs (data not shown).
Next we investigated whether LCs were productively

infected by measuring HIV-1 p24 in the supernatant.
Epidermal sheets were exposed to X4 and R5 HIV-1 vari-
ants. After 3 days, emigrated LCs were collected and cul-
tured for several days, and p24 HIV-1 was measured in
the supernatant by ELISA. Both X4 and R5 HIV-1 variants
show productive infection as observed by p24 production
(Figure 2B). In addition, HIV-1 tat/rev transcription was
analyzed by quantitative real-time PCR. HIV-1 tat/rev
transcription of X4 HIV-1 in LCs was similar to that of
R5 HIV-1 (Figure 2C). To demonstrate that replication
was required, epidermal sheets were treated with HIV-1
reverse transcriptase inhibitor AZT prior to infection.
No tat/rev was detected for the cells that were treated
with AZT (Figure 2C). In order to control for possible
differences in infection of selected viruses, epidermal
sheets were also infected with HIV-1 LAI, SF2 and
SF162 strains. Exposure of epidermal sheets with HIV-1
LAI and SF2 also revealed infection of LCs with X4
HIV-1 strains in a level comparable to R5 HIV-1 strains
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Figure 1 Human primary LCs predominantly transmit R5 HIV-1. (A-B) Human epidermal sheets were pulsed with low (4000 IU or 40 ng
HIV-1 p24) or high (20000 IU or 400 ng HIV-1 p24) titers of HIV-1 NL4.3 (X4) or HIV-1 NL4.3-Bal (R5) for 5 hours (A) At day 3, emigrated LCs were
cocultured with CCR5 vector-transduced Jurkat (CCR5 Jurkat T cells) and infection of Jurkat cells was measured at day 6 by intracellular p24
staining or GFP expression. T cell-marker CD3 and LC-marker CD1a were used to exclude LCs and LCs-T cells conjugates from analysis. Error bars
represent the mean ± SEM of at least 3 independent experiments. (B) Emigrated LCs were cocultured with TZM-bl cells for 2 days and infection
was determined by measuring luciferase activity (relative luciferase units [RLU]). Error bars represent the mean ± SEM of at least 3 independent
experiments. (C-D) CCR5 Jurkat T cells (C) and TZM-bl cells (D) were infected with low or high titers of X4 and R5 virus, and infection was
determined by intracellular p24 staining or luciferase activity respectively at day 2. Error bars represent the mean ± SEM of triplicates. (E) Epidermal
sheets were infected with different X4 (HIV-1 SF2, LAI and NL4.3) and R5 viruses (SF162 and HIV-1 NL4.3-Bal). Emigrated LCs were cocultured with
TZM-bl cells and infection of TZM-bl cells was determined by luciferase activity. Error bars represent the mean ± standard errors of the mean
(SEM) of at least 3 independent experiments. (F) Vaginal LCs were exposed to X4 and R5 HIV-1 and after 3 days were co-cultured with CCR5
Jurkat T cells. Transmission was determined by measuring infection of CCR5 Jurkat T cells by intracellular p24 staining after 3 days. Dotplots
represents two independent experiments/donors.
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(Figure 2D). In accordance with the infection data, im-
mature LCs express both CCR5 and CXCR4 as mea-
sured by flow cytometry (Figure 2E). Furthermore
expression of CXCR4 mRNA was detected in emigrated
LCs from uninfected and infected epidermal sheets
(Figure 2F). Similar to epidermal LCs, vaginal LCs were
infected by both X4 and R5 HIV-1 (Figure 2G). Thus,
these data strongly suggest that primary LCs are in-
fected by both X4 and R5 HIV-1 and that the predomin-
ant transmission of R5 HIV-1 by LCs is not due to
inability of X4 HIV-1 to infect LCs.
Activated LCs efficiently transmit X4 HIV-1 variants
Next we investigated whether activation of cells affects
HIV-1 selection during transmission by LCs. Epidermal
sheets were cultured for 3 days and the migratory LCs
were harvested. These migratory LCs have an activated
phenotype as shown by increased expression of CD83 and
CD86 (Figure 3A). The migratory LCs also expressed
CCR5 and CXCR4 (Figure 3B) although at a lower level
than immature LCs (Figure 2E). The mRNA levels of both
CCR5 and CXCR4 in migratory LCs were similar to those
observed in immature LCs (Figure 3C and 3D). Next
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Figure 2 Human primary LCs are infected by X4 HIV-1 variants. (A-B) Human epidermal sheets were pulsed with low or high titers of HIV-1
NL4.3 (X4) or HIV-1 NL4.3-Bal (R5) for 5 hours, washed and cultured for 3 days. (A) Infection of emigrant LCs was determined by intracellular p24
staining or GFP expression in combination with LC-marker CD1a by flow cytometric analysis. The percentage of CD1a+p24+ cells are depicted
here as % of infected cells. Error bars represent the mean ± SEM of at least 3 independent experiments. (B) Supernatant of cultured emigrant
LCs was collected at day 3, 8 and 12 post-infection and HIV-1 p24 was measured in the supernatant by ELISA. Error bars represent the mean ± SEM of
duplicates. (C) Epidermal sheets were pulsed with HIV-1 NL4.3 or HIV-1 NL4.3-Bal in the presence or absence of AZT for 5 hours. At day 3, HIV-1 tat/rev
transcription in emigrated LCs was analyzed by real-time qPCR. Error bars represent the mean ± SEM of duplicates. One experiment representative of
three is presented. (D) Epidermal sheets were pulsed with different X4 (HIV-1 SF2, LAI and NL4.3) and R5 viruses (SF162 and HIV-1 NL4.3-Bal) and after
3 days infection of LCs was determined. Error bars represent the mean ± SEM of at least 3 independent experiments. (E) Surface expression of HIV-1
coreceptors CCR5 and CXCR4 on immature LCs. Histograms represent at least 3 donors. (F) Epidermal sheets were pulsed with X4 and R5 for 5 hours.
After 3 days mRNA expression of CXCR4 was measured in emigrant LCs by real-time qPCR. Error bars represent the mean ± SEM of duplicates.
(G) Vaginal LCs were infected with HIV-1 NL4.3 and NL4.3-Bal and infection was measured by intracellular p24 staining. Representative dotplots
of one out of two donors are shown.
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migratory LCs were infected with both HIV-1 strains and
infection was measured by flow cytometry. Similar to the
ex vivo infected LCs (Figure 2A), migratory LCs were in-
fected by both X4 and R5 HIV-1 variants and infection
with X4 HIV-1 was higher than R5 HIV-1 (Figure 3E).
These data suggest that the expression of the co-receptors
is not restricting infection of migratory LCs even though
the expression of the co-receptors is lower. Next we inves-
tigated transmission of HIV-1 by these activated LCs. Mi-
gratory LCs were infected with X4 and R5 HIV-1, washed
and cultured for 3 days. At day 3, target cells were added
and infection of the target cells was analyzed by p24 intra-
cellular staining. Notably, in contrast to the ex vivo model,
migratory LCs transmitted both X4 and R5 HIV-1 variants
(Figure 3F). These data suggest that activation of LCs
allows transmission of X4 HIV-1 to T cells.

Virus replication is necessary for HIV transmission
Next we investigated whether transmission by immature
and migratory LCs was dependent on replication. Epi-
dermal sheets were infected with HIV-1 in presence or
absence of the reverse transcriptase inhibitor AZT.
Emigrated LCs were cocultured with TZM-bl cells and
transmission was measured. AZT completely prevented
transmission of HIV-1 by LCs (Figure 4A). These data
strongly suggest that HIV-1 replication in immature
LCs is required for HIV-1 transmission. Next, migra-
tory LCs were infected with HIV-1 strains in presence
or absence of different inhibitors, including CCR5 antag-
onist Maraviroc, AZT and protease inhibitor Indinavir,
which prevents HIV-1 release. Both AZT and Indinavir
blocked transmission of both R5 and X4 HIV-1
whereas Maraviroc only blocked transmission of R5
HIV-1 (Figure 4B). These data indicate that HIV-1
transmission by both immature and mature LCs is
dependent on virus replication.

TNF-matured LCs transmit both X4 and R5 HIV-1
Compared to immature LCs, migratory LCs are activated
and express high levels of the maturation markers CD86
and CD83 [30]. Since the activation state is the main
difference between ex vivo explants and migratory LCs
transmission models, we studied the effect of pre-
activation of LCs with TLR-2 agonist, Pam3CSK4 [39]
and TNF on X4 HIV-1 transmission. Epidermal sheets were
pretreated with different stimuli including Pam3CSK4 and
TNF and infected with X4 and R5 HIV-1. After 3 days,
migrated LCs were harvested and cocultured with target
cells to investigate transmission. Notably, TNF induced
transmission of X4 HIV-1 by LCs (Figure 5A) and this was
dependent on viral replication in LCs since AZTabrogated
transmission (Figure 5B). Pam3CSK4 similarly to TNF
increased the transmission rate of R5 HIV-1. AZT did not
block HIV-1 transmission by Pam3CSK4 stimulated LCs
when high titer of the R5 virus were used. These data are
in concordance with our previous study that Pam3CSK4
enhances the capture by LCs, and therefore increases
HIV-1 transmission independent of HIV-1 infection [30].
Although Pam3CSK4 similarly to TNF increased the
transmission rate of R5 HIV-1 variants, its effect on X4
HIV-1 variants was not noticeable. Previously we have
shown that TNF enhances infection of LCs by R5 HIV-1,
and thereby increases transmission of R5 HIV-1 [30]. Our
results show that TNF also increased the infection rate of
LCs with X4 HIV-1 (Figure 5C) and infection was blocked
by AZT. These data strongly suggest that immune activa-
tion of LCs is able to abrogate the restriction of X4 HIV-1
transmission.

Discussion
CCR5-using HIV-1 is the predominant strain being
transmitted, suggesting that part of the R5 selection oc-
curs at the mucosa of vaginal tissues. Here we have
shown that primary LCs express CXCR4 and CCR5, and
become infected by both X4 and R5 HIV-1. However,
only R5 HIV-1 is transmitted by primary LCs using an
ex vivo tissue transmission model. These data strongly
suggest there is restriction in the transmission of X4
HIV-1 by LCs. Immune activation abrogates this restric-
tion since activated LCs transmit both X4 and R5 HIV-1.
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In general R5 viruses are associated with HIV-1
transmission and predominate during the early stages
of infection [40,41]. During disease progression, X4
HIV-1 populations have been detected in about 50% of
the patients. Recent studies show that indeed so-called
founder/transmitted viruses are R5 and in some cases
dual X4R5 but not X4 variants [13,14]. These studies
suggest that there are likely several mechanisms for R5
selection [15]. Heterosexual transmission is the main
route of infection, suggesting that HIV-1 after sexual
contact needs to pass the mucosal vaginal barrier to in-
fect target cells. Little is known about the selectivity
during transmission over the mucosal barrier but it is
assumed that both X4 and R5 viruses are challenged by
this mechanical barrier [15]. LCs are present in the
epithelial layer of mucosa and are as antigen presenting
cells ideally positioned as well as equipped to capture
incoming pathogens [42]. Immature LCs are not per-
missive to infection and have been shown to present
another barrier for HIV-1 through the function of the
C-type lectin langerin, which captures both X4 and R5
viruses, leading to HIV-1 internalization and degrad-
ation [27,30]. Immune activation or high virus titers
allow infection of LCs with R5 [27,30] and transmission of
R5 HIV to T cells. The major route of transmission by LCs
requires productive infection of LCs and production
of virus particles, known as cis infection [27,36]. We
observed that transmission by LCs is dependent on
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or absence of different inhibitors including CCR5 antagonist Maraviroc, AZT and protease inhibitor Indinavir. After 3 days culture, LCs were
cocultured with TZM-bl cells. After 2 days, transmission was measured by luciferase assay. Error bars represent the mean ± SEM of triplicates.
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productive infection, in line with previous findings. Im-
mune activation has been shown to allow trans infection,
which is replication independent and relies on capture
and transmission to other cells [30,32]. Consistent with
previous publications [24,25,27-30,33,43], our results
confirmed that LCs selectively transmit R5 HIV-1 when
they are exposed to virus ex vivo. In general, it is
thought that LCs express HIV-1 receptor CD4 and
CCR5 coreceptor, which allows productive infection
with only R5 HIV-1 and selective transmission of R5
strains through a cis pathway [24,32,34,36,44,45]. Several
studies have used different models for LCs such as
cell-lines or in vitro generated monocyte-derived LCs
[32,46] and these might have distinct chemokine re-
ceptor expression than primary LCs. We have used the
ex vivo tissue transmission model [30] and observed
that emigrated LC were infected by different X4 vi-
ruses. Some reports are in accordance with our study and
have shown that LCs become infected by X4 HIV-1
[47,48]. However, these studies did not observe a restric-
tion in X4 transmission by LCs. The discrepancy between
our study could be differences in LC activation state or
source. Tchou et al. [48] stimulated epidermal LCs with
GM-CSF prior to infection which might activate LCs,
whereas Sivard et al. [47] used CD34+ progenitor-derived
LCs.
Immature LCs express the CXCR4 coreceptor as has

also been shown by others [48,49]. These data suggest
that permissiveness to infection for R5 viruses might not
be the underlying mechanism for R5 selection. In fact,
R5 selection might occur at the transmission phase. In-
fection of LCs with both X4 and R5 was dependent on
replication and could be inhibited by fusion or RT inhib-
itors. Similarly, transmission of R5 was dependent on
replication, suggesting that infection in trans did not ac-
count for the selection. Indeed, C-type lectin receptors
such as DC-SIGN and langerin are not selective in their
binding of X4 and R5 viruses [50-52] further suggesting
that selection is not due to differences in binding. We
observed that LCs were more efficiently infected by
NL4.3 (X4) compared to NL4.3-BaL (R5), suggesting
that the level of infection did not affect transmission.
Migratory LCs, which have an activated phenotype,

were infected by both X4 and R5 and notably were able
to transmit X4 as well as R5. Migratory LCs showed
lower expression of co-receptors compared to immature
LCs. However the lower co-receptor expression did not
affect infection of LCs with both X4- and R5-using viruses.
Efficient transmission of X4 HIV-1 by infected migratory
LCs suggests that immune activation and subsequent
infection might allow X4 transmission. Interestingly
LCs in ex vivo model after treatment with TNF were
able to transmit X4 HIV-1 variants. Although TNF en-
hances infection of LCs [30,53], our data suggest that
the level of infection does not affect transmission, since
X4 viruses efficiently infected LCs butt were not trans-
mitted to T cells. It is possible that immune activation
changes the viral internalization pathway or vesicle trans-
port in LCs, allowing efficient transmission. Of note is that
infection needs to occur at the mature/activated state to
observe X4 HIV-1 transmission, since we did not observe
X4 transmission by mature LCs that had been infected
ex vivo in an immature state. Epidermal sheets that were
pretreated with Pam3CSK4, even after treatment with
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Figure 5 TNF-matured LCs transmit both X4 and R5 HIV-1. (A) Epidermal sheets were pretreated with different stimuli including Pam3CSK4
and TNF for 4 hours, pulsed with low and high titers of X4 and R5 HIV-1 for 5 hours (A) At day 3 emigrant LCs were collected, cocultured with
CCR5 Jurkat T cells and HIV-1 transmission was determined after 3 days by measuring intracellular HIV-1 p24 or GFP expression by flow cytometry.
Using T cell-marker CD3 and LC-marker CD1a, infection of the target cells were exclusively analyzed. Error bars represent the mean ± SEM of at
least 3 independent experiments. (B) Epidermal sheets were pretreated with Pam3CSK4 and TNF for 4 hours or left untreated as control, following
exposure to low or high titers of X4 and R5 HIV-1 in presence or absence of AZT for 5 hours. After 3 days, emigrated LCs were cocultured with
CCR5 Jurkat T cells and transmission rate was determined at day 6 by flow cytometry. Error bars represent the mean ± SEM of at least 3
independent experiments. (C) Treatment of LCs with stimuli highly increased infection. Epidermal sheets were pretreated with Pam3CSK4 and
TNF for 4 hours then pulsed with X4 HIV-1 for 5 hours. Infection of emigrant LCs was determined at 6–7 days by intracellular p24 staining in
combination with LC-marker CD1a by flow cytometric analysis. Error bars represent the mean ± SEM of 3 independent experiments.
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AZT, were able to transmit HIV-1 R5 HIV-1 variants. This
effect of Pam3CSK4 was expected as it was previously
shown that Pam3CSK4 increases trans infection by LCs
[30]. However HIV-1 X4 variants were not transmitted
even through trans pathway. These data suggest that not
only cis infection but also trans infection of X4 viruses is
inhibited by immature LCs. These data strongly suggest
that R5 selection by immature LCs is dependent on X4
restriction that prevents transmission but not infection
of LCs. There is a recent report suggesting that mature
DCs produce SDF-1/CXCL12, which inhibits the propaga-
tion of X4 HIV-1 isolates at the DC-T-cell infectious syn-
apse [54]. We have investigated the expression of CXCL12
and mature LCs expressed higher levels of CXCL12 than
immature LCs (data not shown). Moreover, we did not ob-
serve any inhibition of the supernatant from immature
and mature LCs on infection of target cells with X4-using
viruses (data not shown). These data strongly suggest
that the restriction is not a soluble factor but a mechan-
ism intrinsic to immature LCs. Future investigations are
required to figure out the mechanism underlying this
selection.

Conclusions
In summary, this study show that HIV-1 CXCR4-using
variants are able to infect LCs. Although immature LCs
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selectively transmit HIV-1 CCR5-using strains, this se-
lection is not due to permissiveness to infection. Identifi-
cation of the X4 restriction mechanism by LCs might
enable us to develop strategies to also prevent R5 trans-
mission. Identification of HIV-1 X4 inhibitor(s) may lead
to better understanding of HIV-1 transmission and more
importantly a step forward for prevention and/or treat-
ment of HIV-1 infection.

Methods
Antibodies and reagents
The following reagents were used: KC57-RD1-PE (anti–
HIV-1 p24; Beckman Coulter), HI149-FITC (anti-CD1a;
Pharmingen), HI149-APC (anti-CD1a; BD biosciences),
NA1/34 (anti-CD1a; Dako Cytomation), UCHT1-PE
(anti CD3; eBioscience), SP34-2- PercP (anti CD3; BD
Pharmingen), 2D7-PE and 2D7-APC (anti-CCR5; Pharmin-
gen), 12G5-PerCP and 12G5-PE (anti CXCR4; R & D
System), SK3-FITC (anti-CD4; BD biosciences), RPA-T4
(anti-CD4; Biolegend), DCGM4-PE (anti CD207, Beckman
Coulter), 12D6 (anti CD207; Novocastra), HB15a-PE (anti
CD83; Beckman Coulter), 2331-FITC and 2331-PE (FUN-1)
(anti CD86; BD Pharmingen), IgG PE isotype (BD Biosci-
ences), tripalmitoylated lipopeptide Pam3CSK4 (Invivogen),
recombinant human TNF (Strathmann Biotec). The fol-
lowing HIV-1 inhibitors were obtained through the NIH
AIDS Reagent Program, Division of AIDS, NIAID, NIH:
Maraviroc, Indinavir and Zidovudine (AZT).

Plasmids and cell lines
pNL4.3eGFP and pNL4.3eGFP-BaL were generously
provided by C. Aiken, Vanderbilt University, Nashville,
Tennessee, USA. The human CCR5 lentiviral vector
pLOX (LV-CCR5) was generously provided by V. Piguet,
University Hospital and Medical School of Geneva,
Geneva, Switzerland [55,56]. Jurkat T cells expressing
CCR5 were generated by retroviral transduction as
previously described [55,56].

Viruses
293 T cells were transfected with NL4.3-BaL or NL4.3-
eGFP-BaL proviral plasmids (10 μg). At day 2, viruses
were harvested. The following viruses were obtained
through the NIH AIDS Reagent Program, Division of
AIDS, NIAID, NIH: HIV-1LAI from Dr. Jean-Marie Bechet
and Dr. Luc Montagnier [57,58]. HIV-1 SF2 and HIV-1
SF162 from Dr. Jay Levy [59,60]. Viruses stocks were prop-
agated on PHA-stimulated human PBMCs. All produced
viruses were quantified by p24 ELISA (Perkin Elmer Life
Sciences) and titrated using the indicator cells TZM-bl
(contributed by John C. Kappes, Xiaoyun Wu [both at
University of Alabama, Birmingham, Alabama, USA], and
Tranzyme Inc. through the NIH AIDS Research and
Reference Reagent Program) [30].
Ex vivo model
Human tissues were obtained from healthy donors under-
going corrective breast or abdominal surgery. The study
was approved by Medical Ethics Review Committee in
accordance with the ethical guidelines of the Academic
Medical Center. Epidermal sheets were prepared as de-
scribed previously [27]. Briefly, skins were cut 3-mm-
thick slices, containing the epidermis and dermis, using
a dermatome. The slices were incubated with Dispase II
(1 mg/ml, Roche Diagnostics) in Iscoves Modified
Dulbecco’sMedium (IMDM), 10% FCS and gentamy-
cine (10 mg/ml) for either 1 h at 37 C or overnight at
4 C. Epidermis were mechanically separated, washed
in IMDM medium and cut it into 1-cm2 pieces and
were used for ex vivo experiments. LC-enriched epidermal
single-cell suspensions were generated as described before
[27]. Briefly, epidermal sheets were incubating in PBS con-
taining DNase I (20 units/ml; Roche Applied Science) and
trypsin (0.05% Beckton Dickinson) for 30 min at 37 C.
Trypsin digestion was inactivated with FCS. Through
repeated pipetting of the digested epidermal sheets and
filtration through sterile mesh, a single-cell suspension
was generated. Single-cell suspension was then layered
on Ficoll gradient and immature LCs were purified using
CD1a-labeled immunomagnetic microbeads (Miltenyi
Biotec). Isolated LCs (99% CD1a+, langerin+) were tested
for expression of HIV-1 related cell surface markers.

Vaginal LC
Vaginal mucosa was obtained from routinely discarded
tissue of vaginal prolapse surgeries. The study was ap-
proved by Medical Ethics Review Committee in accord-
ance with the ethical guidelines of the Academic Medical
Center. After incubation with Dispase II (3 mg/mL, Roche
Diagnostics) in IMDM, vaginal mucosal sheets were sepa-
rated from submucosa and further cultured in IMDM
supplemented with 10% FCS, gentamycine (10 mg/mL),
penicillin (2500 U/ml), streptomycin (2500 mg/ml), and
L-Glutamine (100 mmol/l) until disintegration of the
tissue. Further vaginal LC purification was performed
using a Ficoll gradient and CD1a microbeads (Miltenyi
Biotec).

Stimulation
Epidermal sheets were incubated with Pam3CSK4 (5 μg/ml)
or TNF (0.1 μg/ml) for 4 hours prior to infection. TNF
was titrated in the ex vivo experiments for optimal HIV-1
transmission, Pam3CSK4 was titrated for optimal HIV-1
infection of CCR5 Jurkat cells and the other ligands were
used at concentrations that activate DCs [61,62].

Infection and transmission assay using the ex vivo model
For infection, human epidermal sheets were inoculated
with low (4.0E + 03 IU or 4.0E + 01 ng HIV-1 p24) or high
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(2.0E + 04 IU or 4.0E + 02 ng HIV-1 p24) titers of different
HIV-1 strains. After 5 hours incubation, infected sheets
were extensively washed and cultured in fresh media for
3 days. For treatment with HIV-1 inhibitors, the sheets
were pre-incubated with AZT (10 uM), Indinavir (1 uM)
or Maraviroc (4 uM) for one hour before infection. The
sheets remained with the HIV-1 inhibitors for 3 days
(the day of transmission assay). At day 3, the epidermal
sheets were removed and emigrated LCs were harvested.
Emigrated LCs were cultured for several days for infection
assays or were used for transmission assay. For transmis-
sion assay emigrated LCs were cocultured with either
CCR5+ Jurkat T cells (5.0E + 04 cells) or TZM-bl cells
(70-80% confluence in 96 wells) for 3 and 2 days, respect-
ively. Following methods were used for monitoring HIV-1
infection in the emigrated LCs: Intracellular HIV-1 p24
staining or GFP expression in combination with LC-
marker CD1a by flow cytometric analysis (6 days post in-
fection), measurement of p24 in culture supernatants at
different time points by ELISA (Perkin Elmer Life Sci-
ences) and real-time qPCR for HIV-1 tat/rev transcription
on the mRNA extracted from LCs lysates (3 days post in-
fection). LCs-mediated transmission of HIV-1 to CCR5+
Jurkat cells were determined by intracellular p24 staining
or GFP expression in combination with LC-marker CD1a
and T cell-marker CD3 by flow cytometry after 3 days
coculturing. Transmission to TZM-bl cells was evaluated
by measuring luciferase activity in the cocultures at 2 days
post transmission, using a luciferase reporter assay kit
(Promega).

Migratory LCs
Migratory LCs were generated by floating the epidermis
on IMDM, 10% FCS, 10 mg/ml gentamycin. After 3 days
migratory LCs were harvested, layered on Ficoll gradient
and cultured at 5.0E + 05 cells/ml in IMDM, 10% FCS
and 10 mg/ml gentamycine. For infection, 5.0E + 04
migratory LCs were exposed to low (4.0E + 03 IU, MOI
0.08) or high titer (2.0E + 04 IU, MOI 0.4) of different
HIV-1 variants. For treatment with HIV-1 inhibitors,
the migratory LCs were pre-incubated with AZT (10 uM),
Indinavir (1uM) or Maraviroc (4 uM) for one hour before
infection. The infected cells remained with the HIV-1
inhibitors for 3 days (day of transmission). After 3 days
LCs were harvested and extensively washed. Migratory
LCs were incubated for 3 additional days for determin-
ation of infection or were coculotured with the target
cells similar to above described for ex vivo model.

Real-time qPCR
LCs were extensively washed with PBS. Both host mRNA
and viral RNA were specifically isolated with an mRNA
Capture kit (Roche) and by an additional 1 h of incubation
in streptavidin-coated plates (Sigma) to ensure complete
removal of complexes of mRNA and biotin-labeled oligo
(dT). cDNA was synthesized with a reverse-transcriptase
kit (Promega). Samples were amplified by PCR with SYBR
Green as described [63]. Specific primers for HIV-1Tat/
Rev, CXCR4 and GAPDH [63] were designed by Primer
Express 2.0 (Applied Biosystems). The sequences are as
follows: HIV-1 Tat-Rev, forward, ATGGCAGGAAGAAG
CGGAG, reverse, ATTCCTTCGGGCCTGTCG; CXCR4
forward, CAACGTCAGTGAGGCAGATGA, CXCR4, re-
verse, TACCAGGCAGGATAAGGCCAA. Transcription
was normalized to GAPDH transcription. For Tat-Rev,
the relative viral expression of X4 HIV-1 infected sample
were set at 1 whereas for CXCR4, mRNA expression of
non infected samples was set at 1.

Abbreviations
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