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Abstract

Background: Increased cellular iron levels are associated with high mortality in HIV-1 infection. Moreover iron is an
important cofactor for viral replication, raising the question whether highly divergent lentiviruses actively modulate
iron homeostasis. Here, we evaluated the effect on cellular iron uptake upon expression of the accessory protein
Nef from different lentiviral strains.

Results: Surface Transferrin receptor (TfR) levels are unaffected by Nef proteins of HIV-1 and its simian precursors
but elevated in cells expressing Nefs from most other primate lentiviruses due to reduced TfR internalization. The
SIV Nef-mediated reduction of TfR endocytosis is dependent on an N-terminal AP2 binding motif that is not required
for downmodulation of CD4, CD28, CD3 or MHCI. Importantly, SIV Nef-induced inhibition of TfR endocytosis leads to
the reduction of Transferrin uptake and intracellular iron concentration and is accompanied by attenuated lentiviral
replication in macrophages.

Conclusion: Inhibition of Transferrin and thereby iron uptake by SIV Nef might limit viral replication in myeloid cells.
Furthermore, this new SIV Nef function could represent a virus-host adaptation that evolved in natural SIV-infected
monkeys.
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Background
Iron is an essential element in the human body and in-
volved in cellular proliferation and immune response [1].
Since free iron generates harmful reactive oxygen species
iron homeostasis is tightly regulated. Dietary iron is re-
sorbed by the Divalent Metal Transporter into entero-
cytes. Loaded on Transferrin (Tf) iron enters the blood
stream and is taken up by target cells via the Transferrin
Receptor I (TfR). Internalization of TfR can be antago-
nized by the hemochromatis protein (HfE). Thus, cells
can regulate iron uptake by TfR expression or by the rate
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of TfR internalization through HfE [1,2]. Iron export
from cells is also controlled by two antagonizing mecha-
nisms. Ferroportin loads cellular iron on plasma Tf and
this process is suppressed by the hormone hepcidine [3].
All these mechanisms have the consequence that only
trace amounts of iron, the so called labile iron pool
(LIP) [4], is redox-active. Long term storage of iron is
within Ferritin, mainly in hepatocytes [1,5].
Dysregulation of iron homeostasis is a hallmark of

many diseases including AIDS [1-3]. Elevated cellular
iron loads are associated with high HIV-1 titers and fas-
ter progression to AIDS and iron is important in various
steps of HIV-1 propagation [2,6-8]. Hence, viruses have
evolved mechanisms to increase cellular iron [2]. The
HIV-1 Nef protein was proposed to downregulate HfE,
leading to enhanced uptake of iron loaded Tf [9].
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HIV-1 Nef is considered as a pathogenicity factor con-
tributing to AIDS progression [10]. It enhances viral rep-
lication and infectivity and mediates immune evasion by
multiple functions, including downmodulation of CD4
and MHCI. Nef is highly variable and not only present
in HIV-1, but also in simian immunodeficiency viruses
(SIV) and HIV-2 [10]. HIV-1 causes AIDS in humans
and it was demonstrated that SIVcpz leads to immuno-
deficiency in chimpanzees [11]. HIV-2 is usually less
pathogenic than HIV-1 but causes AIDS post an extended
chronical phase [12]. Within the natural simian hosts,
SIVs do not cause disease due to a well balanced virus-
host coevolution. Hallmarks of non-pathogenic SIV infec-
tions are high viral loads in the absence of chronic and
generalized immune activation [13]. Notably, Nef proteins
derived from non-pathogenic infections prevent activation
of infected T cells by removal of the CD3 molecule from
the cell surface [14]. Thus, SIV Nef could be considered as
a “persistence” factor in contrast to its HIV-1 counterpart.
We hypothesized that lentiviral Nefs may also differ in

their ability to manipulate cellular iron uptake. Interest-
ingly, we found that Nef-mediated degradation of HfE is
not a conserved feature of HIV-1 and other lentiviral
Nefs. In contrast, we demonstrate inhibition of TfR intern-
alization by most SIV Nef proteins including the lentivi-
ruses which are non-pathogenic in their natural simian
hosts. This phenotype results in reduced cellular iron
levels and attenuated lentiviral replication in macrophages.
Figure 1 Effects of Nef expression on cell surface levels of TfR and Hf
proteins and GFP via an IRES. 48 hours post infection cells were surface stain
Depicted are mean values and standard deviation (SD) from three independe
plasmids expressing the indicated Nef and cotransfected with an HfE expr
of HfE were assessed by antibody staining and flow cytometry. Mean values a
Negative regulation of cellular iron stores by Nef in in-
fected cells might be an additional strategy to achieve
non-harmful and persistent virus-host coexistence.

Results
SIV Nef increases the cell surface expression of TfR
We assessed if modulation of receptors involved in cel-
lular iron uptake is a conserved feature of different lenti-
viral Nef variants. Macrophages regulate iron turnover
in vivo [1,15]. Therefore, we infected the myeloid cell line
THP-1 with HIV-1 coexpressing Nef and eGFP (HIV-
NIG) [14] via an internal ribosomal entry site (IRES) and
measured cell surface expression of TfR and HfE by flow
cytometry (Figure 1). Both remained largely unchanged
upon expression of HIV-1 Nef (Figure 1A). In contrast,
Nef from SIVmac239 or the distantly related SIVblu
caused up to threefold increase in TfR levels without
modifying HfE surface levels (Figure 1A).
Drakesmith and colleagues reported degradation of

HfE by HIV-1 SF2 Nef in HeLa cells transfected to ex-
press HfE [9]. Although HIV-1 NA7, NL4-3 and SF2 Nef
are highly similar, we considered the possibility that sub-
tle alterations in Nef might be sufficient to allow HfE
degradation. Consistent with the results from HIV-1 in-
fected THP-1 cells (Figure 1A), NL4-3, NA7 or 239 Nef
had no or only marginal effects on cell surface HfE upon
cotransfection in 293 T cells with HfE cDNA (Figure 1B).
293 T cells transfected with the HfE plasmid showed a
E. (A) THP-1 cells were infected with HIV-1 coexpressing different Nef
ed with antibodies against TfR or HfE and analysed by flow cytometry.
nt experiments. (B) 293 T cells were transfected with pCG-IRES-GFP
ession plasmid. 36 hours later cells were harvested and cell surface levels
nd SD are derived from three independent experiments.
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strong increase in cell surface staining, demonstrating
the specificity of the HfE antibody and SF2 Nef down-
modulated approximately 40% of cell surface HfE under
these experimental conditions (Figure 1B). In agreement
with its reported capacity to induce HfE degradation
[16], expression of the HCMV US2 protein led to a dras-
tic reduction of HfE surface levels (>90%) (Figure 1B).
Thus, modulation of HfE is not a conserved feature of
lentiviral Nefs. Conversely, SIV Nef enhances cell surface
levels of TfR.

Most SIV Nef proteins increase cell surface TfR
To gain insights into the Nef-induced modulation of the
TfR, we compared 31 nef alleles from HIV-1 M, O and
N, SIVcpz, and the HIV-1 precursors SIVgsn/mus/mon
(Group 1) as well as HIV-2, SIVsmm and divergent SIV
species (Group 2, see also Additional file 1: Table S1).
This collection faithfully represents a cross section of
phylogenetically clustered and evolutionary related lenti-
viral nef alleles [10,14]. Isogenic HIV-1 NIG proviral
constructs only differing in their respective nef ORF
were used to generate virus stocks and infect PBMC,
MDM and THP-1 cells (Figure 2). HIV-1 and related Nefs
(Group 1) modulated TfR only marginally (1.39 ± 0.08;
n = 13) in PBMCs (Figure 2A). In contrast, most other
Nefs (Group 2) caused a marked increase in TfR expression
Figure 2 Primate lentiviral Nef proteins differentially upregulate cell s
31 different primate lentiviral Nef proteins and GFP (compare Additional fil
48 hours post infection. Nef proteins were compared according to their ph
direct simian precursors whereas Group 2 Nefs represent all other lentivirus
hosts. Each symbol represents the mean activity of a respective Nef protein
file 1: Table S1). (B) THP-1 and monocyte derived macrophages (MDM) we
modulation similar to the experiment described in (A). The functional activ
to the results from the THP-1 and MDM infection experiments. (C) PBMC in
for Nef-mediated downregulation of cell surface CD3, CD4, MHCI and CD28
Nef proteins in upregulation of TfR.
at the cell surface (2.45 ± 0.18; n = 18). Of note, the
only HIV-2 Nef that upregulated TfR is clone 60415 K
(2.56 ±0.5, compare Additional file 1: Table S1) isolated
from an apathogenic HIV-2 infection [17].
Given the critical role of macrophages in iron turnover

in vivo, we next examined the effects of Nef in THP-1
cells and MDMs. We found that all nef alleles that
modulated TfR surface levels in PBMCs were also ac-
tive in THP-1 cells and MDMs (Figure 2B). Next, we
tested in PBMCs whether Nef-induced upregulation
of TfR surface levels correlates with other Nef functions
(Figure 2C). Downmodulation of CD28 and MHCI by
Nef did not correlate with TfR surface levels. In con-
trast, TfR upregulation exhibited a positive correlation
with CD3 downmodulation and a negative one with CD4
downmodulation, although the R2 values were fairly low
(R2 = 0.370 for CD3 and R2 = 0.222 for CD4; Figure 2C).
These observations are in line with two previously re-
ported observations: (i) CD3 is also modulated by Nef in a
lineage-dependent manner [18] and (ii) TfR and CD4 are
both internalized through a mechanism involving the cla-
thrin adaptor protein 2 (AP2) [19,20]. However, in both
cases we could also identify Nef proteins which were se-
lectively defective in one of these functions or active in
both. Thus, overlapping but distinct Nef regions seem to
be involved in modulation of TfR, CD3 and CD4.
urface TfR. (A) PBMC were infected with HIV-1 variants coexpressing
e 1: Table S1). TfR cell surface levels were measured by flow cytometry
ylogenetic relationship. Group 1 Nefs are derived from HIV-1 and its
es including those which are non-pathogenic in their natural simian
in the function tested (please find the mean values ± SD in Additional

re infected with a subset of HIV-1 variants to analyse cell surface TfR
ity of the Nef proteins in upregulation of TfR in PBMC was correlated
fected with the 31 HIV-1 variants described in (A) were also analysed
. The results were correlated to the functional activity of the respective
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Our data reveal that Nef modulates TfR in a lineage
dependent manner. HIV-1 and its simian precursors are
inactive in this function whereas most other lentiviruses
upregulate TfR.

Tyrosine 28 in SIV Nef is required for TfR upregulation
To identify regions in Nef responsible for the increase in
cell surface TfR, we tested a previously characterized
Figure 3 An N-terminal AP2 binding motif is required and sufficient f
coexpressing GFP and various mutants of the SIVmac 239 Nef protein and
hours post infection. The table shows the qualitative activity of the Nef mu
cells with pCG-IRES-GFP expression plasmids of a truncated 239 Nef protein
we could narrow down the critical domain for Nef-mediated TfR modulatio
(Δ26-29). (B) PBMC were infected with HIV-1 NIG expressing the NL4-3 Nef o
addition we infected PBMC with the HIV-1 NIG version of SIVmac 239 Nef and
modulation of TfR, CD4, CD28, CD3 and MHCI was assessed by flow cytometr
experiments. For TfR modulation we have included the respective MFI of the
[21] panel of SIVmac239 Nef mutants. PBMCs were in-
fected with the HIV-1 NIG variants and analysed for
modulation of several receptors (Figure 3A). The pheno-
type of the different 239 Nef variants for CD4, CD28,
CD3 and MHCI modulation was as expected [21], al-
though in this set of experiments Nef dependent modu-
lation of CD4 is difficult to assess, since Vpu and Env
also reduce CD4 expression in HIV-1 infected PBMC
or upregulation of TfR by Nef. (A) PBMC were infected with HIV-1
assessed for TfR, CD4, CD28, CD3 and MHCI modulation by FACS 48
tants in PBMC and the subsequent experiment of transfected 293 T
in combination with a variety of in-frame deletions. By this approach
n to a four amino-acid deletion in the flexible N-terminal loop
r a variant in which we reconstituted the YGRL motif at position 28. In
a mutant harbouring a change of Y28 to F. At 48 hours post infection
y. The graph shows mean values and SD of three independent infection
infected GFP + cell population in the primary FACS plots.
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[22]. The YE and Y223 changes did not impair TfR upreg-
ulation whereas the EDR and Δ64-67 mutants were at-
tenuated (Figure 3A). Of note, the truncated 239 Nef
E93* selectively increased cell surface TfR. Thus, a region
within the first 93 amino acids of SIVmac239 Nef is re-
sponsible for TfR upregulation.
To identify the Nef residues responsible for TfR upreg-

ulation we generated a panel of eighteen 239 Nef E93*
mutants with serial deletions. Most deletions did not
affect the capability of 239 Nef to increase TfR expres-
sion. However, a set of five mutants that lacked AA 26–29
were inactive (Figure 3A). This region comprises a tyro-
sine which is present in all Nef variants capable to in-
crease TfR expression and is part of a canonical AP2μ
binding site (Yxxϕ; ϕ is a bulky hydrophobic AA side
chain; see Additional file 2: Figure S2 and [20,23]). Indeed,
introduction of the “YGRL” motif in full-length NL4-3
Nef conferred the ability to increase cell surface expres-
sion of TfR in PBMC (Figure 3B). Conversely, mutation of
239 Nef Y28 to F (Figure 3B) or A (not shown) selectively
disrupted the upregulation of TfR. In conclusion, a tyro-
sine based N-terminal AP2μ binding motif in Nef is crit-
ical for TfR upregulation.

Strong Nef binding to AP2μ is associated with TfR
upregulation
The canonical pathway of TfR internalization is by AP2
[20,23]. Hence, Nef-mediated AP2 sequestration might im-
pede TfR uptake. To assess if lentiviral Nefs differentially
Figure 4 Nef binding to AP2μ is associated with TfR upregulation. (A)
vectors and AP2μ-CFP. 24 hours later the amount of cells scoring FRET + w
negative control of 293 T cells which are cotransfected with CFP and YFP e
express a CFP-YFP fusion protein. Mean values and SD are calculated from
with lentiviral vectors coexpressing GFP and a shRNA against AP2μ or the
“supertransfected” with pCG-IRES-mTagBFP plasmids expressing differen
with TfR-APC antibody and cell surface levels in shRNA/Nef expressing
triplicate transfections of one representative experiment out of three is
interact with AP2μ we generated an AP2μ-eCFP fusion
and Nef-eYFP fusion expression vectors and measured
binding with a FACS-based FRET assay [24] (Figure 4A).
Coexpression of HIV-1 and SIVcpz Nefs with AP2μ-eCFP
did generally not result in FRET signals, implicating the ab-
sence of direct interaction with AP2μ (Figure 4A). In con-
trast, all HIV-2 and SIV Nefs showed FRET with AP2μ,
although with considerable differences. Values higher than
40% of FRET + cells were exclusively observed for Nefs
able to upregulate TfR whereas HIV-2 and SIV Nef vari-
ants unable to upregulate TfR or containing inactivating
mutations exerted significant lower FRET (Figure 4A). Of
note, the inactive HIV-2 Ben and SIVsm FFm1 as well as
239 Nef with the mutated YRGL motif still interacted with
AP2μ, albeit mean FRET was lower than 35% in all mea-
surements. This suggests (i) that other Nef residues con-
tribute to AP2μ binding and (ii) that a certain threshold of
AP2μ binding by Nef is required for increased TfR expres-
sion. In addition, differential Nef binding to other AP2
subunits (than μ) could also have an impact on TfR upreg-
ulation [25].
To further examine the role of AP2μ in Nef-mediated

TfR upregulation, we performed AP2μ knock-down by
shRNA. 293 T cells were transduced with self-inactivating
lentiviral vectors expressing GFP as infection marker and
a shRNA against AP2μ or a scrambled shRNA. Three days
later, cells were transfected with pCG Nef expression vec-
tors containing the fluorescence protein mtagBFP [26].
This strategy allows to specifically identify by FACS
293 T cells were cotransfected with different Nef-YFP fusion protein
as measured by flow cytometry as described before [24]. CFP + YFP is a
xpressing plasmids. CFP-YFP is a positive control of 293 T cells that
four to nine independent transfections. (B) 293 T cells were transfected
GFP only expressing vector control. 72 hours later the cells were
t lentiviral Nef proteins. After additional 24 hours cells were stained
cells were assessed by flow cytometry. Mean values and SD from
shown.
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cells that simultaneously express the shRNA and Nef
(Figure 4B). Only 239 Nef increased TfR in the pres-
ence of the control shRNA (black bars). Upon AP2μ
knock-down, TfR accumulated at the cell surface irre-
spective of functional Nef expression. Altogether the
data suggest that Nef sequesters AP2 resulting in re-
duced TfR internalization and surface accumulation.
SIV Nef inhibits Transferrin internalization
Delayed TfR turnover should have direct impact on the
internalization of Tf. Therefore, 293 T cells were trans-
fected with pCG-Nef-IRES-GFP vectors and the amount
of internalized Tf versus totally bound Tf was assessed
in GFP/Nef expressing cells by FACS (Figure 5A). SIV-
mac239 Nef expression slowed down Tf internalization
whereas disruption of the AP2μ binding motif (Y28F/A)
abrogated this effect. In contrast, NL4-3 Nef had only
minor effects on Tf internalization whereas introduction
of the YGRL motif phenocopied SIVmac239 Nef.
To assess the consequence of delayed Tf internalization

for the total amount of cellular Tf, we infected THP-1 cells
with HIV-1 NIG and added Alexa647-Tf for 5 minutes.
Figure 5 SIV Nef inhibits Tf internalization. (A) 293 T cells expressing th
Transferrin for different periods of time. Then the cells were exposed to an
amount of internalized Tf was determined by flow cytometry as described
three independent transfection procedures. (B) THP-1 monocytes were infe
hours post infection cells were incubated for 5 minutes with Alexa647-con
acidic washing. Subsequently cells were fixed and z-stacks of GFP and Ale
reconstruction shown as maximum intensity projections (MIP) and volume c
of internalized Tf was calculated by dividing the Tf volume through the total
After removal of cell surface Alexa647-Tf by acid wash,
z-stacks of GFP expressing/HIV-1 infected cells were
acquired to reconstruct 3-dimensional images (Figure 5B).
The total cellular volume was calculated using GFP fluor-
escence as a surrogate marker. Similarly, we calculated
the volume of cell internal Tf from the Alexa647 fluores-
cence. Mean volume ratios [Tf/GFP] were 0.0572 (±0.0271
SEM; n = 5) for NL4-3 compared to 0.0015 (±0.0009 SEM;
n = 6) for 239 Nef. This reflects a 38-fold reduction in the
total volume of cell-associated Tf in SIVmac239 Nef ex-
pressing cells (Figure 5B) (p = 0.0043 Mann–Whitney test
and p = 0.0497 Students T test). Thus, SIV Nef expression
delays internalization of TfR and Tf which might reduce
intracellular iron concentrations.
SIV Nef lowers intracellular iron levels and attenuates
viral replication in primary macrophages
The very small proportion of cellular free redox-active
iron, called the labile iron pool (LIP), is subjected to rapid
changes upon alterations in iron uptake or release [4]. Dir-
ect effects of Nef on the LIP were estimated using the green
fluorescent dye calcein-acetoxymethylester (CA-AM) [4].
e indicated Nef proteins were incubated with Alexa647-conjugated
acidic washing procedure to remove surface bound Tf and the
in detail in the methods section. Curves and SD were generated from
cted with HIV-1 NIG expressing NL4-3 Nef or the SIVmac 239 Nef. 48
jugated Transferrin. Then surface bound Transferrin was removed by
xa674 fluorescence were recorded by confocal microscopy. 3D
alculations were done using Bitplane Imaris version 6.4. The volume ratio
volume of the cell, as assessed by GFP fluorescence.
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Calcein is quenched by free redox active iron. Thus, a de-
crease in Calcein fluorescence indicates an increase in the
LIP. Unfortunately, due to the high Calcein background
fluorescence and the small amount of labile iron, this
assay exhibits a very low signal to noise ratio. Hence we
expected small changes in fluorescence and the need for
multiple biological replicates in order to achieve signifi-
cant differences.
THP-1 cells were infected with HIV-NIG expressing

eCFP instead of GFP. 48 hours later the LIP was ana-
lyzed post CA-AM staining in infected/eCFP expressing
cells. We repeated the experiment eight times with two
to three independent virus stocks and calculated the LIP
relative to the Calcein fluorescence of SIVmac239 Nef
Figure 6 SIV Nef decreases cellular iron levels and attenuates lentivira
the indicated Nef proteins and eCFP via an IRES were stained with the green
quenched upon the availability of chelatable iron within the cell. This decreas
infected and therefore eCFP positive population. Depicted is the increase in c
represents a single measurement from eight experiments with two to three i
infected with 50 ng of normalized HIV-1 expressing the indicated Nef protein
intervals and the amount of p24 production was measured by ELISA. The gra
infections. (C) The cumulative p24 production is the absolute amount of relea
donors shown are calculated from the four independent infections. Similar re
positive cells (Figure 6A). THP-1 expressing no Nef or
NL4-3 Nef showed a trend towards higher labile iron.
However, Calcein fluorescence scattered strongly and dif-
ferences were not significant. In contrast, SIVmac239 Nef
expressing cells contained less labile iron than the Y28F/A
mutants (Figure 6A) which do not block TfR internaliza-
tion and Tf uptake. Despite the strong Calcein background
fluorescence we measured an increase in mean values of
13.0% (239 Nef vs Y28F; n = 22) and 14.1% (239 Nef vs
Y28F; n = 22) which is highly significant (p < 0.0001).
Hence, Nef proteins that inhibit Tf uptake lower the
amount of redox active iron within the cell.
Macrophages are important HIV-1 target cells in vivo

and play a key role in cellular iron metabolism [1,15].
l replication in macrophages. (A) THP-1 infected with HIV-1 expressing
fluorescent dye CA-AM as described in the Methods Section. CA-AM is
e in fluorescence emission was assessed by FACS specifically in the HIV-1
ellular chelatable iron relative to the 239 Nef expressing cells. Each symbol
ndependent virus stocks. (B) Primary macrophages from two donors were
s. Aliquots of cell culture supernatants were taken in two to three day
phs show replication curves with mean values of four independent
sed p24 during the culture period. Mean values and SEM for the two
sults were obtained with macrophages from two other donors.
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Since iron is an essential cofactor for multiple steps in
the viral replication cycle [2], we speculated that differ-
ences in cellular iron uptake due to Nef expression
might influence the capacity of HIV-1 to replicate in pri-
mary macrophages. MDMs were infected with isogenic
R5-tropic HIV-1 just differing in the nef coding sequence
and virus production was monitored over twenty days
(Figure 6B and C). As expected from previous results
[27], NL4-3 Nef expression had no influence on HIV-1
spread and propagation in macrophages. In contrast,
239 Nef suppressed HIV-1 replication in macrophages
and this effect was dependent on Y28 (Figure 6B and C).
Therefore, 239 Nef might attenuate lentiviral replication
in macrophages by lowering the intracellular iron pool.

Discussion
Our study suggests that manipulation of cellular iron
uptake is a strategy of primate lentiviruses to regulate
replication in myeloid cells. Moreover, the Transferrin
receptor pathway is not inhibited by HIV-1 and its pre-
cursors but by most other SIV Nefs.
Previous work suggested HIV-1 Nef mediated down-

regulation of HfE [9] and TfR [28]. We show that HIV-1
Nefs have little if any effect on cell surface TfR while
most SIV Nef proteins caused an up to three fold upreg-
ulation (Figure 2 and Additional file 1: Table S1). At
first, these discrepancies seem surprising. However, most
previous results were performed in HeLa cells overex-
pressing Nef and quantification was mainly performed
by confocal microscopy [28]. In contrast, the majority of
our experiments were performed using flow cytometry
and conducted in HIV-1 infected PBMCs and macro-
phages. Furthermore, our finding that HIV-1 Nef does
only marginally manipulate TfR is in line with others
[18,29,30]. For detection of HfE, Drakesmith and col-
leagues used HfE overexpressing HeLa cells and HIV-1
SF2 Nef [9]. We mimicked this experiment and included
HCMV US2 as positive control (Figure 1B) [16]. HfE
was modulated by SF2 Nef (~40%), but not by any other
Nef protein. In contrast, HCMV US2 degraded more
than 90% of HfE. Thus, downregulation of HfE is a less
pronounced and non-conserved Nef function.
Conversely, plasma membrane levels of TfR increased

up to 3.5 fold post SIV Nef expression in infected
PBMCs and were on average elevated 2.5 fold which is
in the range of the well characterized Nef functions CD4
and MHC-I downregulation (Figure 2, Additional file 1:
Table S1; also reviewed here [10]). Mechanistically, sev-
eral lines of evidence suggest that SIV Nef upregulates
TfR by competition for AP2: (i) We could identify a con-
served Yxxϕ sequence which is a canonical AP2μ bind-
ing motif [20,23] and present in the N-terminus of all
Nefs upregulating TfR (Additional file 2: Figure S2). (ii)
Mutation of Y28 selectively disrupts Nef-mediated TfR
increase (Figure 3B). (iii) Insertion of the Yxxϕ in HIV-1
Nef confers upregulation of TfR (Figure 3B). (iv) The
capacity to increase cell surface TfR is associated with
strong Nef binding to AP2μ (Figure 4A) and (v) knock-
down of AP2 by shRNA increases TfR irrespective of
Nef expression (Figure 4B). Thus, the data indicates that
SIV Nef sequesters AP2 from TfR and “upregulation” of
TfR is an effect of the decelerated internalization of
the receptor and decreased cellular Tf uptake (Figure 5A).
Importantly, steady state expression of TfR at the PM
might strongly underestimate the magnitude of repressed
cellular Tf uptake reflected by our 3D reconstructions
(Figure 5B). Thus, lentiviral Nef proteins inhibiting TfR
internalization will strongly suppress cellular Tf and iron
uptake.
What are the consequences of dysregulated iron

homeostasis in lentiviral infections? Iron is important
for an effective immune response [1-3]. However there
is some controversy because increased iron levels correl-
ate with severe HIV-1 progression [31-36], whereas pro-
gressive HIV-1 infection is also associated with anemia
and therefore iron depletion [37,38]. Furthermore, HIV-
1 patients with elevated cellular iron stores showed
strongly reduced survival probabilities [6-8,39,40].
In this context it is noteworthy that generalized unspe-

cific immune activation is a hallmark of progressive
HIV-1 infection [13]. Thus, infected immune cells are in
a state of hyperactivation and cellular iron is increased
upon inflammation which is beneficial for retroviral rep-
lication [5]. Multiple steps in the lentiviral life cycle are
iron dependent. Among them provision of nucleotides,
NF-κB activation [41], Tat dependent transcription [42],
Rev mediated mRNA export [43] and final steps of as-
sembly and release [44] (reviewed in [2,8]). Conceivably,
iron chelation in vitro inhibits HIV-1 infection and repli-
cation [41-43,45]. Considering the high iron need of
HIV-1 in conjunction with the appearance of opportun-
istic infections that also consume iron for growth,
anemia and iron depletion in progressive HIV-1 infec-
tion is not surprising [46]. Whether dietary iron supple-
mentation at that stage might be helpful for the host or
rather deleterious is a question of high relevance that is
currently not yet answered [47].
Setting up iron limiting experimental conditions ex vivo

is difficult. Nevertheless we could demonstrate the direct
reduction of labile iron by HIV-1 expressing SIVmac 239
Nef. This phenotype correlated with an attenuated course
of viral replication in macrophages (Figure 6). In contrast,
HIV-1 replication and CD4+ T cell depletion in ex vivo
cultures of lymphoid tissue were not affected by mutation
of Y28 in 239 Nef (see Additional file 3: Figure S3). Hence,
regulation of cellular iron uptake could represent a strat-
egy of lentiviruses to control virus growth in certain in-
fected cells or tissue, i.e. macrophages. TfR internalization
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was only inhibited by Nefs from lentiviruses that are
highly divergent from HIV-1 including those which are
most likely apathogenic in their natural simian hosts.
These SIVs preferentially use CCR5 for cell entry and
since their genomes express Vpx, the cellular tropism of
the virus is greatly expanded allowing efficient infection of
myeloid cells [48]. Under these conditions it might have
been necessary to maintain a function that limits excessive
replication in myeloid/macrophage cells. Of note, robust
SIV replication in macrophages was observed in the SIV
macaque model and has also been associated with pro-
gression of simian AIDS [49]. In this context, the SIV Nef
mutants which are selectively defective for block of TfR
internalization identified herein are valuable tools to clar-
ify the impact of altered cellular iron on pathogenicity and
viral loads in a model of natural SIV-infected monkeys.
Reduction of cellular iron was only observed for SIV

Nef. In general, HIV-1 and related Nefs had only mar-
ginal effects on TfR and HfE cell surface levels. There-
fore HIV-1 does either not manipulate cellular iron or
has evolved differential mechanisms to dysregulate iron
homeostasis. Given the importance of iron for lentiviral
growth, it will be of high interest to investigate in future
studies possible alternative mechanisms by which HIV-1
could alter cell associated iron.

Conclusions
Herein we establish inhibition of TfR internalization as a
novel function that is exerted by most SIV Nef proteins
in primary T cells and macrophages. We identify an
YXXϕ AP-2 binding motif in the N-terminus of Nef that
is sufficient and necessary to confer this function. Nef
competes with AP-2 for TfR binding resulting in reduced
internalization of Transferrin and therefore iron delivery
into the cell. In myeloid cells we could demonstrate the
direct reduction of iron uptake leading to attenuated
lentiviral replication in this cell type. We postulate that
reduction of cellular iron uptake by SIV Nef is a func-
tion that evolved to regulate viral replication in macro-
phages and this could have an impact on lentiviral
pathogenicity.

Methods
Proviral constructs and plasmids
HIV-1 pBR-NL4-3 IRES-eGFP proviral constructs ex-
pressing different lentiviral Nefs have been described
previously (NL4-3 NIG) [14]. R5-tropic derivatives of
these constructs were generated by subcloning of the nef
ORF via HpaI and MluI into pBR-NL4-3 V3 92th014.12-
IRES-eGFP [50]. Similarly, HIV-1 NIG variants express-
ing different SIVmac 239 Nef mutants were generated by
PCR amplifications from pCG-vector templates that were
published previously [21]. The SIVmac239 Nef Y28A/F
mutants were generated by splice overlap extension PCR
and the YGRL sequence was introduced at position 28 in
NL4-3 Nef by primer mutagenesis. CMV-driven pCG
plasmids coexpressing Nef and GFP via an IRES have been
described before [51]. pCG-SF2-nef-IRES GFP and the
pCG-HCMV-US2-IRES GFP were generated by amplifica-
tion of the specific reading frame with primers introdu-
cing 5′ XbaI and 3′ MluI restriction sites and subsequent
standard restriction and ligation procedures. Truncated
pCG-SIVmac 239 Nef variants with different in frame de-
letions were generated by PCR amplification and ligation
of published deletion mutants [19] with primers introdu-
cing a 5′ XbaI site and a premature stop codon at aa pos-
ition 93 followed by a 3′ MluI site. Fusion protein vectors
peCFP and peYFP, peCFP-eYFP, NL4-3 Nef-YFP and SIV-
mac 239 Nef-YFP have been described before [24]. Plas-
mids expressing AP2μ and HfE with a C-terminal CFP-tag
were constructed by PCR-amplification of Ap2μ and HfE
from a HeLa cDNA library. Lentiviral Nef-YFP fusion pro-
teins were amplified using the HIV-1 NIG proviral vectors
as templates. The according ligation procedure has been
described [24]. All PCR derived inserts were sequenced to
confirm sequence identity.

Cell culture, transfection and HIV-1 infection
293 T cells were maintained in DMEM (Gibco) and
THP-1 cells in RPMI (Gibco) with standard supple-
ments. Primary human monocyte derived macrophages
(MDM) and primary blood derived mononuclear cells
(PBMC) were isolated and cultured as described [14,50].
HIV-1 virus stocks were generated by calcium phosphate
transfection of 293 T cells [14]. For infection experi-
ments HIV-1 stocks were quantified by p24-ELISA [27].
To assess HIV-1 replication in macrophages 25.000 cells
were seeded in 48 well plates in 1% serum conditions
and infected with 50 ng p24. Six hours later cells were
washed and new media was added. Aliquots were taken
in two to three days intervals and virus production was
quantified by p24 ELISA. For the flow cytometric mea-
surements of cell surface receptor modulation 2*10^5
macrophages or 1*10^6 PBMC were seeded in 35 mm
Greiner dishes or six well plates and infected with
200 ng p24. Macrophages were harvested five days later
by 10 mM EDTA treatment. PBMCs were usually ana-
lysed 48 hours post infection. HIV-1 infection experi-
ments of human lymphoid tissue (HLT) was done as
already described [27].

Flow cytometry
Antibody staining was done on ice. Cells were washed
once with PBS/1% FCS and afterwards incubated for 30
minutes in a total volume of 100 μl with the respective
recommended amount of antibody. Following antibodies
were used in our study: anti-CD71 (BDPharmingen;
M-A712; APC), anti-CD28 (BDPharmingen; L293; PE),
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anti-HFE (Abnova; polyclonal), anti-CD3 (Caltag; UCHT1;
APC), anti-CD4 antidody (Caltag; RPA-T4; APC), anti-
HLA-ABC (Dako; W6/32; PE). Post staining cells were
washed twice and fixed with 2% PFA/PBS. At least 2.000
infected cells were measured with a FACS Canto II
(BDBioscience). Fold modulation of cell surface receptor
modulation was calculated as before [14,51]. Flow cyto-
metric measurement of FRET and the according gating
strategy were performed as already described [24]. Cellular
iron content was measured by the use of the fluorescent
dye CA-AM which is quenched by free cellular iron [4].

Internalization assay
Tf internalization assays were performed essentially as
previously described [18]. In brief, cells were harvested
and incubated with Tf-Alexa647 for 30 min on ice,
washed, and shifted to 37°C for various periods of time
in culture medium supplemented with 20 mM HEPES.
The medium was removed by washing, and half the
samples were washed in 25 mM glycine-HCl–125 mM
NaCl (pH 2.8) and rapidly neutralized with 25 mM Tris
(pH 10). Samples were then washed and analyzed by
flow cytometry. Mean fluorescence intensities (MFI) of
GFP-positive cells in FL4 were determined. The ratio of
the intracellular MFI (acid wash resistant) to the total
MFI at each time point was plotted as a function of
time.

Image acquisition, analysis and software
Infected THP-1 cells were incubated with Alexa647 la-
beled Tf for 5 minutes. Then we exposed the cells to the
acidic washing procedure as described above and finally
fixed them with 2% PFA. THP-1 cells were mounted on
objective slides with Mowiol and z-stacks of infected
GFP expressing cells were acquired with a Zeiss LSM510
Meta. 3D reconstruction of z-stacks was done with Bit-
plane Imaris V6.4.2. We also used this software to calcu-
late the volume of the cells by GFP expression and the
volume of internalized Tf by Alexa647 fluorescence. In
general, images were never modified apart from enhan-
cing contrast and/or brightness. Statistical analyses were
performed using the GraphPad Prism V5 software pack-
age. Statistical tests used were the unpaired two-tailed T
test and the Mann–Whitney test and regression analyses
with p-value calculations.
Additional files

Additional file 1: Table S1. Modulation of TfR and previously described
PBMC surface receptors by lentiviral Nef proteins.

Additional file 2: Figure S2. Alignment of the N-terminus of Nef variants
analyzed. The first 70 aminoacids of all lentiviral Nefs analyzed in this study
were aligned. The tyrosine of the putative AP2-binding motif Yxxϕ is
marked in red. All Nef variants inactive in TfR upregulation are grouped by
the red square whereas Nef proteins inhibiting TfR uptake are surrounded
by the green square.

Additional file 3: Figure S3. SIV 239 Nef with or without mutated Y28
motif does not affect HIV-1 replication and CD4+ T cell depletion in
ex vivo infected human lymphoid tissue (HLT). Cumulative p24 production
over 13 days (left) and CD4+ T cell depletion at the end of the culture
period (right) in tissues of five donors infected with the indicated R5-tropic
HIV-1 NL4-3 variants. Shown are mean values +/- SEM.
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