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Abstract

Background: HIV-1 translation is modulated by the activation of the interferon (IFN)-inducible Protein Kinase
RNA-activated (PKR). PKR phosphorylates its downstream targets, including the alpha subunit of the eukaryotic
translation Initiation Factor 2 (eIF2α), which decreases viral replication. The PKR Activator (PACT) is known to
activate PKR after a cellular stress. In lymphocytic cell lines, HIV-1 activates PKR only transiently and not when cells
replicate the virus at high levels. The regulation of this activation is due to a combination of viral and cellular
factors that have been only partially identified.

Results: PKR is transiently induced and activated in peripheral blood mononuclear cells after HIV-1 infection. The
addition of IFN reduces viral replication, and induces both the production and phosphorylation of PKR. In
lymphocytic Jurkat cells infected by HIV-1, a multiprotein complex around PKR contains the double-stranded RNA
binding proteins (dsRBPs), adenosine deaminase acting on RNA (ADAR)1 and PACT. In HEK 293T cells transfected
with an HIV-1 molecular clone, PACT unexpectedly inhibited PKR and eIF2α phosphorylation and increased HIV-1
protein expression and virion production in the presence of either endogenous PKR alone or overexpressed PKR.
The comparison between different dsRBPs showed that ADAR1, TAR RNA Binding Protein (TRBP) and PACT inhibit
PKR and eIF2α phosphorylation in HIV-infected cells, whereas Staufen1 did not. Individual or a combination of short
hairpin RNAs against PACT or ADAR1 decreased HIV-1 protein expression. In the astrocytic cell line U251MG, which
weakly expresses TRBP, PACT mediated an increased HIV-1 protein expression and a decreased PKR
phosphorylation. In these cells, a truncated PACT, which constitutively activates PKR in non-infected cells showed
no activity on either PKR or HIV-1 protein expression. Finally, PACT and ADAR1 interact with each other in the
absence of RNAs.

Conclusion: In contrast to its previously described activity, PACT contributes to PKR dephosphorylation during
HIV-1 replication. This activity is in addition to its heterodimer formation with TRBP and could be due to its binding
to ADAR1. HIV-1 has evolved to replicate in cells with high levels of TRBP, to induce the expression of ADAR1 and
to change the function of PACT for PKR inhibition and increased replication.
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Background
Human immunodeficiency virus type 1 (HIV-1) mRNA
expression is controlled at the transcriptional, processing
and translational levels [1-3]. The main translational
mechanism is a cap-mediated scanning from its 5’ end but
additional mechanisms occur including internal ribosome
entry site in gag, programmed −1 ribosomal frameshift to
produce Gag-Pol and discontinuous ribosome scanning to
translate Env [4-6]. HIV-1 translation is modulated by
viral components, like Trans-Activation Response element
(TAR) RNA [7-10] and by cellular factors including trans-
lation factors, Protein Kinase RNA activated (PKR), TAR
RNA Binding Protein (TRBP), PKR Activator (PACT), the
La autoantigen, Staufen1 and the Adenosine Deaminase
Acting on RNA (ADAR)1 [9,11-15]. The positive factors
act by releasing the block due to the TAR structure, by
inhibiting PKR or by inhibiting PACT [7-9,16-20].
The interferon (IFN)-inducible PKR is a key double-

stranded RNA-binding protein (dsRBP), and a serine/threo-
nine kinase. Its activation leads to autophosphorylation and
the phosphorylation of its downstream targets, including
the alpha subunit of the eukaryotic translation initiation
factor 2 (eIF2α). Phosphorylated eIF2α (P-eIF2α) prevents
translational initiation of viral and cellular mRNAs. PKR is
central in the host innate defense strategies with strong
antiviral and antigrowth activities [21-24]. In addition, its
N-terminus forms a complex with proteins involved in cel-
lular signaling pathways to mediate the activation of the
NF-κB protein complex, which contributes to the induction
of inflammatory cytokines [25,26]. PKR is extremely effect-
ive in restricting HIV-1 expression and replication in vitro
[12,19,27-30]. Despite this observed activity, HIV-1 repli-
cates efficiently in many permissive cell lines and primary
cells, suggesting that the kinase activity of PKR in natural
infection of lymphocytes is tightly regulated [17].
Many viruses that replicate efficiently have means to in-

activate PKR and the HIV-1 Tat protein is one of these
countermeasures [31-33]. Cells also avoid PKR activation
using dsRNA sequestration or protein-protein interac-
tions, likely as a normal process to allow their growth.
Examples of direct interaction include the cellular pro-
tein p58IPK, which binds to PKR and prevents its dimeri-
zation, tRNA-dihydrouridine synthetase-2, TRBP and
ADAR1, which bind through their dsRNA Binding
Domains (dsRBDs) and exert a strong inhibitory activity
[12,19,22,32,34-40]. Besides dsRNA and heparin, PACT,
the cytokine MDA-7/interleukin 24 and the transcription
factor E2F-1 induce PKR activation [32,41-45]. PKR activa-
tion upon virus infection is also observed in some special-
ized cells. For example, cardiomyocytes are cells with high
activation of PKR and PKR-like ER protein kinase (PERK)
upon coxsackievirus infection due to a downregulation of
p58IPK by the virus [46]. Similarly, astrocytic cells repre-
sent an example of naturally HIV-resistant cells with high
PKR activation. In these cells, TRBP is expressed at very
low amounts and cannot counteract PKR activation in-
duced by the virus [47-49]. In contrast, in HIV-infected
lymphocytes PKR activation is reduced when the virus
reaches high concentrations and this is due in parts to the
expression of TRBP, ADAR2 and to an increased ADAR1
expression that inhibits PKR activation [12,17,50,51].
PACT and its murine homolog RAX, are stress-

inducible PKR activators [42,44,52]. They are proapop-
totic proteins that induce apoptosis upon cellular stress
by PKR activation [52-54]. PACT has two dsRBDs and a
C-terminus domain called Medipal by homology with
TRBP. All three domains in PACT homodimerize and
interact with PKR and TRBP [20,55,56]. The Medipal
domain mediates activation of PKR or inhibition by
TRBP [18,55,57-59]. A cellular stress dissociates TRBP-
PACT interactions and allows PACT activation of PKR.
Therefore, PACT acts as a PKR activator in cells with low
TRBP concentration or after stress induction, whereas it
acts as a PKR inhibitor in cells with high TRBP content
[13,18,20,55,60]. Its activity has not been tested in HIV-
infected cells. Here, we observed that PKR is transiently
induced and activated in HIV-1 infected peripheral blood
mononuclear cells (PBMCs) with increased expression of
both ADAR1 and PACT. We show that PACT binds to
PKR during HIV-1 infection and that its activity is
changed from an activator into an inhibitor of PKR in
HIV-permissive cells and in astrocytic cells, which do not
replicate HIV-1 efficiently. This change of function may
be related to an interaction between ADAR1 and PACT.

Results
PKR is transiently induced and activated in PBMCs at the
beginning of HIV-1 infection
We have previously shown that HIV-1 infection of the
lymphocytic Jurkat T cell line induces PKR activation
during the first days of infection, followed by an inacti-
vation during high HIV-1 replication [12]. To determine
if this regulation is also true in primary cells, we infected
PBMCs from healthy donors with the pNL4-3 HIV-1
clone (Figure 1). To determine the importance of PKR ac-
tivation during an IFN response in these cells and its im-
pact on HIV-1 replication, half of the culture was treated
with IFN at day 7 and IFN was maintained in the medium
up to day 14. Following viral infection, reverse transcript-
ase (RT) activity was visible at day 6 and reached a peak at
day 12, whereas the addition of IFN at day 7 induced a
dramatic decrease in RT activity at day 8 (Figure 1A). Cell
samples were gathered every two days and analyzed by
Western blotting (Figure 1B). We first observed a very low
basal level of PKR in uninfected cells (D0). PKR expression
was induced from day 4 to 10 with a higher induction at
day 6. It was activated (P-PKR) mainly at day 6 followed
by deactivation. In contrast, when IFN was added at day 7,
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Figure 1 PKR is activated after HIV-1 infection and inhibited
during active HIV-1 replication. A) HIV-1 pNL4-3 kinetics from
infected PBMCs. 6.5 × 107 PBMCs from a healthy donor were
infected with HIV-1 pNL4-3. At day 7, cells were separated in two
flasks and IFN α/β (10000U/mL) was added to the cells in one of
them up to day 14. Aliquots of cell supernatant were collected at
different times and assayed for RT activity. B) Protein expression of
pNL4-3-infected PBMCs. 50 μg of whole-cell extracts from pNL4-3
-infected PBMCs from different harvest times were subjected to a
10% SDS PAGE and blotted with anti-P-PKR, anti-PKR, anti-HIV-p24,
anti-PACT, anti-ADAR1 and anti-actin antibodies as indicated. C)
Protein expression of mock-infected PBMCs. 6.5 × 107 PBMCs from
the same donor as in B were cultured and passed at the same time
as in B. IFN α/β was added similarly from day 7 to 14. 50 μg of
whole-cell extracts from mock-infected PBMCs from the indicated
times were subjected to a 10% SDS PAGE and blotted with anti-P
-PKR, anti-PKR and anti-actin antibodies as indicated.
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PKR was induced and activated 3 days after (D10-12). Be-
cause ADAR1 expression is induced upon HIV-1 infec-
tion in Jurkat cells [12], we also evaluated its expression
in this experiment. We found that ADAR1 p150 was in-
duced at day 4 and was maintained up to day 14. IFN fur-
ther induced its expression at day 10. To determine if
PACT could likewise have a role in the regulation of PKR
during HIV-1 infection of PBMCs, we also evaluated its
expression. Surprisingly, we found an increase in PACT
expression concomitant with ADAR1 p150 increase just
before the expression of Gag protein was visible. In this
case, PACT was not further induced by IFN. Interestingly,
in a mock infection of the same cells, PKR was induced
and activated one day after the addition of IFN (Figure 1C),
suggesting that this induction is delayed by two days in
HIV-1 infected cells. These results show that, PKR is tran-
siently induced and activated in primary lymphocytes and
deactivated when the virus replicates actively and that
ADAR1 and PACT may play a role in this regulation.

PACT belongs to a multiprotein complex formed around
PKR during HIV-1 infection
Many viral and cellular factors prevent PKR activation
resulting in active viral infections and cell growth [32,33].
In the case of HIV-1 infection, the viral protein Tat, large
amounts of TAR RNA, cellular proteins TRBP and
ADAR1 all contribute to PKR inhibition [17]. Because
cells also express PKR activators, and because we observed
an increase in PACT expression during HIV-1 infection,
we questioned whether PACT could contribute to PKR ac-
tivation to enhance cell response and balance its inhibition
by other factors. We have previously demonstrated that
PACT is an activator or an inhibitor of PKR depending
on TRBP expression in stressed or non-stressed cells
[18,20,55]. We also observed that PACT expression is
slightly increased at the peak of infection in Jurkat cells
(Figure 2, input). We next determined if PACT was
present in the complex formed around PKR during HIV-1
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Figure 2 Increased ADAR1-PKR and PACT-PKR interactions
during HIV-1 infection. Jurkat cells were mock-infected or infected
with HIV-1 pNL4-3. Cell lysates were collected at day 15, which
corresponds to the peak of infection for the pNL4-3-infected Jurkat
cells. These were immunoprecipitated with anti-PKR or anti-ADAR1.
50 μg of proteins from each lysate (input; lanes 1–2) and the PKR
(lanes 3–4) or ADAR (lanes 5–6) immunoprecipitated complexes
were run on a 10% SDS-PAGE and blotted using anti-PKR,
anti-ADAR1 (against full-length p150 and p110), anti-PACT,
anti-HIV-p24 and anti-actin.
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infection of lymphocytes. By immunoprecipitation (IP)
with a PKR antibody, we observed that PACT interaction
with PKR is increased at the peak of infection (Figure 2).
This result resembles the previously observed increase in
ADAR1 production and interaction [12]. By IP with an
ADAR1 antibody, we also found that PACT is in the same
complex as ADAR1, therefore suggesting that these two
proteins are part of the multiprotein complex around PKR
in HIV-1 infected cells.

PACT is a PKR inhibitor in HIV-1 transfected HEK 293T
cells
We next questioned whether the role of PACT in a com-
plex with PKR during HIV-1 infection would be as an acti-
vator or an inhibitor. To determine this role on viral
protein expression and virion production, we transfected
HEK 293T cells with pNL4-3 in the absence or presence
of transfected PKR and evaluated the activity of a PACT
expressing vector on viral expression and on PKR activa-
tion (Figure 3). Transfection of the HIV-1 molecular clone
induced PKR and eIF2α phosphorylation (Figure 3A and
B, lane 2). When cells were transfected with pNL4-3 and
PACT in the absence of overexpressed PKR, PACT was
able to increase HIV-1 protein expression and virion pro-
duction up to 2.3 fold (Figure 3A). Surprisingly, increasing
amounts of PACT clearly prevented PKR and eIF2α phos-
phorylation, indicating that the protein acts as an inhibitor
of endogenous PKR and contributes to the enhancement
of HIV-1 translation and consequently to the increased
virion production.
As previously observed [12,49], transfected PKR re-

duced the expression of HIV-1 proteins and viral
production and we show here that this is due to the con-
comitant increase in the ratio between P-PKR and PKR
(Figure 3B, lane 3). In this case, increasing amounts of
PACT restored viral protein expression and virion pro-
duction up to 7 fold over the PKR-inhibited RT amount.
The large amount of PKR did not allow appropriate
quantification of the P-PKR/PKR ratio, but the P-eIF2α
/eIF2α ratio clearly indicated that low amounts of PACT
prevented the phosphorylation of eIF2α and increasing
amounts restored HIV-1 protein expression and virion
production (Figure 3B).

PACT, ADAR1 and TRBP inhibit PKR and eIF2α
phosphorylation and increase HIV-1 protein expression
To compare the activity of the different dsRBPs that
contribute to HIV-1 expression and may inhibit PKR ac-
tivation in HIV-1-infected cells, we next overexpressed
PACT, ADAR1, TRBP and Staufen1 with pNL4-3 in the
absence or presence of transfected PKR (Figure 4). When
PKR was not overexpressed, all four proteins induced a
mild increase of HIV-1 protein expression and virion pro-
duction reflected by HIV-1 p24 expression in cells and RT
assay in the supernatant (Figure 4A). In this assay, a dra-
matic difference was observed in PKR and eIF2α phos-
phorylation between the four dsRBPs. PACT, ADAR1 and
TRBP completely inhibited PKR and eIF2α phosphoryl-
ation, whereas Staufen1 only induced a modest reduction,
suggesting that the first three dsRBPs increase virus
expression mainly by acting on PKR, whereas Staufen1
increases virus production by a PKR-independent mechan-
ism. When PKR was overexpressed, PACT, ADAR1 and
TRBP restored PKR-inhibited HIV-1 expression and vir-
ion production, but Staufen1 did not (Figure 4B). The
level of HIV-1 p24 expression reflected a complete res-
toration of viral protein expression with PACT, ADAR1
and TRBP, but only a low increase by Staufen1 over
PKR inhibition. The P-PKR/PKR and the P-eIF2α/eIF2α
ratio were difficult to evaluate due to the high exp-
ression of transfected PKR, but suggests that PACT,
ADAR1 and TRBP induce an additional mechanism,
which also contributes to the restoration of viral expres-
sion in the context of overexpressed PKR.

shRNAs against PACT and ADAR1 inhibit HIV-1 expression
To further determine the role of endogenous PACT on
HIV-1 expression and to compare with the function of
ADAR1, we generated short hairpin RNAs (shRNAs)
against PACT and against ADAR1 mRNAs to decrease
their protein expression (Figure 5). Cotransfection of HEK
293T cells with pNL4-3 together with the shRNA1 or 2
against PACT (P1 and P2, two variants of the same se-
quence), the shRNA against ADAR1 or a combination of
shRNA ADAR1 and shRNA P2 against PACT all de-
creased HIV-1 protein expression and viral production.
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Figure 3 PACT increases HIV-1 protein expression and virion production in HEK 293T cells by PKR and eIF2α inhibition. A) PACT inhibits
endogenous PKR and eIF2α phosphorylation and increases pNL4-3 expression. HEK 293 T cells were mock transfected (lane 1), transfected with 2
μg pNL4-3 (lanes 2–5) and 0.5 μg (lane 3), 1.0 μg (lane 4) or 1.5 μg (lane 5) of pCMV2-Flag-PACT. pCMV2 was added to reach the same amount
of transfected DNA. (Top) % RT activity is the ratio between the RT level in the presence of PKR and PACT versus pNL4-3 alone normalized to
100%. Shown is the average of 6 independent transfections ± SEM. (Middle) Immunoblot of cell extracts of a representative experiment from the
same transfected cells using antibodies against P-PKR, PKR, Flag, HIV-1 p24, P-eIF2α, eIF2α and actin. (Bottom) Ratio of phosphorylated PKR (P-PKR)
versus PKR and P-eIF2α versus eIF2α. The band intensity was digitalized using Adobe Photoshop software from the bands shown above. P-PKR
/PKR and P-eIF2α/eIF2α ratio was calculated by dividing the P-PKR or P-eIF2α intensity by the total PKR or eIF2α intensity of each band. B) PACT
reverses PKR inhibition of pNL4-3. HEK 293 T cells were mock transfected (lane 1), transfected with 2 μg pNL4-3 (lanes 2–6), 0.5 μg pcDNA1-PKR
(lanes 3–6), 0.5 μg (lane 4), 1.0 μg (lane 5) or 1.5 μg (lane 6) of pCMV2-Flag-PACT. Empty corresponding plasmids were added to reach the same
amount of transfected DNA. (Top) % RT activity is calculated as in A). Shown is the average of 6 independent transfections ± SEM. (Middle)
Immunoblot of cell extracts of a representative experiment from the same transfected cells using the same antibodies as in A). (Bottom) Ratio of
phosphorylated PKR versus PKR and P-eIF2α versus eIF2α. The band intensities were calculated as in A).
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Whereas both shRNAs PACT induced a modest increase
of PKR phosphorylation, the shRNA ADAR1 consistently
enhanced it. A combination of shRNA2 PACT and shRNA
ADAR1 for the same final amount resulted in an inter-
mediate effect on viral production compared to the two
shRNAs alone (Figure 5, lane 5 compared to lanes 3 and
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Figure 4 PACT, ADAR1 and TRBP inhibit PKR activation in HIV-1 producing cells. A) PACT, ADAR1 and TRBP, but not Staufen1, inhibit PKR
and eIF2α phosphorylation. HEK 293T cells were mock transfected (lane 1), transfected with 2 μg pNL4-3 (lanes 2–6), and 1.5 μg of
pCMV2-Flag-PACT (lane 3), pcDNA3.1-ADARp150-V5 (lane 4), pcDNA3-TRBP2 (lane 5) or pCMV-RSV-Staufen1-HA (lane 6). pcDNA3 was added to
reach the same amount of transfected DNA. (Top) RT activity from cell supernatants normalized to 100% in the absence of PKR or dsRBPs. Shown
is the average of 6 independent transfections ± SEM. (Bottom) Immunoblot of 150 μg of cell extract of a representative experiment from the
same transfected cells using antibodies against P-PKR, PKR, P-eIF2α, eIF2α, PACT, ADAR1, TRBP, Staufen1, HIV-1 p24 and actin as indicated. Probing
for P-eIF2α and eIF2α were performed on a separate membrane and the corresponding actin is shown. B) PACT, ADAR1 and TRBP, but not
Staufen1, restore PKR inhibition of HIV-1 protein expression and virion production. HEK 293T cells were mock transfected (lane 1), transfected with
2 μg pNL4-3 (lane 2–7), 0.5 μg pcDNA1-PKR (lanes 3–7) and 1.5 μg of pCMV2-Flag-PACT (lane 4), pcDNA3.1-ADARp150-V5 (lane 5), pcDNA3-TRBP2
(lane 6) or pCMV-RSV-Staufen1-HA (lane 7). The empty pCMV2 vector was used to supplement transfections such that the same amount of DNA
was transfected into each well. (Top) % RT activity is calculated as in A). Shown is the average of 6 independent transfections ± SEM. (Bottom)
150 μg of each cell extract was analyzed by immunoblot against P-PKR, PKR, P-eIF2α, eIF2α, PACT, ADAR1, TRBP, Staufen1, HIV-1 p24 and actin as
indicated. Shown is a representative experiment from the same transfected cells. Probing for P-eIF2α and eIF2α were performed on the same
membrane as HIV-1 p24 and have the same actin.
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4), suggesting an additive effect. In agreement with the
data with PACT overexpression, these results suggest that
in these cells, PACT contributes to the enhanced HIV-1
protein production in combination with other proteins.

PACT is a PKR inhibitor in HIV-1 transfected U251MG
astrocytic cells
We next wanted to determine if the function of PACT as a
PKR inhibitor during HIV-1 replication in lymphocytes as
well as in HIV-1 production in HEK 293T cells could be
due to TRBP heterodimers formation [18]. To do this, we
evaluated PACT’s activity in U251MG astrocytic cells
which naturally express low levels of TRBP. We first con-
firmed that Flag-PACT activates PKR in astrocytes and in-
duces eIF2α phosphorylation as previously shown [18].
We also verified the activity of PACTΔ13 (also called
PACT305 or PACTΔ1), a truncated PACT lacking 13
amino acids in its C-terminus that constitutively activates
PKR and is poorly sensitive to TRBP inhibition. Similar to
previous results [18], PACT and PACTΔ13 induced PKR
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and eIF2α phosphorylation with PACTΔ13 being highly
active at low doses (Figure 6A). We then repeated the ex-
periment in U251MG cells expressing HIV-1 proteins.
Indeed, if PACT is a PKR activator in astrocytes express-
ing HIV-1 like in Figure 6A, it could be ascribed to the
lack of TRBP-PACT heterodimer formation [18,20,55]. In
contrast, if PACT is a PKR inhibitor in these cells, the ef-
fect would not solely be due to TRBP. We observed that
overexpression of PACT in HIV-transfected U251MG as-
trocytoma cells induced an increased expression of HIV-1
protein production and inhibited PKR and eIF2α phos-
phorylation (Figure 6B). This result shows that PACT be-
comes a PKR inhibitor in astrocytes when these cells
express HIV-1 proteins. The low level of HIV-1 virion pro-
duction was increased by up to 4-fold, which is similar to
what was previously observed with TRBP [12,49].
PACTΔ13 is a potent PKR activator in HIV-non-infected
astrocytes ([18] and Figure 6A) and mediates apoptosis
through PKR activation in HT1080 cells [61]. In U251MG
cells transfected with HIV-1, we observed that PACTΔ13
lost its activating property on PKR and eIF2α phosphoryl-
ation (compare Figure 6C to 6A). Compared to wild-type
PACT, it lost the enhancement in HIV-1 protein expres-
sion and virion production (compare Figure 6C to 6B).

PACT and ADAR1 directly interact in cells
The experiments in Figure 6 demonstrate that TRBP-
PACT interaction cannot solely explain the change in
PACT function in HIV-1 expressing cells. We therefore
wanted to determine if this change could be due to a
virally-induced mechanism. Because we showed that
ADAR1 expression is induced during HIV-1 replication
both in a lymphocytic cell line [12] and in PBMCs
(Figure 1), we tested if ADAR1 and PACT could interact
directly in cells. We transfected HEK 293T cells with either
Flag-PACT or ADAR1 p150-V5, immunoprecipitated re-
spectively with anti-Flag or anti-V5 antibody and blotted
for either the endogenous ADAR1 or PACT (Figure 7).
We recovered both proteins in the immunoprecipitate
with either antibody, showing an interaction (Figure 7,
lanes 4). When we treated the extracts with Benzonase,
which contains RNAses against ss and dsRNAs, we clearly
recovered ADAR1 with an anti-Flag showing an inter-
action between ADAR1 and PACT in the absence of
RNA. The reverse IP with Benzonase was not as distinct,
but also showed a likely direct interaction. Taken together,
these results show that ADAR1 binds to PACT with or
without RNAs, which could explain the reversal of PACT’s
function in HIV-1 producing cells.

Discussion
During HIV-1 infection, IFNα/β is mainly produced by
plasmacytoid dendritic cells and acts on infected cells,
but this cell response is not sufficient to clear the virus
in patients [62]. Our results show that PBMCs do re-
spond to IFN by producing IFN-stimulated genes (ISGs)
and inhibiting HIV-1 replication (Figure 1). Therefore,
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the lack of in vivo efficacy cannot be ascribed to a lack
of cell response to IFN. It could be due to either an in-
sufficient amount of IFN production or to a block in the
downstream effects of IFN or both. IFNα/β also has ad-
verse effects, which limits its therapeutic use [63-65],
emphasizing the need to better understand the down-
stream effects of ISGs and their regulation in HIV-1
-infected cells. Among the ISGs, PKR and its activator
PACT can either contribute to translational inhibition,
proliferation arrest and apoptosis through eIF2α, I-κB
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phosphorylation or IFNβ induction when PKR is activated
[52-54,61,66,67], or to increased viral replication and NF-
κB signaling when it is not activated [12,17,25,26,68]. Be-
cause the PKR/PACT axis is part of the innate immune re-
sponse to viruses, the elucidation of its activity is
important to understand the inefficient response during
HIV-1 replication. We and others have shown that PKR is
extremely effective in restricting HIV-1 replication in vitro
[12,27-30,49]. Furthermore, knocking down PKR by small
interfering RNAs (siRNAs) or expressing a transdominant
mutant of PKR increases HIV-1 production [49]. Despite
this activity, HIV-1 replicates efficiently in many cells,
suggesting that the activity of PKR in natural infection is
highly regulated [17]. We therefore investigated the activa-
tion or deactivation of PKR during HIV-1 infection and
the activity of exogenous IFN on PKR induction and acti-
vation. The transient activation of PKR followed by an ab-
sence of activation during HIV-1 infection of PBMCs
(Figure 1) resembles the one observed with lymphocytic
cell lines infected with X4 or R5 HIV-1 strains [12]. The
transient activation of PKR in PBMCs suggests that this
part of the innate immune response is active but is also
tightly regulated during the infection of primary lympho-
cytes and monocytes in patients. Interestingly, the addition
of IFN inhibited virus growth and induced PKR induction
and activation. PKR induction was delayed by two days
compared to the mock infection emphasizing that the
presence of the virus postpones its expression. Further-
more, ADAR1 and PACT were induced at day 4
suggesting that an early protein from the virus may con-
tribute to their expression.
The regulation of PKR activation is the result of the

action of activators and inhibitors. The equilibrium
reached after a viral infection contributes to a high or a
weak cell response that will either activate innate im-
munity and block viral replication or let the virus repli-
cate [32]. In the case of HIV-1 infection, the TAR RNA
is likely one of the main activators of PKR at the begin-
ning of the infection, but may become an inhibitor if
produced in large amounts in the cell [69]. The HIV-1
Tat protein is also an inhibitor of PKR acting by sub-
strate competition [31]. Besides direct viral countermea-
sures, viruses also evolved to replicate in cells that have
the appropriate cellular components to allow their repli-
cation [70]. Viruses can also induce the production of
cellular proteins that will counteract an antiviral cell re-
sponse. A cell that expresses high amounts of PKR
inhibitors certainly favors HIV-1 replication. HIV-1 rep-
licates in cells that express a large amount of TRBP that
inhibits PKR [39,49]. HIV-1 also induces ADAR1 pro-
duction, which contributes to PKR inhibition and RNA
editing and favors viral replication [12,50,71]. We show
here that ADAR1 is also induced in PBMCs (Figure 1B),
which corroborates this effect in primary cells. Because
TRBP not only acts on PKR, but also prevents PACT ac-
tivity on PKR [18,55], we originally thought that PACT
may activate PKR and that the end-up result of the PKR
status would be a balance between PKR activators and
PKR inhibitors. The identification of PACT in a protein
complex with PKR, TRBP and ADAR1 during HIV-1 in-
fection suggested a role for PACT but raised the question
of its function within this complex (Figure 2).
When overexpressed in HIV-1-expressing cells, PACT

inhibited PKR and eIF2α phosphorylation and conse-
quently increased HIV-1 expression (Figures 3 and 4).
PACT inhibition of PKR activation and consequently on
eIF2α phosphorylation was very dramatic on endogenous
PKR (Figures 3A and 4A), indicating that PACT reverses
its function in HIV-1-producing cells. When PKR was
overexpressed, the effect of PACT on PKR activation was
only visible on the P-PKR/PKR and P- eIF2α/eIF2α ratio
(Figure 3B), but clearly reversed PKR inhibition of HIV-1
production, suggesting that PACT may also act through
another kinase like PERK, or directly on eIF2α, or it
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may have an additional activity to increase viral expres-
sion. The mechanism of this increased viral expression
despite high PKR phosphorylation may be related to the
phosphorylation of HIV-1 Tat by PKR [72] or to a tran-
scriptional activity of PACT similar to the recently ob-
served recruitment of PACT, TRBP and Dicer to the
promoter of nuclear receptors [73]. Furthermore, PACT
inhibition by shRNAs decreased HIV-1 protein expression
similarly to shRNAs against ADAR1 (Figure 5). Together,
the increased expression of PACT during HIV-1 replica-
tion in PBMCs (Figure 1), the increased PKR-PACT inter-
action at the peak of infection (Figure 2), PACT activity
upon over-expression (Figures 3 and 4) and results with
shRNAs (Figure 5) contribute to reach the same conclu-
sion that PACT is a PKR inhibitor during HIV-1 replica-
tion. There are several explanations that could explain this
activity: i) TRBP is present in high amounts in HEK 293
T cells and forms heterodimers with all PACT molecules,
which reverses PKR activation; ii) the large amount of
ADAR1 induced by HIV-1 binds to PACT and reverses its
function; or iii) an HIV-1 component or an HIV-induced
component will change PACT from an activator into an
inhibitor of PKR.
Our results in the astrocytic cells U251MG show that

the first hypothesis by the formation of TRBP-PACT
heterodimers cannot be the sole explanation, strongly
suggesting that an HIV-1 component or an HIV-induced
component mediates the change in PACT function in HIV-
1-expressing cells (Figure 6). This component prevents
PACT from being a PKR activator and changes it into a
PKR inhibitor with a similar activity as TRBP on PKR. Fur-
thermore, PACT Δ13, although not naturally produced in
cells, has been shown to be a strong activator of PKR, be-
cause it is constitutively active and not regulated by TRBP
[18,20,61]. Its loss of activity in HIV-1-expressing astro-
cytes reinforces the idea that an HIV-1 or HIV-induced
component reverses PACT activating function on PKR in-
dependently of TRBP (Figure 6C). The second possibility
would be that the HIV-mediated increase in ADAR1 ex-
pression mediates a change in PACT function by direct
binding. Our IP assays show that it may be the case be-
cause the two proteins are in the same complex during
HIV-1 infection (Figure 2) and that they interact in the ab-
sence of RNA (Figure 7). We cannot exclude that another
mechanism may be involved as well. PACT-Dicer inter-
action [74] or PACT induction of RIG-I upon Sendai virus
infection [75] seems unlikely here because it would lead to
viral restriction or enhanced innate immune response re-
spectively, which we do not observe during HIV-1 infection
or after PACT overexpression of HIV-1-expressing cells
(Figures 1, 3, 4, 6). Therefore, ADAR1-PACT interaction is
currently the most likely mechanism, which may contrib-
ute, at least in part, to the change in PACT activity during
HIV-1 infection.
Our results show that three cellular proteins, TRBP,
ADAR1 and PACT contribute to the inhibition of PKR
and eIF2α phosphorylation observed in HIV-1-infected
cells (Figure 4). All of them are dsRBPs, therefore raising
the question if all proteins of this family act similarly.
Staufen1 was used as another dsRBP that has a positive ac-
tivity on the virus by binding to Gag and by increasing
translation from TAR-containing RNAs [9,76]. In agree-
ment with its PKR-independent mechanism on translation
[9], we found that Staufen1 did not inhibit PKR activa-
tion supporting a combined inhibition of PKR by TRBP,
ADAR1 and PACT and a different mechanism for Staufen1
via Gag multimerization, HIV-1 assembly and encapsida-
tion of genomic RNA [77-79], all contributing to viral rep-
lication. Further studies will determine if PKR forms a
different protein complex at the beginning of HIV-1 infec-
tion when PKR and eIF2α are activated, if PACT has a dif-
ferent activity in this context and how it may contribute to
the pathogenicity induced by the virus.

Conclusions
Previous results have characterized PACT as a stress-
inducible PKR activator. In contrast, we show here that
PACT becomes a PKR inhibitor during HIV-1 replication.
PACT belongs to a multiprotein complex including the
PKR inhibitors TRBP and ADAR1 formed around PKR
during high viral replication. Results strongly suggest that
PACT reversion of PKR activation comes in addition to its
control by TRBP and could be due to its interaction with
ADAR1 and other HIV-1 or an HIV-induced component.
These data show that HIV-1 has evolved using several
mechanisms to overcome the innate cell response.

Methods
Cells and transfections
HEK 293T (ATCC CRL-11268) and U251MG [49] cells
were maintained at 37°C in 5% CO2 in Dulbecco’s modi-
fied Eagle’s Medium (DMEM; Invitrogen) supplemented
with 10% fetal bovine serum (HyClone), 2 mM L-gluta-
mine, and 1% penicillin-streptomycin (Invitrogen). Jurkat
T cells (ATCC TIB-152) were maintained in RPMI-1640
(Invitrogen) supplemented similarly.
Peripheral blood mononuclear cells (PBMCs) were

obtained from healthy donors previously selected to be
negative for HIV, HTLV-I and II, HCV, CMV and syph-
ilis. Blood sample collection was approved by the ethics
review board of McGill University.
For transfection of HEK 293T and U251MG cells with

plasmids, cells were plated in six-well plates at 50% con-
fluence 24 h prior to transfection using polyethylenimine
(PEI) following manufacturer’s protocol (Polysciences).
Transfection of HEK 293T cells with shRNA vectors
(2 μg/well in a 6-well plate) was performed 24 h after plat-
ing using TransIT-LT (Mirus) as described [80]. pNL4-3
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(0.2 μg/well in a 6-well plate) was then transfected using
TransIT-LT 24 h after transfection of the shRNAs. Super-
natants and lysates were then collected 48 h after transfec-
tion of pNL4-3 as described [81].
Plasmids and shRNA synthesis
HIV-1 clone pNL4-3, pcDNA1-PKR, pCMV2-Flag-
PACT, pCMV2-Flag-PACTΔ13, pcDNA3-TRBP2,
pcDNA3.1-ADARp150-V5, and pcDNA3-RSV-Staufen1-
HA were previously described [12,55,82].
shRNAs targeting PACT and ADAR1 were cloned into

the psiRNA vector (InvivoGen) using sequences
obtained from the Sigma-Aldrich website. The sense (S)
and antisense (AS) oligonucleotide sequences of the
shRNAs are:

PACT 1: (S) 5′ -
ACCTCGCGCCAATGGACAATATCAATCTCGA
GATTGATATTGTCCATT GGCGCTT - 3′ and (AS) 5′ -
CAAAAAGCGCCAATGGACAATATCAATCTC
GAGATTGATATTGTCC ATTGGCGCG - 3′.
PACT 2: (S) 5′ -
ACCTCGCGCCAATGGACAATATCAATACTCGAG
AATTGATATTGTCCATT
GGCGCTT- 3′ and (AS) 5′ -
CAAAAAGCGCCAATGGACAATATCAATTCTC
GAGTATTGATATTGTCCATTGGCGCG - 3′.
ADAR1:(S) 5′ -
ACCTCGCTGTTAGAATATGCCCAGTTACTCGA
GAAACTGGGCATATTCTA
ACAGCTT- 3′ and (AS) 5′ -
CAAAAAGCTGTTAGAATATGCCCAGTTTC
TCGAGTAACTGGGCATATTCTAACAGCG - 3′.

After annealing at 80°C for 2 minutes, the shRNAs
were ligated into BbsI-digested psiRNA.
Transfection of HIV-1 molecular clones and RT assay
HEK 293T were transfected as above with pNL4-3 pro-
viral DNA. Cell supernatants were collected 48 h post
transfection and viral production assayed for standard
RT assay. RT assay was as previously described [81] with
modifications described in [83]. Supernatants from
transfected HEK 293T cells were used for infection of
Jurkat or PBMCs.
The RT assay from the supernatant of transfected

U251MG cells was carried out in a similar manner, with
the exception of a longer incubation period at 37°C (3 h)
and 10 μl being spotted onto the DEAE paper as previ-
ously [84]. This was to account for the low amount of
virus production in U251MG astrocytes.
HIV-1 viral infection of Jurkat cells and PBMCs
HIV-1 Jurkat cells infection was previously described [12].
For PBMCs HIV-1 infection, cells were stimulated with
0.6 μg/ml phytohaemagglutinin (Sigma cat. # 12646) for
three days in supplemented RPMI (Invitrogen). 24 h prior
to infection, recombinant human interleukin 2 (IL-2)
(R&D Systems, cat. # 202-IL) was added to the cells for
a final concentration of 10 ng/ml. 6.5 × 107 cells were
infected with HIV-1 cell supernatant corresponding to
1.3 × 107 cpm measured by standard RT assay in a final
volume of 2.5 ml supplemented RPMI in polypropylene
round-bottom tube, and incubated for 2 h at 37°C.
RPMI supplemented with IL-2 for a final concentration of
10 ng/ml was then added to the cell-virus mixture, trans-
ferred to a T25 flask and incubated at 37°C. The cells were
fed on average every two days with fresh medium supple-
mented with IL-2 (10 ng/ml). Supernatant and cell sam-
ples were collected at different times and assayed for RT
activity, immunoblotting and IP when indicated.

Immunoprecipitation and immunoblotting
IP with infected Jurkat cells was previously described [12].
For IP from HEK 293T cells, 48 h post-transfection, cells
were washed twice with PBS and lysed in the cold lysis
buffer with protease inhibitors. For each IP, 50 μl of pro-
tein G agarose fast flow compact beads (Sigma) were
washed with TNEN (50 mM Tris–HCl [pH 7.4], 100 mM
NaCl, 1 mM EDTA [pH 8], 0.5% NP40 (Sigma)) and left
rotating at 4°C for overnight incubation at 4°C with 5 μg
of anti-V5 antibody (Invitrogen). 500 μg to 2 mg of cell ex-
tract was added to the beads for overnight incubation at
4°C. The beads were washed 3 times with 1 ml of cold lysis
buffer, 5 times with 1 ml cold PBS and resuspended in
SDS loading dye. When indicated, the beads were treated
with 250 U/ml of Benzonase® (Sigma) in 50 mM Tris–
HCl, 1 mM MgCl2, pH 8.0 for 30 min at 37°C. Bound
proteins were eluted by boiling the beads for 5 min and
separated by 10% SDS-PAGE. The immunoprecipitates
were analyzed by a Western blot analysis using the anti-
ADAR1 (from Dr. BL Bass) or anti-PACT (Medimabs)
antibodies.
For immunoblotting, HEK 293T, or Jurkat T cells ex-

tracts were prepared, separated and transferred on a
Hybond ECL nitrocellulose membrane (GE Healthcare) as
previously described [55]. Membranes were blocked for 1 h
in 5% nonfat dry milk and Tris-buffered saline-0.1% Tween
20 (TBST). Membranes were incubated overnight at 4°C
with the primary antibody. After five washes in TBST,
membranes were incubated with Horseradish Peroxidase-
conjugated secondary goat anti-rabbit or goat anti-mouse
antibody (GE Healthcare). Anti-P-PKR (Abcam) and anti-
P-eIF2α (Invitrogen) was blotted in 3% BSA/TBST
overnight. After immunoblotting with an antibody, the
membranes were washed in TBST overnight or stripped
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and reused to detect other proteins. The bands were visual-
ized using ECL (GE Healthcare). Primary antibodies used
for immunoblotting were: monoclonals anti-PKR 71–10
[85] obtained from Dr. A. Hovanessian, anti-Actin
(Chemicon) at a 1/5000 dilution, anti-HIVp24 183-H12-5C
[86], at a 1/1000 dilution, anti-Flag (Sigma) at a 1/5000
dilution, polyclonal anti-TRBPjbx [18] at a 1/500 dilu-
tion, anti-P-PKR (Abcam), anti-PACT (Medimabs),
anti-Staufen1, anti-ADAR1, anti-P-eIF2α (Invitrogen)
and anti-eIF2α (Cell Signaling), at a 1/1000 dilution.
The anti-Staufen1 antibody was generated at the Cell
Imaging and Analysis Network (McGill University,
Montréal, Canada) using purified full-length His-tagged
Staufen1 protein. For multiple blotting, when the same
membrane cannot be blotted again, extracts from the
same experiment were separated by SDS PAGE and blot-
ted on a new membrane. In this case, actin is shown for
each membrane. Where indicated, the bands where quan-
tified by densitometry analysis as described [80].
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