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Abstract

In most HIV-infected individuals adherent to modern antiretroviral therapy (ART), plasma viremia stays undetectable
by clinical assays and therefore, additional virological markers for monitoring and predicting therapy responses and
for measuring the degree of HIV persistence in patients on ART should be identified. For the above purposes,
quantitation of cell-associated HIV biomarkers could provide a useful alternative to measurements of viral RNA in
plasma. This review concentrates on cell-associated (CA) HIV RNA with the emphasis on its use as a virological
biomarker. We discuss the significance of CA HIV RNA as a prognostic marker of disease progression in untreated
patients and as an indicator of residual virus replication and the size of the dynamic viral reservoir in ART-treated
patients. Potential value of this biomarker for monitoring the response to ART and to novel HIV eradication
therapies is highlighted.
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Introduction
The concentration of free virus particles in blood plasma
(plasma viremia or plasma viral load), represented by the
copy number of virion RNA per milliliter of plasma,
which can be reliably quantified by PCR methods, is
traditionally used as the biomarker of HIV-1 replication
[1-3]. The main goal of antiretroviral therapy (ART) is
suppression of plasma viremia to below the detection
limit of the most sensitive assay available in the clinic,
and maintaining this “undetectability”. In most HIV-
infected individuals treated with modern ART regimens
and adherent to therapy, this goal is achieved and there-
fore, additional virological markers for monitoring the
response to therapy should be identified. Ideally, such
markers should be predictive of future ART complica-
tions (e.g. therapy failure due to suboptimal adherence)
and should indicate the necessity of a clinical or behav-
ioral intervention. In addition, recent efforts towards a
functional or sterilizing HIV cure [4] have promoted a
renewed interest in the development of quantitative and
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reproduction in any medium, provided the or
sensitive assays for HIV biomarkers, which should allow
the precise measurement of HIV reservoirs and aid in
monitoring the effectiveness of the novel therapies
aimed at eliminating or reducing these reservoirs [5-8].
It seems logical that, for the above purposes, quantita-

tion of cell-associated (CA) HIV biomarkers could pro-
vide a useful alternative to the measurements of plasma
viremia. Several viral nucleic acid forms, including differ-
ent RNA (e.g. spliced, unspliced) and DNA (e.g. total, in-
tegrated, unintegrated) molecules, are present in the
infected cell at different points of the lentiviral replica-
tion cycle (Figure 1). Because these molecules represent
HIV reservoirs with different properties, each of these
molecules can, in principle, be utilized as an HIV bio-
marker using sensitive PCR-based techniques. However,
with the exception of an assay for total CA HIV DNA,
used for HIV diagnostics in infants [9], no quantitative
assay for a CA HIV marker is currently in the clinical
practice, despite a large body of research on the topic.
Several recent reviews focused on the different molecu-
lar forms of CA HIV DNA, such as integrated and un-
integrated DNA forms [10,11]. This review concentrates
on the CA HIV RNA with an emphasis on its use as a
virological biomarker.
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Figure 1 The essential steps in the life cycle of HIV-1. The first step is the attachment of the virus particle to receptors on the cell surface.
The HIV-1 RNA genome then enters the cytoplasm as part of a nucleoprotein complex. The viral RNA genome is reverse-transcribed into a DNA
duplex, which has terminal duplications known as long terminal repeats (LTRs). The linear viral DNA molecule is part of the preintegration
complex that enters the nucleus. In the nucleus, unintegrated viral DNA is found in both linear and circular forms. The unintegrated circular forms
of viral DNA have either one or two LTRs, are byproducts of the integration process, and are found exclusively in the nucleus. The linear
unintegrated viral DNA is the precursor of integrated proviral DNA, which is a stable structure that remains indefinitely in the host-cell genome
and serves as a template for viral transcription. Transcription of the proviral DNA template and alternative RNA splicing creates spliced viral RNA
species encoding the viral accessory proteins, including Tat, Rev, and Nef, and the unspliced viral RNA encoding the viral structural proteins,
including the Gag–Pol precursor protein. All the viral transcripts are exported into the cytoplasm, where translation and assembly and processing
of the retroviral particle take place. The cycle is completed by the release of infectious retroviral particles from the cell. (Figure adapted from [12];
reproduced, with permission, from Massachusetts Medical Society © 1999).
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CA HIV RNA in the viral replication cycle
More than 40 different viral RNAs are produced in HIV-
infected cells by alternative splicing of the primary tran-
script, which is transcribed from the integrated provirus
(Figure 2A) [13,14]. Initially, only short (~2 kb) com-
pletely spliced, also termed multiply spliced (ms), tran-
scripts are produced, encoding the regulatory proteins
Tat, Rev, and Nef. As the infection progresses, there is a
shift towards production of ~9 kb unspliced (us) and ~4
kb incompletely spliced (is) transcripts, encoding the
structural and accessory proteins Gag, Pol, Env, Vif, Vpr,
and Vpu [15-17]. This shift is dependent on the thresh-
old level of the Rev protein, which facilitates the export
of the usRNA and isRNA molecules from the nucleus by
binding to the RRE (Rev-responsive element), an elon-
gated stem-loop structure located in the Env open read-
ing frame [18,19] (Figure 2B). In addition to its use as a
template for translation of the Gag protein and the Gag-Pol
polyprotein, usRNA is packaged into progeny viruses as
genomic RNA.

CA HIV RNA in untreated patients
During the 1990s, several groups reported detection and
quantitation of CA (us and ms) HIV-1 RNA in periph-
eral blood cells [22-30] and tissues [31-35] of infected
individuals. In these initial studies, qualitative, semi-
quantitative, or quantitative competitive (QC) reverse
transcription (RT)-PCR methods, as well as in situ
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Figure 2 Viral RNA species produced within HIV-1-infected cells and phases of HIV-1 RNA expression. (A) Viral RNA species produced
within HIV-1-infected cells. HIV-1 genes are shown relative to the long terminal repeats (LTR). The viral genomic or 9-kb unspliced RNA shows the
location of 50 (D) and 30 (A) splice sites. The incompletely and multiply spliced HIV-1 viral RNAs (4-kb and 2-kb size classes) are shown as black
boxes. Spliced RNAs are denoted by the translated open reading frames and by the exon content. (Figure is adapted from [20]; reproduced, with
permission, from American Society for Microbiology © 2008.) (B) Early and late phases of HIV-1 RNA expression. Full-length unspliced 9-kb RNA,
incompletely spliced 4-kb RNA, and multiply spliced 2-kb RNA species are constitutively expressed in the nucleus. In the absence of Rev (upper
panel), or when the concentration of Rev is below the threshold necessary for function, the 9-kb and 4-kb transcripts are excluded from the
cytoplasm and either spliced or degraded. In contrast, the fully processed 2-kb RNA are constitutively exported to the cytoplasm and used to
express Rev, Tat, and Nef. When the levels of Rev in the nucleus are sufficiently high (lower panel), the nuclear export of 9-kb and 4-kb RNAs is
activated and the translation of all viral proteins ensues. (Ball and stick) The Rev response element. (Figure adapted from [21]; reproduced, with
permission, from Annual Review of Microbiology © 1998).
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hybridization-based methods, were used. Before the
introduction of combination ART (1996–1997), the
main focus of these studies was to verify whether CA
HIV RNA could be used as a virological biomarker of
disease progression in untreated individuals. Almost 20
years ago, by comparing CA HIV burden (DNA and
RNA) between lymphoid tissue mononuclear cells and
peripheral blood mononuclear cells (PBMC), it was con-
vincingly demonstrated that during the asymptomatic
phase of infection (“clinical latency”) most HIV replica-
tion occurs in lymphoid tissues [33]. Nevertheless, a sin-
gle measurement of HIV-1 msRNA in PBMC in the
asymptomatic phase was strongly associated with progres-
sion to AIDS in a cohort of 150 homosexual men [36],
showing that HIV replication is adequately represented in
peripheral blood. Similar predictive power for disease pro-
gression was demonstrated for plasma viremia [37,38].
However, time trends of plasma viremia in the asymptom-
atic phase were found to be highly variable between pa-
tients and between studies: a steady-state pattern is
usually observed [39], but a U-shaped curve [40] or a
gradual increase over time [41] have also been reported.
In contrast, CA HIV RNA level in typical progressors
was demonstrated by several studies to significantly in-
crease during this phase of infection and to inversely
correlate with the CD4+ T cell count [23,28,42-44].
Slow progressors, in comparison, typically have lower and
relatively constant CA RNA levels [28,42,43,45,46].
We performed a direct comparison of the longitudinal

trends of viral RNA in PBMC and plasma (CA HIV
RNA in this study was measured by seminested real-
time PCR) in a cohort of HIV-infected untreated individ-
uals with a mean follow-up of 55 months [44]. This
comparison revealed remarkable differences in the dy-
namics of these molecular markers. While levels of viral
RNA in plasma were stable, those of CA usRNA in
PBMC were significantly increasing over time, and levels
of usRNA, but not plasma viremia, inversely correlated
with the CD4+ T cell count. Interestingly, levels of
usRNA increased in time significantly faster than those
of CA HIV DNA, with a concominant increase of the
RNA/DNA ratio [44]. Whether this increase of viral
RNA expression in PBMC reflects an increase in the
relative numbers of HIV-producing cells per HIV DNA+

cell as the infection progresses, or an upregulation of
viral transcription in PBMC at the cellular level, remains
unclear. Previously, by quantitative microculture assay,
Gupta et al. [28] demonstrated that the relative number
of HIV-producing cells in untreated individuals parallels
the level of usRNA and inversely correlates with the
CD4+ counts. Progressive weakening of the antiviral im-
mune response during the asymptomatic phase might be
one of the factors defining the temporal increase in the
relative numbers of HIV-producing cells and therefore
the increase in HIV-1 replication rates in PBMC that we
and others have described.
Another interesting (and controversial) issue is whether

the relative dynamics of usRNA and msRNA in infected
individuals is predictive of disease progression. Most viral
RNA expressed early by the infected cell is multiply
spliced, with unspliced and incompletely spliced RNA
forms “taking over” later. Thus, the us/ms RNA ratio in
cells from infected individuals can be used as a surrogate
marker of the relative numbers of infected cells in the
early vs. late stages of virus replication. Several groups
[24,42,46], but not all [43,45], reported an increase of the
us/ms RNA ratio in PBMC from HIV-infected persons as
the infection progresses, and a preponderance of msRNA
was demonstrated in long-term nonprogressors compared
with typical progressors [47]. In our cohort, a nonsignifi-
cant trend towards a longitudinal increase of the us/ms
RNA ratio in typical progressors was observed [44].
To explain this phenomenon, the concept of “blocked

early-stage latency” has been put forward, by analogy to
certain latently infected cell lines (U1, ACH-2) that also
demonstrate a preponderance of msRNA production
when unstimulated [48,49]. The existence of a significant
reservoir of such latently infected cells during the
asymptomatic phase of infection in infected individuals
was proposed [24]. Alternatively, the difference in the us/
ms RNA ratio could be explained by temporal changes in
the cytotoxic T lymphocyte (CTL) response. Progressive
weakening of the CTL response as the infection pro-
gresses would mean that cells in the late, productive phase
of infection (which is characterized by an excess of usRNA
and isRNA species) are killed at a reduced rate so that
more and more cells with an excess of usRNA are present
[50]. In agreement with this idea, rapid progression was
shown to be associated both with weaker CTL responses
and higher us/ms RNA ratios [51].

CA HIV RNA in ART-treated patients
Assays to quantify CA RNA in patients on ART
Already in the early days of combination ART, numerous
papers reported detection and quantitation of CA HIV
RNA in peripheral blood and tissues of patients on sup-
pressive therapy [12,52-63]. The advent of combination
ART roughly coincided with the introduction of real-
time PCR methods for nucleic acid quantitation. As a re-
sult, most of the developed quantitative assays for CA
HIV RNA and DNA in patients on ART are based on
real-time PCR [58,64-68]. These assays are highly spe-
cific, but to be able to measure minute amounts of HIV
nucleic acids in limited biological material from patients
on suppressive ART, the assay sensitivity had to be
boosted. We achieved this by addition of a limited-cycle
(in order to stay in the linear range) preamplification
step with seminested primers before the real-time PCR,
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Figure 3 Decay kinetics of cell-free and cell-associated HIV RNA
upon ART initiation.
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resulting in a dramatic improvement of assay sensitivity
without compromising the linearity of the standard
curve [69]. As a result, this seminested real-time PCR
assay allows routine detection and quantitation of HIV
RNA and DNA in the vast majority of PBMC samples of
patients on combination ART with undetectable plasma
viremia [69,70]. Notably, this technology results in a dra-
matic reduction of the necessary amount of input biological
material. Other groups have adapted the commercial quan-
titative tests for HIV-1 plasma viremia (e.g. Roche
Amplicor) for the quantitation of CA HIV RNA [55,71,72].
Detection/quantitation of CA HIV RNA in patients on
ART by the in situ hybridization-based assays [61,73], as
well as by transcription-mediated amplification (TMA) [74]
have also been reported.
In any assay, the quantified amount of CA HIV RNA

needs to be normalized to the cellular input. However,
simple cell counting or total RNA measurement in the
sample is insufficient, as differences in efficiencies of
both RNA isolation and reverse transcription between
different samples also need to be taken into account. We
routinely determine the cellular inputs of our cDNA sam-
ples by quantifying 18S ribosomal RNA in a separate real-
time PCR [69,70]. Housekeeping genes (e.g. GAPDH) have
also been used for this purpose [66], but there is evidence
that 18S ribosomal RNA may be a better choice for nor-
malizing real-time PCR data, especially for virus-infected
cells [75]. If one is working with total PBMC, it also makes
sense to normalize the CA HIV RNA signal to the per-
centage of CD4+ T cells in the sample. The latter can be
determined either directly by flow cytometry or approxi-
mated by the CD4+ cell count per microliter of blood
(which is usually available), as a strong positive correlation
is commonly present between CD4+ counts and CD4+

percentages [76].
One well-known problem that relates to all hybridization-

based methods of HIV nucleic acid quantitation is the ex-
treme heterogeneity of HIV sequences, in particular when
different virus subtypes are encountered. For real-time PCR
methods, this translates into possible effects of mismatches
between the primer or probe with their binding sites on the
efficiency of real-time PCR, as presence of even a single mis-
match may reduce the PCR efficiency by several logs
[77-81]. This complicates the analysis, especially when com-
paring samples of different patients. Using degenerate
primers [82] and targeting conserved regions of the HIV
genome, like gag, pol, or LTR sequences [83,84], helps to re-
duce this problem to some extent. Interestingly, two more
radical solutions have also been described. One solution is
to use patient-matched PCR primers (and probes) for the
real-time PCR [67,85]. However, this approach can become
quite laborious and expensive if samples from a large num-
ber of patients are being studied, as not only the primers
and probes, but also the quantitation standards have to be
patient-matched and tested. Another shortcoming of this
approach is that the matching is done to only one (or pos-
sibly several, if degenerate primers are used) predominant
viral sequence(s), with the risk of misrepresentation of all
minority HIV-1 variants.
We proposed another radical solution: to calculate, for

each patient, individual mismatch-related quantification
errors (MRQE) and normalize all quantified amounts of
HIV RNA (or DNA) to the MRQE values [70]. The
MRQE values are produced by performing a real-time
PCR in which the patient-derived PCR amplicons,
containing the primer and probe target sites, are used as
templates. The concentrations of the template amplicons
are determined spectrophotometrically and equalized by
dilution before real-time PCR. A control template with-
out mismatches is amplified as well. Patient-specific
MRQE are calculated as the differences between the
log10-transformed output copy numbers of the individual
patient-derived templates and the control template.

Decay kinetics of cell-free and CA HIV RNA upon ART
initiation
Initiation of combination ART causes a rapid decline in
plasma viremia, which occurs in several phases, and al-
most invariably leads to a level that is undetectable by
current commercial assays (20–50 copies/ml). However,
by sensitive assays [86-91], low levels of free virus can
still be detected in a majority of patients on ART [92].
After several years of therapy, this residual viremia
reaches a plateau of 1–10 copies/ml and does not appear
to decline any further [93]. The total drop in plasma
viremia on ART, depending on pre-therapy values, is
thus 3–6 log10. Remarkably, CA HIV RNA in PBMC and
lymph nodes follows similar decay kinetics upon ART
initiation, with a rapid initial decline towards a plateau,
but the drop is only 1–2 log10, as shown by seve-
ral groups (Figure 3) [12,59,70,94-98]. Plasma viremia
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reflects a balance between virus production and virus
clearance, and because clearance of free virus in HIV in-
fection was shown to be very rapid, with a half-life in
the order of minutes to hours [99,100], plasma viremia
is considered to be directly proportional to virus produc-
tion. Likewise, the viral decay kinetics in plasma upon
ART initiation is considered to mimic the decay kinetics
of HIV-producing cells [2,101]. In a productively infected
cell population, the CA HIV RNA load is also considered
to be proportional to virus production. Therefore, in view
of classical models of viral dynamics [102], the observed
disproportion between the cell-free and CA viral RNA in
untreated patients and patients on ART remains puzzling.
To explain this discrepancy, one may assume the exist-

ence of a subpopulation of cells that contain viral RNA but
either do not produce detectable virus at all, or produce
only minute amounts of viral particles. One possibility is
that these are latently infected cells that do not produce
virus particles due to either insufficient viral RNA tran-
scription, nuclear retention of usRNA or msRNA, or both
[64,103]. Obviously, as ART only stops infection of new
cells but does not prevent viral RNA transcription, these
cells are not expected to decay upon ART initiation and
are responsible for the “background level” of CA RNA in
patients on ART. Alternatively, this “background level” of
CA RNA without a corresponding level of free virus in
plasma may reflect residual HIV replication occurring by
cell-to-cell transfer, as no detectable free virus is produced
during this process (see below).
Another possible explanation for the observed dispro-

portion between the cell-free and CA viral RNA at high
and low viral loads is that virion clearance may not be a
simple first-order reaction and its rate may be inversely
proportional to the viral load, as shown for hepatitis B
virus [104]. Interestingly, the clearance rate of SIV in ex-
perimentally infused naïve monkeys or infected monkeys
with low viral loads was demonstrated to be ~10-fold
higher than the HIV clearance rate in untreated chronic-
ally infected patients as measured by plasma apheresis
[100,105]. Notably, in the latter study, the longest half-
life of free virus was measured in the patient whose viral
load was ~1 log10 higher compared to other patients
[100]. In rhesus macaques, neutralizing antibodies (Nab)
were shown to accelerate clearance of free virions [106].
The Nab-mediated clearance rate may be saturated at
high viral load and especially efficient at low viral load,
in particular because HIV-specific Nab titers decline by
only ~1 log10 on ART, much less than does free virus
[107,108], and therefore, more Nab per viral particle
would be available at low viral loads. Therefore, virion
clearance may be extremely rapid in patients on ART
and consequently, less free virus particles may be
detected per virus-producing cell in these patients than
in untreated patients with high viral loads.
Cellular origin of CA HIV RNA in patients on ART
A number of important insights into the persistence of CA
HIV RNA in patients on ART have been obtained from
the work of Fischer and colleagues [59,67,85,109-112]. In
particular, by freeze-thaw nuclease digestion prior to RNA
isolation and RT-PCR, they could differentiate between
genuine intracellular HIV-1 usRNA and extracellular virion
RNA attached to a cell, and demonstrated that the latter
represents ~12% of total PBMC-associated usRNA in un-
treated individuals but only <0,5% in patients on suppres-
sive ART [109]. This means that >99,5% of CA usRNA in
patients on ART represents intracellular transcripts. The
cellular origin of these transcripts is an important issue in
HIV persistence under therapy: these transcripts may ori-
ginate either (i) from latently infected cells (latency is de-
fined here as lack of virion production), (ii) from cells
reactivated from latency to undergo productive infection
with virion release but without infection of new cells, or
(iii) from cells newly infected despite ART.
Latently infected resting memory CD4+ T cells are

considered a major HIV reservoir in patients on ART
and a main barrier to virus eradication, due to the rela-
tive stability of this cell population [113]. By isolating ex-
tremely pure populations of resting CD4+ T cells from
patients on ART, Siliciano’s group demonstrated very
low copy numbers of full-length usRNA and msRNA in
these cells (<10 copies/106 cells) and an excess of short
abortive transcripts that terminate prior to nucleotide
181 [114,115]. In addition, msRNA in resting CD4+ T
cells from patients on ART was shown to be retained in
the nucleus, precluding translation of viral Tat and Rev
proteins and consequently high-level transcription and
nuclear export of usRNA and isRNA [103]. These effects
likely contribute to the latent state of HIV in these cells.
Interestingly, the same pattern of nuclear localization of
msRNA was recently observed in a chemokine (CCL19)
induced model of HIV latency in primary resting CD4+

T cells [116]. In vivo, a resting memory CD4+ T cell can
undergo reactivation as a response to antigens or cytokine
induction. If this cell is latently infected with HIV, reacti-
vation may trigger the transition to productive infection
[117]. In accordance with this, ex vivo and in vitro stimu-
lation of resting CD4+ T cells resulted in relocalization of
HIV msRNA to the cytoplasm [103,116].
By PBMC fractionation coupled to limited dilution

analysis (LDA) and real-time PCR, Fischer’s group has
demonstrated significantly higher per-cell CA HIV RNA
load in activated than in resting HIV RNA+ CD4+ T cells
from patients on ART [67]. However, very few cells
among the total bulk of HIV DNA+ resting cells can be
reactivated to productive infection [114], and it therefore
remains unclear whether latently or productively
infected CD4+ T cells are responsible for the largest frac-
tion of CA HIV RNA in patients on ART. Fischer et al.
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have further shown that >90% of all PBMC-associated
HIV RNA in patients on ART is derived from cells that
contain low to intermediate amounts of usRNA and low
or undetectable amounts of msRNA [112], suggesting
that a substantial fraction of these cells is latently
infected. A similar conclusion can be drawn from the
analysis, by the same authors, of CA HIV RNA in
lymphoid tissues of patients on ART [111]. These results
seem to contradict the earlier work of Hockett et al. that
estimated, using in situ hybridization (ISH) and quantita-
tive PCR methods, that the vast majority of CA HIV RNA
in lymphoid tissue of patients on suppressive ART is
contained within a few cells with an RNA copy number
per cell similar to that in untreated patients (>3 log10 cop-
ies/cell) [57], suggesting that these cells are productively
infected. This apparent contradiction can be attributed to
relatively low sensitivity of the ISH method used by
Hockett et al., which could have hampered the detection
of cells harboring low levels of HIV RNA. Importantly,
due to the low patient numbers in both studies, the
studies could have selected patients belonging to dif-
ferent populations, e.g. with respect to the CTL re-
sponses (see below).

CA HIV RNA as a marker of the “active viral reservoir”
The vast majority of cells harboring HIV provirus do not
transcribe any viral RNA, both in untreated and ART-
treated patients [112]. Some of these cells are able to
support productive HIV infection upon reactivation, but
unless such cell is reactivated to productive infection, it
stays invisible to the immune system as it does not pro-
duce any viral antigens. Total CA HIV DNA is therefore
a biomarker of the total proviral reservoir, comprised of
cells that do or do not transcribe viral RNA. CA HIV
RNA, on the other hand, is a biomarker of a subset of
the total viral reservoir, containing cells in which HIV
sequences are actively transcribed (“active HIV reser-
voir”). This “active reservoir” should not be seen as a
“frozen” population of infected cells with distinct prop-
erties, but rather as a “snapshot” of a dynamic system at
a particular point in time. As discussed above, a subset
of this “active reservoir” may consist of cells in which
viral proteins are not produced due to insufficient tran-
scription levels and/or mislocalization of viral RNA.
However, a recent report demonstrated that resting
CD4+ T cells are capable of producing Gag protein
without spreading infection in an in vitro latency
model [118], suggesting another level of HIV latency
regulation. If most of the resting CD4+ T cells that
transcribe some viral RNA can produce some viral
proteins, it means that the “active viral reservoir”, for a
large part, consists of cells that present antigenic
stimulation to the host immune system. In line with this,
the presence of CA HIV RNA in patients on ART was
shown to directly correlate with lymphoproliferative re-
sponses to the HIV-1 p24 antigen [61].
Interestingly, a recent study on elite and “secondary”

controllers (patients who control viremia at <50 copies/
ml either without treatment or after treatment discon-
tinuation, respectively) also indirectly confirms this no-
tion, as both patient groups had significantly lower
usRNA levels as compared to patients on ART with
plasma viremia suppressed to <50 copies/ml [119]. In
addition, both elite and secondary controllers showed
higher T-cell proliferative responses to Gag and Pol pep-
tides [119]. This suggests that natural HIV control, as
opposed to the ART-mediated control, may be exerted
mainly through host CTL responses that eliminate cells
expressing viral antigens (“active HIV reservoir”), pos-
sibly explaining why this reservoir in natural controllers
was very limited. This is supported by a recent study
that found that elite controllers harbor lower levels of
integrated HIV DNA than patients on ART, despite
comparable levels of total DNA [120]. As transcription/
translation from HIV integrated DNA is much more effi-
cient than from unintegrated DNA [11], cells harboring
integrated viral DNA and transcribing viral RNA could
be preferentially destroyed by the CTL response. Inter-
estingly, the size of the “activatable” HIV reservoir, esti-
mated by the infectious unit per million (IUPM) assay
(this assay measures the frequency of infected cells cap-
able of producing virus upon ex vivo stimulation), was
also shown to be at least 1 log10 lower in natural con-
trollers than in patients on ART [121]. In another report,
patients who initiated ART early (3–15 weeks after in-
fection) were shown to have up to 2 log10 lower usRNA
levels and 1 log10 lower viral transcription rates (HIV
RNA/DNA ratios) under ART than patients that started
therapy during chronic infection [85]. This extends the
findings of Strain et al. that the replication competent
viral reservoir is significantly smaller in subjects starting
ART early in infection [122]. Early ART is thought to
preserve immune functions and limit the possibilities for
HIV to escape from host immunity, likely explaining
why a significantly larger fraction of the “active reser-
voir” was eliminated in patients starting therapy early.
Therefore, in patients on ART, it is plausible that con-

tinuous transcription of CA viral RNA and expression of
HIV antigens on the surface of infected cells, even in the
absence of virion production and/or infection of new cells,
would exert continuous pressure on the immune system
and cause additional morbidity as a result of persistent im-
mune activation, inflammation, and immunosenescence
[123]. Despite the fact that ART has dramatically in-
creased the median survival time of HIV-infected individ-
uals, several studies have found excess mortality rates in
the infected and ART-treated population compared to the
general population [124-126]. It is unclear whether this
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excess mortality is due to the effects of HIV infection it-
self, the adverse effects of the antiretroviral drugs, or to
any possible co-infections and co-morbidities. If the
former is true, it is necessary to develop quantitative viro-
logical biomarkers to monitor these effects. Further stud-
ies are warranted to establish whether CA HIV-1 RNA
can be used as a reliable surrogate marker of such effects,
but several reports already point to a direct correlation of
CA HIV RNA levels with markers of immune activation
in untreated patients, natural controllers, and patients on
ART [127-129].

CA HIV RNA as a marker of residual virus replication
Since the introduction of potent ART, it has been unclear
whether low-level HIV replication is occurring in (some)
patients on ART, and a considerable debate on this matter
has been ongoing for some time [7,117,130-135]. Obvi-
ously, understanding whether viral reservoirs in patients
on ART can be replenished by residual HIV replication is
important for designing possible therapeutic interventions
(e.g. therapy intensification to abolish the residual replica-
tion). In addition, because long-lived latent HIV reservoirs
pose a major obstacle to an HIV cure, a number of strat-
egies to eliminate latently infected cells by induction of
virus production are currently being tested [5-7]. Notably,
complete inhibition of HIV replication seems an absolute
prerequisite for any such strategy to work, because if in-
fection of new cells is not completely inhibited, such a
strategy may result in further dissemination of the HIV
reservoir, instead of virus eradication [4,136].
Direct demonstration of infection of new cells in a pa-

tient on ART is, however, extremely difficult, and there-
fore, a number of studies have attempted to show residual
HIV replication by demonstrating virus evolution in pa-
tients on ART. However, these studies could not detect
virus evolution or emerging drug-resistance mutations in
the majority of patients [132,134,135,137-139]. Very re-
cently, data have been reported that suggest that even if
some virus evolution is detected in a patient on ART, the
evolutionary rate is very low [140]. This lack of significant
virus evolution in patients on ART is currently seen as
one of the strongest points against residual HIV
replication.
Attempts have also been made to demonstrate HIV rep-

lication despite therapy by studying levels and longitudinal
trends of virological biomarkers. In particular, since the
first reports describing persistence of CA HIV RNA in pa-
tients on ART, it has been proposed as a possible bio-
marker of residual virus replication [53,56,58,61]. However,
it soon became clear that the mere presence of viral RNA
in infected cells does not at all imply virus replication, as
CA HIV RNA can be derived from cells reactivated from
latency and even from latently infected cells. This is likely
true for all CA HIV RNA species, including msRNA.
MsRNA production, relative to that of other viral RNA
species, is elevated at the early stages of HIV life cycle, and
most msRNA in untreated individuals is thought to be de-
rived from newly infected cells [141]. In accordance with
this, the decay of msRNA upon ART initiation is much
faster than that of usRNA [66,85,94,141], and most studies
have reported lower detectability and levels of msRNA
compared to usRNA in patients on suppressive ART
[67,70,109,111]. Still, the presence of msRNA in patients
on ART does not per se signify a recent infection, or even
a productive infection. A temporal shift towards a higher
msRNA/usRNA ratio in a patient on ART could, however,
suggest some new infection events, and therefore, the rela-
tive abundance of different CA HIV-1 RNA species is a po-
tentially informative biomarker of residual replication in
patients on ART. Such cases have not yet been described,
probably due to the extremely low msRNA levels in pa-
tients on ART.
UsRNA is more abundant and therefore more easily

detected, and several studies could link its expression to
the residual virus replication. Two studies that followed
patients from the start of ART have reported a reverse
correlation between HIV usRNA levels and decay rates
of CA HIV DNA on therapy, suggesting that the viral
reservoir may have been replenished by ongoing residual
replication [66,97]. Some (but not all) groups have mea-
sured a substantial reservoir of CA HIV RNA and DNA
in monocytes from patients on ART [63,67,142]. As
monocytes only circulate in peripheral blood for 1 to 3
days before entering tissues and differentiating into mac-
rophages, the mere presence of HIV infection in these
cells was interpreted as evidence for recent infection and
residual replication under ART [63].
Another approach to demonstrate residual virus repli-

cation under therapy is to show a change in level of a
virological biomarker upon an increase (e.g. therapy in-
tensification) or a decrease (e.g. suboptimal adherence)
in therapy pressure. A recent study that used such an
approach reported a decrease in the level of HIV-1
usRNA in the ileum upon therapy intensification with
raltegravir (an integrase inhibitor) [143], suggesting that
residual replication may be ongoing in some compart-
ments. Alternatively, residual virus replication can be
demonstrated by showing a link between an expression
level of a virological biomarker and a certain clinical
endpoint. Using this approach, we have demonstrated,
by seminested real-time PCR, that higher levels of HIV-1
usRNA in PBMC are predictive of future therapy failure in
patients on ART with undetectable plasma viremia [70].
The predictive value of usRNA for virological response
to ART was recently confirmed by an independent study
that used a completely different RNA detection assay,
namely simultaneous ultrasensitive subpopulation staining/
hybridization in situ (SUSHI) [144].
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These observations suggest that residual viral replication
continues on ART in some patients, leading to the devel-
opment of drug-resistance mutations and, as a conse-
quence, therapy failure. However, most patients treated
with modern ART do not demonstrate therapy failure.
Therefore, as a next step, we studied the influence of de-
creased ART pressure (as a result of modestly decreased
adherence to therapy) on the levels of cell-associated viro-
logical markers in patients on ART with long-term viro-
logical success. Surprisingly, we observed that even
modest deviations from perfect adherence to ART (elec-
tronically measured adherence never fell below 70% in
any patient), caused a significant longitudinal increase in
the levels of usRNA, but no virological rebound in plasma
[145]. As ART only blocks the infection of new cells, but
not viral RNA transcription in cells infected before the
start of therapy, the observed association of decreased
ART pressure with increased usRNA levels in PBMC, in
the absence of virological rebound in plasma, strongly
suggests new replication cycles despite ART. Therefore, if
an average ART-treated patient takes ~75% of the pre-
scribed doses [146], our results suggest that most patients
experience bursts of residual replication at some point
during treatment. In most patients, these bursts of re-
sidual virus replication are probably self-limiting and
therefore they do not lead to the development of drug re-
sistance and therapy failure [90,147]. However, even if no
ART failure is observed, low-level virus replication can
trigger immune activation, with all the potentially morbid
consequences thereof (see above).
Notwithstanding its importance, this residual virus

replication, despite being readily detectable by quantify-
ing CA HIV RNA, goes unnoticed in the clinic, where
ART responses are monitored using commercial plasma
viral load assays. This could simply be a sensitivity issue,
i.e. ultrasensitive assays for plasma viremia [86] may also
be able to detect these effects. Alternatively, CA viral
RNA may be an intrinsically more suitable marker for
monitoring therapy responses, e.g. because residual repli-
cation may occur by cell-to-cell transfer. By mathemat-
ical modeling and in vitro analysis, it was recently
suggested that ART is much less efficient in preventing
cell-to-cell HIV transfer that it is in stopping infection
of cells by free virions [148]. If residual virus replication
indeed occurs by cell-to-cell transfer in patients on ART,
then CA HIV RNA is obviously a much more suitable
biomarker to monitor this process than viral RNA in
plasma.
Cell-to-cell HIV transfer is expected to preferentially

occur in tissues (predominantly lymphoid tissues and
gastrointestinal tract), where cell contacts are much
more abundant, and where much higher viral DNA and
CA RNA loads have consistently been found, than in
peripheral blood [33,52,55,149-153]. Furthermore, three
collaborating laboratories recently demonstrated both
suboptimal drug penetration and high HIV levels in tis-
sues compared to blood [154]. This finding might sug-
gest that suppression of HIV replication in peripheral
blood (as assessed by monitoring plasma viremia only) is
“misleading” [154] in that it does not reflect ongoing
viral replication in the tissues. Although it is clear that
in order to get the full picture, one should look into tis-
sues as well, it should be noted that unlike plasma
viremia, CA HIV RNA level in PBMC is an excellent in-
dicator of CA HIV RNA load in lymphoid tissue [55].
This can be due both to the constant trafficking of
infected cells between tissues and peripheral blood and
the extended half-life of infected cells compared to free
virions, which can also be trapped in the follicular den-
dritic cell network [34]. In line with this reasoning, a re-
cent study failed to show any compartmentalization of
sequences derived from CA HIV RNA and DNA be-
tween the gut and peripheral blood [155], confirming
the constant communication between these compart-
ments [149].
Based on the evidence discussed above, we can

speculate that monitoring ART response in peripheral
blood may become less “misleading” if alternative HIV
biomarkers are used for this purpose. Indeed, a num-
ber of studies recently attempted to demonstrate re-
sidual replication by observing the changes in plasma
viremia, monitored with ultrasensitive assays, upon
ART intensification with raltegravir [74,156,157], but
no significant effects on plasma viremia were reported.
In contrast, two reports documented a decrease in CA
HIV RNA and a transient increase in 2-LTR circles (a form
of episomal HIV DNA) upon the same intervention
[143,158]. Notably, the two latter studies also failed to de-
tect any effect of raltegravir intensification on plasma
viremia. This difference may be partly explained by the fact
that cell-associated HIV biomarkers more directly reflect
virus replication, whereas plasma viremia is dependent not
only on virus production but also on virus clearance. It re-
mains to be established whether virus clearance is indeed
more efficient and the half-life of free virions is indeed
much shorter in patients on ART than in untreated pa-
tients (see above). However, if this is the case, then it
may explain why it proved impossible to detect any
(presumably small) decrease in virus production upon
therapy intensification by measuring plasma viremia
only, at least with infrequent sampling. Likewise, it
could explain our observations of an increased CA
HIV RNA level in suboptimal adherers in the absence
of any virological rebound in plasma [145]. Therefore,
even when cell-to-cell virus transfer is not taken into
consideration, cell-associated viral markers may be
more appropriate for monitoring ART responses than
plasma viremia.
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Besides CA HIV RNA, episomal viral DNA (e.g. in the
form of 2-LTR circles) has been suggested as a biomarker
of residual replication under ART [159]. This was based
on the observed labile nature of 2-LTR circles, which thus
could signify recently infected cells [159,160]. However,
other studies failed to confirm the labile nature of 2-LTR
circles [110,161,162]. Remarkably, transient accumulation
of 2-LTR circles was demonstrated upon ART intensifica-
tion with raltegravir, strongly suggesting that these epi-
somal DNA molecules were derived from cells that had
been recently infected despite ART [158]. Raltegravir
treatment also reduced T-cell activation, which was higher
at baseline in subjects with detectable 2-LTR circles
[158,163]. However, these effects could not be reproduced
by others, possibly due to the differences in sampling
times or other methodological variations [164,165]. More
recently, sequences derived from episomal HIV DNA but
not from proviral DNA in patients on ART just prior to
therapy interruption were shown to match those in
rebounding virus after therapy interruption [166], empha-
sizing the dynamic nature of this marker. However, an
earlier study failed to detect any significant shifts in the
levels of 2-LTR circles during 2 weeks of structured
treatment interruption, whereas clear shifts in CA
usRNA were observed, suggesting that usRNA is a
more dynamic and sensitive marker of HIV replication
than 2-LTR circles [110].
When it comes to monitoring ART responses, one

marker should not necessarily exclude the others. Both
CA HIV RNA and episomal viral DNA have been linked
to residual virus replication; therefore, if these two bio-
markers are measured in parallel in a patient on ART,
there is a better chance of timely identifying future ART
complications (e.g. therapy failure due to suboptimal ad-
herence) and indicating a clinical or behavioral interven-
tion. In general, monitoring several biomarkers in
parallel with sensitive assays, compared to the current
clinical practice of relying on one virological marker
only, which is measured with suboptimal sensitivity,
would allow much better understanding, and ultimately
control, of viral persistence in patients on therapy.

Potential use of CA HIV RNA assays for HIV eradication
strategies
The “gold standard” in measurement of replication-
competent HIV reservoir is the quantitative coculture
assay that determines an IUPM value [5]. However, this
assay is labor-intensive, time-consuming, expensive, and
requires large blood volumes (frequently obtainable only
by leukapheresis). Therefore, alternative assays are ur-
gently needed to support large-scale clinical trials ex-
ploring the effectiveness of HIV eradication strategies
[5-8]. Several relatively easy-to-perform PCR-based as-
says have been developed for different HIV biomarkers,
but it is still unclear which biomarker/assay can serve as
a reliable surrogate for IUPM. Measurement of inte-
grated DNA will not distinguish replication-defective
from replication-competent virus, and quantitation of
CA RNA (the “active HIV reservoir”) will miss cells that
harbor transcriptionally silent proviruses but that can be
activated to produce infectious virus (the “activatable
HIV reservoir”). In any case, bulk assays will probably be
of limited value to quantify frequencies of cells harbor-
ing replication-competent HIV: such a “magic bullet”
assay should be performed at the limiting dilution or
single-cell level.
One of the primary HIV eradication strategies that is

currently being tested in clinical trials is reactivation of
the latent viral reservoir by inducing virus production
from latently infected cells using e.g. histone deacetylase
inhibitors (HDACi) or other agents [5-7]. In vitro, the
potency of these agents can easily be screened, but to
test the efficacy of such compounds in vivo (or ex vivo),
an assay should be used that measures reactivation of
virus production in patients on ART. In this respect, it is
important to determine which viral biomarker most ad-
equately reflects virus production. As discussed above,
plasma viremia reflects a balance between virus produc-
tion and clearance (and the latter may depend on the
viral load), some CA RNA+ cells may not produce virus,
and the extracellular fraction of CA RNA does not ne-
cessarily originate from the attached cell. Still, in a re-
cently published study that demonstrated the disruption
of latency by vorinostat (an HDACi) in resting CD4+ T
cells of patients on ART, CA HIV usRNA was used as
an outcome measure [167]. Remarkably, in each of the
eight participants, vorinostat caused an increase in both
biomarkers of cellular acetylation and HIV usRNA [167],
suggesting the usefulness of CA HIV RNA for monitor-
ing the effectiveness of virus eradication strategies.

Conclusions
Ultrasensitive measurement of plasma viremia has pro-
vided many important insights into HIV persistence dur-
ing ART. Yet, to fully characterize the dynamics of viral
reservoirs in patients on ART, sensitive and precise as-
says to quantify cell-associated HIV biomarkers are ur-
gently needed. The observations discussed in this review
suggest that CA HIV RNA is a promising candidate for
the role of an alternative biomarker to be used in moni-
toring the virological response to ART and to novel HIV
eradication strategies. However, more research is neces-
sary to confirm these exciting observations. In particular,
assay standardization is warranted, as the reproducibility
across multiple laboratories is unknown. Therefore,
comparative studies must be conducted to identify the
most robust CA HIV RNA assay. In the ideal situation,
such an assay should be HIV subtype-independent and
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capable of quantitation of CA viral RNA expression at
the single-cell level. Further studies are also warranted
in order to establish whether CA HIV RNA can be used
as a reliable biomarker of persistent low-level virus repli-
cation/production in patients on suppressive ART. Fur-
thermore, monitoring several biomarkers in parallel
should provide advantages by increasing the assay ro-
bustness and sensitivity. In summary, novel, dynamic,
viral biomarkers have to be characterized and assays to
quantify them have to be developed, if our understand-
ing of the virological processes in patients on ART is
once to be taken “beyond undetectability”.
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