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TNPO3 protects HIV-1 replication from
CPSF6-mediated capsid stabilization in the host
cell cytoplasm
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Abstract

Background: Despite intensive investigation the mechanism by which HIV-1 reaches the host cell nucleus is
unknown. TNPO3, a karyopherin mediating nuclear entry of SR-proteins, was shown to be required for HIV-1
infectivity. Some investigators have reported that TNPO3 promotes HIV-1 nuclear import, as would be expected for
a karyopherin. Yet, an equal number of investigators have failed to obtain evidence that supports this model. Here,
a series of experiments were performed to better elucidate the mechanism by which TNPO3 promotes HIV-1
infectivity.

Results: To examine the role of TNPO3 in HIV-1 replication, the 2-LTR circles that are commonly used as a marker
for HIV-1 nuclear entry were cloned after infection of TNPO3 knockdown cells. Potential explanation for the
discrepancy in the literature concerning the effect of TNPO3 was provided by sequencing hundreds of these
clones: a significant fraction resulted from autointegration into sites near the LTRs and therefore were not bona fide
2-LTR circles. In response to this finding, new techniques were developed to monitor HIV-1 cDNA, including gPCR
reactions that distinguish 2-LTR circles from autointegrants, as well as massive parallel sequencing of HIV-1 cDNA.
With these assays, TNPO3 knockdown was found to reduce the levels of 2-LTR circles. This finding was puzzling,
though, since previous work has shown that the HIV-1 determinant for TNPO3-dependence is capsid (CA), an HIV-1
protein that forms a mega-dalton protein lattice in the cytoplasm. TNPO3 imports cellular splicing factors via their
SR-domain. Attention was therefore directed towards CPSF6, an SR-protein that binds HIV-1 CA and inhibits HIV-1
nuclear import when the C-terminal SR-domain is deleted. The effect of 27 HIV-1 capsid mutants on sensitivity to
TNPO3 knockdown was then found to correlate strongly with sensitivity to inhibition by a C-terminal deletion
mutant of CPSF6 (R® = 0.883, p < 0.0001). TNPO3 knockdown was then shown to cause CPSF6 to accumulate in the
cytoplasm. Mislocalization of CPSF6 to the cytoplasm, whether by TNPO3 knockdown, deletion of the CPSF6 nuclear
localization signal, or by fusion of CPSF6 to a nuclear export signal, resulted in inhibition of HIV-1 replication.
Additionally, targeting CPSF6 to the nucleus by fusion to a heterologous nuclear localization signal rescued HIV-1
from the inhibitory effects of TNPO3 knockdown. Finally, mislocalization of CPSF6 to the cytoplasm was associated
with abnormal stabilization of the HIV-1 CA core.

Conclusion: TNPO3 promotes HIV-1 infectivity indirectly, by shifting the CA-binding protein CPSF6 to the nucleus,
thus preventing the excessive HIV-1 CA stability that would otherwise result from cytoplasmic accumulation of
CPSFe.
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Background

Early events in the human immunodeficiency virus type
1 (HIV-1) replication cycle commence when HIV-1
binds and fuses to a susceptible host cell. With fusion,
the conical HIV-1 virion core is released into the cytosol.
The virion core measures 119 x 60 nm on average [1]
and bears a proteinaceous coat of more than 1,000 cap-
sid monomers [2]. The viral genomic RNA within the
coat serves as template for the viral reverse transcriptase
(RT), in a process that links disassembly of the virion
core to viral cDNA synthesis [3]. The resulting pre-
integration complex (PIC) then gains access to the nu-
cleus, presumably through the nuclear pore complex,
where the viral integrase (IN) ligates the viral cDNA to
host cell chromosomal DNA.

Exactly how the viral genome reaches the nucleus of
the host cell is not clear. Correlations between bio-
chemistry and function are rendered difficult by the fact
that only a minority of retrovirion particles within any
given preparation succeed in transducing susceptible
target cells [4]. Genetic approaches have been fruitful
in that several cellular factors have been identified
that influence early HIV-1 replication steps occur-
ring after reverse transcription [5-10]. One such factor,
Transportin-3 (TNPO3), is a karyopherin that imports SR-
rich splicing factors into the nucleus [11].

TNPO3 clearly plays an important, though controversial
role in HIV-1 replication [5,6,8,9,12-16]. Some studies
suggest that TNPO3 promotes nuclear import of the PIC
[6,9,14,17]. Others indicate that it has a role in a step after
the viral PIC reaches the nucleus [8,12,13,15,16]. TNPO3
has been reported to interact with both IN and CA
[6,13,16,18], but the relevance for HIV-1 replication of the
interaction with IN was not confirmed [15,19]. Evidence
supporting the functional significance of interaction with
CA is stronger than that for interaction with IN. MLV
does not require TNPO3 for transduction; chimeras in
which HIV-1 CA and IN are swapped with the MLV
counterparts reveal a central role for CA in TNPO3 func-
tion and fail to demonstrate a role for IN [19]. Addition-
ally, nearly 30 HIV-1 CA mutants have been identified
that alter HIV-1 dependence on TNPO3 [7,8,13,19]. How
TNPO3 would promote HIV-1 infectivity via effects on
CA is not obvious. Shah et al. suggests that TNPO3 acts
directly on the process of CA core uncoating [20].

Cleavage and polyadenylation specific factor 6 (CPSE6) is
a 68-kD subunit of the mammalian cleavage factor I (CF
Im), a component of the mRNA cleavage/polyadenylation
machinery [21]. CPSF6 possesses an N-terminal RNA rec-
ognition motif (RRM), a central proline-rich domain, and a
C-terminal domain enriched in arginine/serine, arginine/
glutamate and arginine/aspartate repeats, similar to the
RS-domain of SR splicing factors [22]. A CPSF6 C-
terminal deletion mutant lacking the RS-like domain
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(CPSF6-358) was isolated in an expression screen for
¢DNAs that inhibit HIV-1 replication [7]. CPSF6-358 binds
HIV-1 CA and viral restriction activity depends on this
interaction [7,23]. Closer examination of CPSF6 revealed
a number of functional links with TNPO3. The CPSF6
RS-like domain is required for localization to the nuclear
compartment [7,24]. Interestingly, TNPO3 imports cargo
proteins by interacting with the RS-domain of SR-proteins
[25]. CPSF6-358 binds specifically an HIV-1 CA pocket
where amino acids important in HIV-1 dependency to
TNPOS3 are located [7,8,23]. HIV-1, HIV-2 and SIV ma-
caque (SIVmac), but not MLV and FIV, are inhibited by
CPSF6-358 expression and TNPO3 depletion [6,7,19].

Here we set out to clarify the mechanism by which
TNPO3 promotes HIV-1 infectivity. We began by
pinpointing the step in the HIV-1 replication cycle
that is blocked by TNPO3 knockdown and then
sought evidence for functional links between HIV-1,
TNPO3, and CPSF6.

Results

TNPO3 depletion blocks HIV-1 replication in a step before
the virus enters the nucleus

Several groups reported experiments designed to de-
termine at which step HIV-1 replication is blocked
when TNPO3 is depleted [5,6,8,9,12-17]. All observed
a block after completion of reverse transcription but
results differed with respect to the effects of TNPO3
knockdown on the formation of 2-LTR circles, a
marker for nuclear import of the retrovirus replication
machinery [26]. Some studies showed that TNPO3
acts to promote integration, without effects on the
levels of 2-LTR circles [8,12,13,15,16]. Other studies
reported that the levels of 2-LTR circles were decreased,
indicating that TNPO3 is required before nuclear im-
port [6,9,14,17].

To clarify which step in the HIV-1 replication cycle is
promoted by TNPO3 we conducted a more extensive
analysis than previously reported. TNPO3 was knocked
down in HeLa TZM-bl cells (Figure 1A). These cells
were challenged with env-, VSV G-pseudotyped, HIV-1
NL4.3 Vectors carrying either WT CA or the A105T CA
mutation. Expression of the GFP reporter gene was
assessed by flow cytometry 72 hrs after infection, as an
indicator of viral infectivity (Figure 1B). As previously
shown, depletion of TNPO3 from the host cell resulted
in inhibition of WT virus replication, but no effect on
the replication of the A105T CA mutant was observed
(Figure 1B) [8]. Also as expected [8], there was no effect
of the TNPO3 KD on reverse transcription by the WT
HIV-1 (Figure 1C).

Then, the levels of 2-LTR circles were assessed 24 hrs
post-infection with the VSV G-pseudotyped HIV-1x14.3.
The PCR primers were commonly used sequences that
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Figure 1 TNPO3 depletion decreases the level of HIV-1 2-LTR circles and has no effect on autointegration. (A) TNPO3 protein in TZM-bl
cells transduced with lentiviral vectors expressing shRNAs targeting TNPO3 or control (Ctrl). Cell lysate was probed in western blots with anti-
TNPO3 antibody (upper panel) or anti-3-actin antibody (lower panel). (B) TZM-bl control (Ctrl) cells and TNPO3 KD cells were challenged with HIV-
1-GFP reporter vectors bearing either WT or A105T CA mutation. 72 hrs after transduction, the percent GFP* cells was determined by flow
cytometry as an indication of infectivity. (C) Quantification of late RT products 24 hrs post-infection with WT or A105T CA mutant viruses, on control
(Ctrl) or TNPO3 KD cells. (D) Schematic representation of qPCR for 2-LTR circles using primers flanking the circle junction. Arrows represent primers.
Dashed line represents the PCR product. (E) Quantification of 2-LTR circles (as indicated in B) 24 hrs post-infection with WT or A105T CA mutant
viruses, on control (Ctrl) or TNPO3 KD cells. The PCR products were detected using Sybr green. (F) The PCR products from (E) were cloned and
sequenced. The ratio between 2-LTR circles and autointegration events is plotted. (G) The analysis from (E) was repeated in the presence of raltegravir
(RAL) 10 uM. (H) Level of autointegration events by gPCR when WT or A105T CA mutant viruses infect control (Ctrl) or TNPO3 KD cells.
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flank the junction of the ligated, viral cDNA termini, but
do not overlap with the junction (Figure 1D) [8,26]. Des-
pite an 11-fold decrease in the efficiency of transduction
of TNPO3 KD cells by WT virus, as compared with the
TNPO3-independent A105T CA mutant virus, the repli-
cation of which is TNPO3-independent (Figure 1B), no

significant reduction in the amount of 2-LTR circles was
observed (Figure 1E).

PCR products from the reactions designed to detect
2-LTR circles were ligated into a plasmid and at least
85 clones from each condition were sequenced and
evaluated, as previously described [27,28]. 2-LTR circles
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with consensus sequence were observed, as well as point
mutations, insertion of PBS or PPT sequences at the
junctions, and deletions at the termini of the viral cDNA
(Additional file 1: Table S1). Autointegration resulting
from opposite-strand joining was also detected [29,30];
these circular viral cDNAs contain 2-LTRs but are
distinguished from 2-LTR circles that result from end-
joining by the lack of the terminal dinucleotides that are
removed by IN when the viral cDNA is inserted into
various regions of the viral genome.

Since the PCR reaction that most labs use to amplify
2-LTR circles also amplified significant quantities of
autointegrants, the effect of TNPO3 KD on the signal in
this reaction necessitated adjustment for the quantity of
autointegrants. The relative amount of 2-LTR circles
produced by WT virus, divided by the amount of the
opposite-strand autointegrants, was decreased roughly
10-fold by TNPO3 KD (Figure 1F). No significant change
in this adjusted ratio was observed with the TNPO3-
independent A105T virus. To determine if this change in
ratio was due to an absolute decrease in 2-LTR circles or
to an increase in autointegrants, TNPO3 KD and control
cells were transduced in the presence of raltegravir, a drug
that blocks integration. Under this condition the level
of 2-LTR circles was reduced 4-fold in the absence of
TNPO3 (Figure 1G). Autointegration was assessed in-
dependently using a PCR method developed by Yan
et al. [31]; when WT or A105T capsid mutant viruses
were used to transduce either control or TNPO3 KD
cells, the levels of autointegrants were very similar
(Figure 1H). Autointegration was not detected when
WT virus was used to infect raltegravir-treated cells
(data not shown). These experiments indicate that, in the
absence of the confounding variable of autointegration,
TNPO3 KD was associated with an absolute decrease in
the level of 2-LTR circles.

Given that the standard 2-LTR circle primers (Figure 1C)
[8,26] detect autointegrants, and that the results of this
assay were confounded significantly by this variable, assays
were developed that are specific for 2-LTR circles. When
the forward PCR primer extended across the junction be-
tween the 2-LTR circles such that hybridization would be
disrupted by the terminal nucleotide deletion characteris-
tic of autointegration (Figure 2A), 2-LTR circle formation
was decreased by TNPO3 KD; Figure 2B shows results
using a primer that crossed 2 nucleotides over the circle
junction (junct2 fwd) and Additional file 1: Figure S1A
shows results with a primer that crosses the junction by 4
nucleotides (junct4 fwd). With these primers, in the pres-
ence of raltegravir, the amount of 2-LTR circles increased
10-fold (Additional file 1: Figure S1B), even in control KD
cells; with the conventional primers [8,26] there was no
significant change with raltegravir, apparently because any
increase in 2-LTR circles was canceled by decrease in
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autointegrants. Similar reduction in 2-LTR circles with
TNPO3 KD was observed when PCR products from the
conventional 2-LTR primers [8,26] were detected with a
TagMan probe that hybridized across the 2-LTR circle
junction (Additional file 1: Figure S1B). In contrast,
TNPO3 KD had no effect on 2-LTRs when a TagMan
probe external to the circle junction was used (Additional
file 1: Figure S1C) [26].

To confirm a block prior to the formation of 2-LTR
circles, control and TNPO3 KD cells were treated with
raltegravir, in order to block viral integration. These cells
were then challenged with HIV-1yp4.3-based vectors en-
coding the green fluorescence protein (GFP) reporter gene
and carrying WT or A105T capsid mutation (Figure 2C).
Expression of the reporter gene from the unintegrated
viral DNA was detectable 48 hrs after infection, though
the mean fluorescence intensity was much weaker than
the signal in the absence of raltegravir, and it disappeared
if cells were cultured for more than 7 days (data not
shown). This signal required de novo cDNA synthesis in
the target cells since GFP was not detected if reverse tran-
scription was blocked by AZT treatment of the target
cells, or by mutation of the catalytic site of RT (D185K/
D186L) in the challenging vector (data not shown). GFP
expression from WT virus was strongly reduced when
TNPO3 was depleted, while the A105T CA mutant virus
was independent. These results clearly show that TNPO3
KD blocks HIV-1 in a step before 2-LTR circles are
formed.

Finally, the effect of TNPO3 depletion on 2-LTR circles
and autointegration was assessed by high-throughput
sequencing (Figure 2D). The complete high throughput
sequencing dataset has been submitted to the Sequence
Read Archive (SRA), http://www.ncbi.nlm.nih.gov/sra,
under accession number SRA056122. TNPO3 KD and
control cells were infected with WT and A105T viruses
for 24 hours. Low-molecular weight DNA was extracted
from the infected cells, primed with random hexamers,
and amplified by PCR. The reads were first aligned to
human DNA, and the unmapped reads were extracted
and remapped to the HIV-1 genome. Then, only reads
encompassing a junction were considered (Additional
file 1: Table S2). That is, reads having two mapping
points on the HIV-1 genome, such as LTR/LTR or LTR/
other location, were considered. Finally, junctions
were classified according to position and whether
the LTR terminal CA was maintained (circles) or
cleaved (autointegrants). High-throughput sequencing of
the PCR products detected ~10° reads with definitive
LTR sequences for each condition, of which, 91% were
autointegrants. (Figure 2D). The level of autointegration
was similar in WT and A105T CA mutant virus infecting
either control or TNPO3 KD cells. 2-LTR circles were sig-
nificantly reduced when WT virus infected TNPO3 KD
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cells, while A105T CA mutant virus was totally independ-
ent. These results show unequivocally that TNPO3 deple-
tion inhibits HIV-1 replication in a step prior to 2-LTR
circle formation.

Tight correlation between the effects of TNPO3 depletion
and CPSF6-358 on transduction by a panel of 27 HIV-1 CA
mutants

TNPO3 depletion inhibits HIV-1 transduction in a CA-
specific manner [8,19]. Assessment of a panel of 27 HIV-1
CA mutants found that 2 CA mutants were hypersensitive
to TNPO3 KD, and 14 CA mutants were TNPO3-
independent [8]. Among the 14 TNPO3-independent
mutants, E45A, Q63A/Q67A, and N74D were also
reported to be resistant to CPSF6-358, a C-terminal
truncation mutant of the mRNA processing factor
CPSF6 (Figure 3A) that was isolated in an expression
screen for cDNAs that inhibit HIV-1 transduction [7].
Using the same methods described above for assessment
of the effect of TNPO3 KD, including cloning and sequen-
cing of PCR products, PCR with primers that distinguish
2-LTR circles from autointegrants, and deep sequencing
of viral cDNA, CPSF6-358 was demonstrated to inhibit
HIV-1 replication at a stage in the HIV-1 replication cycle
before 2-LTR circles are formed (Additional file 1: Figure
S1D-1G). These findings agree with the replication block
reported in ref [7].

To determine if HIV-1 determinants for sensitivity to
CPSF6-358 track with those for TNPO3-dependence,
the infectivity of each of the 27 previously characterized
HIV-1 CA mutants [8] was assessed on cells expre-
ssing CPSF6-358 (Figure 3C). HeLa TZM-bl cells were
challenged with a bicistronic, lentiviral vector encod-
ing CPSF6-358 and puromycin acetyl transferase
(PAT), or with the parental, control vector encoding
only PAT. Pools of the two transduced cell populations
were selected with puromycin (Figure 3B) and challenged
with VSV G-pseudotyped, 3-part, lentiviral vectors, in
which the GFP-encoding reporter genome and the viral
structural proteins are provided by separate plasmids.

Transduction efficiency by vector bearing wild-type CA
was reduced 26-fold by CPSF6-358 (Figure 3C). 11 CA
mutants were inhibited to similar extent as the wild type
(represented by white bars in Figure 3C). Vectors bearing
the CA mutants G8IV/A9E or PI0A/A92E displayed
greater sensitivity to CPSF6-358 than the wild type (gray
bars, up to 60-fold lower in the presence of CPSF6-358, as
compared to control cells). Fourteen CA mutants were in-
sensitive to the inhibitory effect of CPSF6-358 (black bars).

As compared with HIV-1 CA determinants for sen-
sitivity to TNPO3 depletion [8], sensitivity to inhibition
by CPSF6-358 tracked closely (R*=0.883, p < 0.0001;
Figure 3D). In contrast, no significant correlation for the
effect of CPSF6-358 was found when the 27 CA mutants
were tested on the CA-dependent HIV-1 restriction
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factors human TRIM5Cyp (WTRIMCyp) or rhesus monkey
TRIM5a (rhTRIM5a) (Additional file 1: Figure S2) [32,33].
Such tight correlation in the behavior of the CA mutants

is consistent with a common mechanism of action for
HIV-1 inhibition by TNPO3 KD and CPSF6-358.

Cytoplasmic localization of CPSF6-358 is required to
inhibit HIV-1

CPSF6 possesses a C-terminal arginine/serine (RS) domain
(Figure 3A) that acts as a nuclear localization signal (NLS)
for nuclear splicing factors [11]. The CPSF6-358 truncation
mutant lacks the RS domain and, unlike full-length CPSF6,
is readily detectable in the cytosol [7]. To determine if
CA-specific inhibition of HIV-1 correlates with mis-
localization of CPSF6-358 to the cytoplasm, HeLa TZM-bl
cells were transduced with bi-cistronic lentiviral vectors
encoding CPSF6-358, or CPSF6-358 fused to either the
SV40 T-Ag NLS or the cyclic AMP-dependent protein
kinase inhibitor (PKI) nuclear export signal (NES). The
C-terminus of each CPSF6-358 protein was fused to the in-
fluenza hemaglutinin (HA) epitope. Expression of the three
CPSF6-358 fusion proteins was assessed by western blot
with anti-HA antibody (Figure 4A). The HA epitope was
also used to assess subcellular localization of the
proteins by indirect immunofluorescence; CPSF6-358
was distributed throughout the cell, CPSF6-358-NLS
was only detected in the nuclear compartment, and
CPSF6-358-NES was primarily detected in the cytosol
(Figure 4B).

The three pools of cells with CPSF6-358 targeted to
different cellular compartments were then challenged
with HIV-1 vectors bearing WT CA, A105T CA, or
P90A/A92E CA (Figure 4C). Virus bearing the A105T
CA mutant was resistant to the inhibitory effects of
CPSF6-358, whether the HIV-1 inhibitor was localized
to the nucleus or to the cytoplasm. Amino acid A105 is
in fact localized to the pocket where CPSF6 binds to
HIV-1 CA and makes direct contact with the SR-protein
[23]. Alteration of the A105 side chain in the A105T
mutant would be expected to disrupt the interaction be-
tween CA and CPSF6 and the consequent viral restric-
tion would be abolished. Infection with WT or P90A/
A92E CA mutant viruses was inhibited when CPSF6-358
was detected in the cytosol. When CPSF6-358 was targeted
to the nucleus by fusion to the SV40 NLS, HIV-1 transduc-
tion was no longer inhibited, indicating that CPSF6-358
needs to be in the cytoplasm to inhibit HIV-1 infection.

HIV-1 is inhibited when full-length CPSF6 is targeted to
the cytoplasm

Full-length CPSF6 localizes to the nucleus and when
overexpressed does not able to restrict HIV-1 infection.
To determine if targeting CPSF6 to the cytosol confers
anti-HIV-1 activity, stable cell lines expressing HA-
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tagged full-length CPSF6 or two modified versions with
either an NLS or an NES were produced (Figure 5A). As
expected, CPSF6 and CPSF6-NLS localized to the nu-
cleus, and CPSF6-NES was predominantly observed in
the cytoplasm (Figure 5B). Infectivity of viruses with
WT, A105T and P90A/A92E mutant CA were assessed
on these cell lines (Figure 5C). WT virus and the CA
mutant P90A/A92E were restricted when CPSF6 was
targeted to the cytoplasm (CPSF6-NES). These results
demonstrated that, while CPSF6 is a nuclear protein that
does not block HIV-1 replication, when it is retargeted
to the cytoplasm, HIV-1 replication is inhibited.

TNPO3 is required for CPSF6 localization to the nucleus
and HIV-1 permissiveness

The RS domain is a NLS for nuclear splicing factors and
TNPO3 is a karyopherin that imports SR protein family
members [11]. CPSF6-358 lacks the RS domain and, un-
like full-length CPSF6, is readily detectable in the cytosol
[7]. Together with the finding that HIV-1 is inhibited
when full-length CPSF6 is targeted to the cytoplasm,
these observations suggested that TNPO3 depletion
causes endogenous CPSF6 to accumulate in the cyto-
plasm, resulting in capsid-specific inhibition of HIV-1,
as is seen with CPSF6-358. In a first attempt to test this
model, the effect of TNPO3 depletion (Figure 6A) on
the subcellular localization of endogenous CPSF6 was
examined by immunofluorescence microscopy and cellu-
lar fractionation biochemistry. In control knockdown
cells, endogenous CPSF6 was detected exclusively in the
nucleus (Figure 6B and 6C). When TNPO3 was knocked
down, endogenous CPSF6 was also detectable in the
cytosol (Figure 6B and 6C).

As a further test of the model, stable CPSF6 knockdown
and control knockdown cells were transfected with siRNA
targeting TNPO3 or the firefly luciferase gene as a control
(Figure 6A), and infectivity of HIV-1 vectors carrying WT
CA or CA mutants A105T or P90A/A92E was tested.
When CPSF6 was depleted from the cells, TNPO3 KD did
not inhibit HIV-1 infectivity (Figure 6D), indicating that
CPSF6 was required for the antiviral effect of TNPO3 KD.

The CPSF6 stable KD cell line was then transduced with
lentiviral vectors encoding either CPSF6 or CPSF6 fused
to an NLS, but in each case bearing silent mutations so
that they are resistant to the CPSF6 KD vector (ntCPSF6
and ntCPSF6-NLS, respectively). These two stable cell
lines were then transduced with a lentiviral vector encod-
ing a modified miRNA that specifically targets either
TNPO3, or firefly luciferase as a control (Figure 7A). In
control cells, both ntCPSF6 and ntCPSF6-NLS localized
to the nucleus (Figure 7B). When TNPO3 was depleted
from the cell, ntCPSF6 was found also in the cytoplasm
while ntCPSF6-NLS was only detected in the nucleus.
This result is consistent with the nuclear localization of
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Figure 4 CPSF6-358 inhibits HIV-1 replication when localized to the cytoplasm. (A) CPSF6 protein in TZM-bl cells transduced with empty,
CPSF6-358, CPSF6-358 NLS and CPSF6-358 NES vectors. Cell lysates were probed in western blots with anti-CPSF6 antibody (upper panel) and
anti-B-actin antibody (lower panel). The upper panel shows the endogenous CPSF6 and the truncated form. (B) Indirect immunofluorescence
showing localization of the different forms of CPSF6-358. The TZM-bl cells, transduced as in (A), were stained with an anti-HA antibody (green) for
the detection of the CPSF6-358 proteins. DAPI was used to mark the nuclear compartment (blue). (C) TZM-bl stably expressing the different forms
of CPSFe-358 were challenged with WT or CA mutant HIV-1y43GFP reporter viruses. After 72 hrs, GFP reporter expression was assessed by flow
cytometry. Data represent one of at least three independent experiments. Error bars represent + SEM (n = 3).

A105T

CPSF6 being mediated by TNPO3, but when fused to the
SV40 T-Ag NLS sequence, CPSF6 uses a different
karyopherin in order to localize to the nucleus [34].

The four stable cell lines were then tested for the ability
to restrict HIV-1 bearing WT, A105T or P90A/A92E CA
(Figure 7C). Conditions where CPSF6 localized to the cyto-
plasm, resulted in a block on the replication of HIV-1
bearing WT or P9OA/A92E mutant CA. These results dem-
onstrate that the decrease in HIV-1 infectivity associated

with TNPO3 KD is a consequence of the re-localization of
CPSE®6 to the cytosol.

Cytoplasmic CPSF6 stabilizes the HIV-1 CA core

After fusion of HIV-1 with the target cell, the virion core
is released into the cytoplasm from which it can be
precipitated by ultracentrifugation. CPSF6 binds HIV-1
CA [23] and CPSF6-358 inhibits HIV-1 in a CA-specific
manner, with the block occurring at a step before the
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Figure 5 HIV-1 replication is inhibited when full-length CPSF6 is targeted to the cytoplasm. (A) Expression levels of CPSF6 in TZM-bl cells
transduced with empty, CPSF6, CPSF6-NLS and CPSF6-NES vectors. Cell lysates were probed in western blots with anti-CPSF6 antibody (upper panel)
and anti-B-actin antibody (lower panel). The upper panel shows the endogenous and exogenous full-length CPSF6 with an HA tag. (B) Localization of
different forms of CPSF6 in TZM-bl cells stably expressing CPSF6, CPSF6 NLS or CPSF6 NES. The cells were stained with an anti-HA antibody (green) for
the detection of the CPSF6 proteins. DAPI staining (blue) was used to mark the nuclear compartment. (C) TZM-bl stably expressing the different forms

of CPSF6 were challenged with WT or CA mutant HIV-1y43GFP reporter viruses. After 72 hours, GFP reporter expression was assessed by flow
cytometry. Data represent one of at least three independent experiments. Error bars represent + SEM (n = 3).

virus reaches the nucleus (Additional file 1: Figure S1).
CPSF6-358 might inhibit HIV-1 infectivity by altering
the kinetics of CA core uncoating, consequently delaying
the nuclear import of the PIC.

The stability of WT and A105T CA cores in the pres-
ence of CPSF6-358 was assessed using a kinetic assay for
CA core stability in vivo (Figure 8A); variation in the
amount of pelletable CA in this assay correlates with
altered CA core stability [35]. 4, 10 and 16 hrs after

challenge of TZM-bl cells with HIV-1 Env- virus
pseudotyped with VSV G, and bearing either WT CA or
the A105T CA mutant, cells were lysed and cytoplasmic
capsid cores were pelleted through a 50% sucrose cushion.
Virus without VSV G was used as a control for CA that
had been taken up by cells non-specifically. 4 hrs after
challenge with the WT, CA cores showed a slight increase
in stability when CPSF6-358 was expressed in the cell;
A105T CA core stability was not altered. At 10 and 16 hrs
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Figure 6 TNPO3 KD inhibits HIV-1 replication by shifting CPSF6 to the cytoplasm. (A) Expression level of CPSF6 and TNPO3 in TZM-bl cells
stably transduced with control or CPSF6 KD vectors and transfected with scrambled or TNPO3 specific small interfering RNA (siRNA). Cell lysate
was probed in western blots with anti-TNPO3 antibody (upper panel), anti-CPSF6 antibody (middle panel) and anti-3-actin antibody (lower panel).
(B) Immuno-fluorescence localization of endogenous CPSF6 (green) in control (Ctrl) KD or TNPO3 KD TZM-bl cells. DAPI staining (blue) was used
to mark the nuclear compartment. (C) Cell fractionation to identify the cellular localization of endogenous CPSF6. Expression of tubulin in the
cytoplasm and histone 3 (H3) in the nucleus was assessed to verify the fractionation. (D) Stable ctrl KD and CPSF6 KD cells transfected with
scrambled or TNPO3 siRNA were challenged with WT or CA mutant HIV-1y,43GFP reporter viruses. After 72 hours GFP expression was checked by
flow cytometry. The fold inhibition of infectivity due to TNPO3 KD is shown. Data represent one of at least three independent experiments. Error

A105T

after virus challenge, WT CA core stabilization by CPSF6-
358 was even more evident, while the A105T CA core was
not altered significantly.

Finally, the effect of TNPO3 KD on the stability of the
CA cores was assessed (Figure 8B). WT cores were
stabilized when TNPO3 was knocked down, while the
CA mutant A105T was not altered. As a positive
control, destabilization of the CA core mediated by
rhTRIM5a was assessed [35]. Both WT and A105T CA
cores were destabilized when rhTRIM5a was expressed

(Figure 8C). These results indicate that retention of
CPSF6 in the cytoplasm, either via deletion of its NLS or
KD of TNPOS3, inhibits HIV-1 replication by causing
hyperstabilization of the CA core, and presumably
delaying transit of the PIC to the nucleus.

Discussion

TNPO3 KD inhibits HIV-1 in a step before nuclear import
In previous works, when the effect of TNPO3 on HIV-1
replication was assessed, some research groups showed
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stably depleted of CPSF6. DAPI staining (blue) was used to mark the nuclear compartment. (C) The pools of stable cell lines in (B) were
challenged with WT or CA mutant HIV-1y4.3GFP reporter viruses. After 72 hrs, GFP expression was checked by flow cytometry. Data represent

one of at least three independent experiments. Error bars represent + SEM (n = 3).

that TNPO3 promotes HIV-1 replication at a step before
nuclear import, while an equal number claimed that it
acts after nuclear entry [5,6,8,9,12-17]. The assay for
HIV-1 nuclear import that was used by all of these
investigators was PCR-based detection of 2-LTR circles
[26]. These circular viral cDNAs are generated by cellu-
lar enzymes that promote the covalent joining of the
LTR termini [36]. In the work here, the PCR products

amplified using standard primers flanking the 2-LTR cir-
cle junction were examined in detail. As previously
described, 2-LTR circles with consensus sequence, dele-
tion of the termini, point mutations and PBS or PPT
insertions were observed [27,28]. We also identified
abundant products (between 45 and 58% of the total)
amplified from circles produced during opposite-strand
joining autointegration events. When we sequenced the
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Figure 8 CPSF6 stabilizes the HIV-1 CA core. (A) Env- HIV-1, pseudotyped with VSV G, and bearing either WT or A105T mutant CA, was
incubated with TZM-bl cells stably transduced with CPSF6-358 (+) or empty vector (=), for 4, 10 and 16 hours. As a control, virions lacking VSV G
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western blot with an antibody anti-p24. (B) WT or A105T CA mutant viruses, and no VSV G virus, were incubated with control (Ctrl) or TNPO3 KD
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the three fractions was described in (A). All experiments are representative of at least 2 repetitions.




De laco et al. Retrovirology 2013, 10:20
http://www.retrovirology.com/content/10/1/20

unintegrated viral products present in the cell after HIV-
1 infection, we saw between 600 and 5000 times more
autointegrants compared to 2-LTR circles. Differences
in the assessment of 2-LTRs could easily be explained
by interference from the abundant autointegration
products.

When 2-LTR PCR products were cloned and sequenced,
the bona fide 2-LTR circles with consensus LTR junctions
were significantly reduced when TNPO3 was depleted.
We then designed new primers that are able to discrimin-
ate consensus 2-LTR circles from autointegration events.
Using this PCR assay and the deep-sequencing analysis of
unintegrated viral products, we again demonstrated a sig-
nificant reduction of 2-LTR circles as a result of TNPO3
depletion. Lack of specificity of the standard 2--LTR circle
PCR therefore explains why different research groups have
not obtained similar data. Indeed, all studies that reported
no difference in the level of 2--LTR circles by TNPO3
depletion used primers flanking the circle junction to de-
tect 2--LTR circles [8,12,13,15,16]. Many studies that have
quantified the 2-LTR circles using primers that flank the
circle junction should be revisited with the new PCR
assay.

TNPO3 prevents CPSF6 from inhibiting HIV-1 replication
A model that describes the mechanism of action of TNPO3
in HIV-1 replication has remained elusive for several years.
Based on their observation that TNPO3 interacts with
HIV-1 IN, Christ et al. hypothesized that TNPO3 has a dir-
ect role in nuclear import of the viral preintegration com-
plex [6]. Then several groups demonstrated that HIV-1
capsid is the primary determinant of TNPO3-dependence
[8,19]. However, more recent reports suggest that TNPO3
might affect HIV-1 nuclear import only indirectly [9,14].
Zhou et al. proposed that TNPO3 promotes HIV-1 replica-
tion after the PIC has been imported into the nucleus, by
displacing and exporting to the cytosol the viral CA still
associated with the nuclear PIC [13]. In our previous work,
analyzing a panel of CA mutants, we hypothesized that
TNPO3 might alter the stability of the CA core [8].
Interestingly, Lee et al. recently characterized a truncated
form of CPSF6, CPSF6-358, capable of restricting HIV-1
infectivity in a CA-dependent manner similarly to TNPO3
[7]. CPSF6-358 lacks the C-terminal RS-like domain, a
NLS region commonly used by cargo proteins for a
TNPO3-dependent nuclear import. Lee et al. showed that
full-length CPSF6 is strictly localized to the nucleus of
NIH3T3 cells, while the truncated protein is also present
in the cytosol, suggesting that the RS-domain is required
for the nuclear localization of the protein [7]. Here we
showed that CPSF6 is indeed capable of inhibiting HIV-1
replication, but only when it accumulates in the cytosol,
as occurs when TNPO3 is disrupted. Our data suggest
that when CPSF6 accumulates in the cytosol, it binds to
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CA via the pocket where N74 and A105 are located [7].
This stabilizes the HIV-1 CA core, causing a delay in
uncoating and in nuclear import of the viral cDNA.

Since results obtained in our study are based on the
artificial alteration of CPSF6 localization, the question
now remains: is there a physiological condition where
CPSF6 accumulates in the cytoplasm to control HIV-1
replication? A recent study reported that, in response to
Toll-like receptor-3 (TLR-3) stimulation, macrophages
counteract HIV-1 by upregulating microRNA-155; this
has the result that several factors important to the early
steps of HIV-1 replication - including TNPO3 - are
down-regulated [37]. Further studies are required to find
an answer to this question. However, we can hypothesize
two scenarios: CPSF6 could become cytoplasmic and re-
strict HIV-1 infection in specific cell types or after par-
ticular stimuli; CPSF6 is a factor required for proper CA
core uncoating in certain conditions.

CA core stability is tightly regulated by host cellular
factors

Since the discovery of the interaction between HIV-1 CA
and the host peptidyl-prolyl isomerase cyclophilin A
(CypA) [38], several host factors that bind HIV-1 CA and
alter the early steps of virus replication have been identi-
fied [7,9,33,39]. The nuclear pore protein Nup358 seems
to be directly involved in promoting the nuclear import of
the HIV-1 PIC, while CypA and the tripartite motif 5
(TRIMS5) proteins have been demonstrated to regulate the
stability of the CA cores. The TRIM5 proteins specifically
recognize the CA core lattice and accelerate uncoating,
causing a premature release of the reverse transcription
complex (RTC) and consequently inhibits viral cDNA syn-
thesis [35,40]. CypA has opposite effects on HIV-1 replica-
tion in different cell lines: in Jurkat T cells CypA stabilizes
CA cores promoting reverse transcription, in HeLa cells
CypA destabilizes A92E CA mutant cores blocking viral
replication in a step between reverse transcription and in-
tegration [41-43]. The impact of these cellular factors on
HIV-1 replication, together with the inhibition of reverse
transcription by CA mutants that alter core stability [44],
demonstrates how crucial is the optimal stability of the
CA cores for productive infection. Recent work also
demonstrated a direct correlation between HIV-1 reverse
transcription and core uncoating [3]. In this study, we
characterized a new host factor that alters CA core stabil-
ity, CPSF6. The SR-protein specifically binds a pocket
located in the N-terminal domain of HIV-1 CA previously
described as the target of a compound capable of destabil-
izing CA cores, and stabilizes the cores [23,45].

Conclusions
Since the identification of TNPO3 as a factor required
for HIV-1 infection many studies have attempted to
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understand the specific function of this karyopherin in
viral replication. Experiments in this manuscript demon-
strate that TNPO3 is not directly required for nuclear im-
port of the viral PIC. Instead, TNPO3 promotes HIV-1
infection indirectly, by inhibiting an inhibitor of HIV-1,
CSPF6. In the presence of TNPO3, CPSF6 localizes to the
nucleus. When TNPO3 is depleted, CPSF6 accumulates in
the cytoplasm where it stabilizes HIV-1 CA cores and
prevents their disassembly.

Methods

Cell lines, tissue culture, and drugs

293T and TZM-bl cells were grown in Dulbecco’s modified
Eagle medium (DMEM) (Invitrogen) supplemented with
10% fetal bovine serum (FBS) (PAA), 20 mM L-glutamine,
1000 U/ml penicillin, and 1000 mg/ml Streptomycin
(GIBCO). Raltegravir (RAL, Santa Cruz) was used at a final
concentration of 10 uM.

Plasmids

pWPTs-GFP is an HIV-1-based transfer vector with EGFP
expression under the control of the EFla promoter [46].
p8.9NdSB is a minimal HIV-1 packaging plasmid for gag
and pol expression [47]. pMD2-G encodes the vesicular
stomatitis virus G protein (VSV-G). pNL4-3.GFP.E™ bears
HIV-1 proviral sequence with an env-inactivating muta-
tion and EGEFP in place of nef [48]. pAPM and pAHM are
HIV-1 based knockdown vector in which a single tran-
script driven by the spleen focus-forming virus (SFFV)
LTR contains a miR30 framework modified to target a
gene of interest and the puromycin N-acetyltransferase
gene or hygromycin B phosphotransferase, respectively
[49]. pAIB is an HIV-1-based transfer vector expressing
the protein of interest from the SFFV LTR followed by the
encephalomyocarditis virus (EMCV) internal ribosome
entry site (IRES) cassette and the drug resistance cassette,
blasticidin-S-deaminase [50]. CPSF6 and CPSF6-358 were
subcloned from pLPC-CPSF6-FL-HA and pLPC-CPSF6-
358-HA (kindly provided by Vineet KewalRamani) into
pAIB by cutting pAIB and pLPC with Notl/Xbal and
Bglll/Notl respectively [7]. pCR®II-TOPO® (Invitrogen)
is a plasmid containing single 3'-thymidine overhangs for
TA cloning and the topoisomerase I enzyme covalently
bound to the vector.

Knockdown vector cloning and siRNA transfection
AHM-CPSF6 vectors targeting three different sequences
of CPSF6 were designed as previously described [8]. Three
97-mer oligonucleotides were synthesized and PAGE puri-
fied: ts10, 5'-TGCTGTTGACAGTGAGCGCGGAAAGA
GAATTGCATTATATTAGTGAAGCCACAGATGTAAT
ATAATGCAATTCTCTTTCCATGCCTACTGCCTCGG
A-3'; ts13, 5'- TGCTGTTGACAGTGAGCGAGCAATC
TCAAGCAGTGCTATTTAGTGAAGCCACAGATGTAA
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ATAGCACTGCTTGAGATTGCCTGCCTACTGCCTCG
GA-3'; ts37, 5-TGCTGTTGACAGTGAGCGATTGGA
TCTGAAGCATCTTCAATAGTGAAGCCACAGATGTA
TTGAAGATGCTTCAGATCCAACTGCCTACTGCCTC
GGA-3". TZM-bl cells were transduced with the AHM-
CPSF6 vectors (ts10, ts13 and ts37). Efficiency of the
CPSF6 KDs was analyzed by western blot and AHM-
CPSF6 ts10 was selected since it was the most potent of
the three constructs. The APM-TNPO3 KD vector and
the TNPO3 siRNA transfection procedure were previously
described [8].

Cloning and mutagenesis
To express a form of CPSF6 that was resistant to CPSF6
KD ts 10, silent mutations were introduced into the
CPSF6 cDNA (ntCPSF6) by overlapping PCR using the
oligonucleotides ntCPSF6 fwd, 5'- CAAATGTTGTCTA
TACATATACTGGAAAACGTATAGCGCTTTATATTG
GAAATCTAACATGGTGGAC -3'; ntCPSF6 rev, 5'- G
TCCACCATGTTAGATTTCCAATATAAAGCGCTATA
CGTTTTCCAGTATATGTATAGACAACATTTG -3".
NLS and NES were cloned at the C-terminus of
CPSF6, ntCPSF6 and CPSF6-358. PCR used pAIB-
CPSF6-HA, pAIB-ntCPSF6-HA and pAIB-CPSF6-358-
HA as templates and the primers SSFV (fwd), 5'-C
TCACTCGGCGCGCCAGTC -3’ coupled with SV40
NLS (rev), 5'- TGTGTGGCGGCCGCCTATACCTTTC
TCTTCTTTTTTGGGGCGTAGTCGGGCACGTC -3';
or PKI NES (rev), 5'- TGTGTGGCGGCCGCCTAATT
TATATCGAGTCCAGCTAGCTTCAATGCCAGGGCG
TAGTCGGGCACGTC -3'. The PCR products were
subcloned into pAIB-CPSF6-HA, pAIB-ntCPSF6-HA
and pAIB-CPSF6-358-HA vectors digesting with Notl
and Xbal.

Tranduction and transfection of mammalian cells

To express the different forms of CPSF6, TZM-bl
cells were transduced with pAIB encoding CPSF6-358,
CPSF6-358-NLS, CPSF6-358-NES, CPSF6, CPSF6-NLS
or CPSF6-NES. To express rhTRIM5 or hTRIMCyp,
cells were transduced with pAIB encoding the respective
proteins. Cells were selected with blasticidin (10 pg/mlL)
starting two days after transduction.

To generate stable KDs, TZM-bl cells were transduced
with pAHM microRNA-based shRNA vectors targeting
either control or CPSF6 mRNA. Cells were selected with
200 pg/mL of hygromycin B two days after transduction.
To generate the rescue cells, CPSF6 KD cells were
transduced with the pAIB vector encoding for ntCPSF6
or ntCPSF6-NLS. 2 days after transduction, the cells
were selected with 10 pg/mL blasticidin.

For transfection of siRNA, Lipofectamine RNAIMAX
was complexed with 100 nM of Gene Solution siRNA
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(Qiagen) targeting TNPO3 following manufacturer’s
instruction.

Production of viruses and vectors

Viruses and minimal vectors were produced by transfec-
tion of 293T cells using Polyethylenimine (PEI) (Sigma,
Inc) as previously described [8].

Western blot analysis

We used rabbit anti-TNPO3 antibody (ab71388, abcam),
rabbit anti-CPSF6 antibody (Novus biological), human
anti-p24 (NIBSC) and mouse anti-actin antibody (Sigma).
The secondary antibodies were HRP-linked donkey anti-
human IgG (Jackson), HRP-linked donkey anti-rabbit IgG
and HRP-linked sheep anti-mouse IgG (GE Healthcare
Life Sciences).

2-LTR circles, late RT and autointegration PCR

Low molecular weight DNA was extracted from 4 x 10°
cells using the QIAprep Spin Miniprep Kit (Qiagen),
following the manufacturer’s instructions.

Quantitative PCR for NL4.3 GFP E- 2-LTR circles was
detected with Sybr green (Invitrogen) or TagMan probes.
2-LTR circle detection with primers external to the
circle junction (Figure 1B) was made with primers:
NL4.3_2 fwd, 5'-GAGATCCCTCAGACCCTTTTAG-
3’; MH536, 5'- TCCACAGATCAAGGATATCTTGT
C-3". The primers used for detection of 2-LTR circles
with perfect junction (Figure 1F) are: Junct2 fwd, 5'-C
AGTGTGGAAAATCTCTAGCAGTAC-3’; or Junctd
fwd, 5'- CAGTGTGGAAAATCTCTAGCAGTACTG-
3’; both coupled with J2 rev, 5'-GCCGTGCGCGCTT
CAGCAAGC-3". 2-LTR circles qPCRs with TagMan
probe detection method were made using the primers
[26]: MH535, 5'-AACTAGGGAACCCACTGCTTAA
G-3’; and MH536. The TagMan probes external or
overlapping with the junction were, respectively:
MH603, 5'-(FAM)-ACACTACTTGAAGCACTCAAGG
CAAGCTTT-(TAMRA)-3" [26]; JunctPro, 5'- (FAM)-C
TCTAGCAGTACTGGAAGGGCTA-(TAMRA)-3".

Sybr green 2-LTR circle PCR reaction contained 1x
Sybr green mix (10 mM Tris pH 8.3, 10 mM KCl,
2.5mM NH,4SO,, 5 mM MgCl,, 0.1 mg/ml BSA, 0.2 mM
dNTPs, 1x Sybr green), 300 nM each primer, 6 ul of
template low-molecular weight DNA, and 0.2 pl of Hot
Start Taq Polymerase (Promega) in a volume of 20 pl
After initial incubation at 95°C for 2 min to activate the
Hot Start Taq Polymerase, 40 cycles of amplification and
acquisition were carried out at 95°C for 6 s, followed by
10 s at 55°C, 30 s at 72°C and 6 s at 80°C. TagMan 2-LTR
circle PCR reaction mix contained 1x TagMan Universal
Master Mix (Applied Biosystems), 50 nM primer forward
and reverse, 100 nM TagMan probe and 6 pl of template
low-molecular weight DNA in a volume of 20 pl. After an

Page 15 of 18

initial incubation at 95°C for 10 min, 40 cycles of amp-
lification were carried out at 95°C for 15 s followed by
1 min and 30 s at 60°C. qPCR reactions were made
using the CFX96™ thermal cycler (Biorad). Where
indicated, cells were treated 1 hour before infection
with 10 uM Raltegravir.

Late RT levels were assessed by qPCR as previously
described [8].

Autointegration events were measured by two-step
nested PCR as described [31]. The first amplification step
used 200 ng of genomic DNA, 1X PCR buffer, 1.5 mM
MgCl,, 0.2 mM of dNTPs, 0.5 pl Hot Start Taq polymer-
ase, 0.2 uM of primers PBS- (5" - TTTCCGGTCCCTGTT
CGGGCGCCA- 37), NY199/primer B- (5" — CTACCTTG
TTATGTCCTGCTTG- 3') and NY200/primer A +(5'-
CTCTACAGCACTTGGCACTAGC- 3’) in a final vol-
ume of 25 pl. After initial incubation at 95°C for 5 min, 24
cycles of amplification were carried out at 95°C for 30 s
followed by 30 s at 60°C and 3 min at 72°C; a final step of
elongation was made at 72°C for 7 min. The PCR product
was then diluted 1:100 and used in the second step of
amplification carried out with the same conditions and
primers (NL4.3_2 fwd and MH536) as the qPCR for the
detection of 2-LTR circles using primers external to the
circle junction.

Cloning and sequencing of PCR products

2-LTR circle PCR products were cloned into pCR®II-
TOPO® by TOPO TA cloning (Invitrogen), following
the manufacturer’s instructions. The plasmids were
transformed into One Shot Machl-T1 competent cells
and plated in petri dishes. Single colonies were picked
and used to stab a 96 well agar plate. Sequencing was
carried out by Beckman Genomics (UK).

High-throughput sequencing of viral DNA byproducts

Genomic libraries were prepared using the TruSeq® DNA
Sample Prep kit V2 (Illumina) following manufacturer’s
instructions. Briefly, 1 pg of genomic DNA was sheared
with the Covaris 2 system (Covaris). The DNA fragments
were then end-repaired, extended with an ‘A’ base on the
3’ end, ligated with indexed paired-end adaptors and PCR
amplified. PCR amplification was carried out as follows:
initial denaturation at 98°C for 30 sec, followed by 8 cycles
consisting of 98°C for 10 sec, 60°C for 30 sec and 72°C
for 30 sec, then a final elongation at 72°C for 5 min. Four
different genomic libraries were pooled and sequenced in
one lane of an Illumina HiSeq2000 sequencer using a
2 x 95bp paired end indexing protocol. Demultiplexed
fastq files were obtained for each sample using the
[llumina CASAVAv1.8.1 software and processed by a cus-
tom pipeline running on the Vital-IT (http://www.vital-it.
ch). Center for high-performance computing of the SIB
Swiss Institute of Bioinformatics. Specifically, the mapping
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of fastq reads has been performed with BWA [51] with
duplicate removal by samtools [52] against the HIV gen-
ome in order to quantify the amount of virus for each
sample. The same fastq reads have then been mapped
against the human genome to eliminate DNA cell con-
tamination (>90%). Remaining reads have been finally
processed with Blat [53] and custom made Python scripts
against HIV genome to capture and count the occurrence
of junction structures as circles and autointegrants.

Average coverage of the HIV genome is ~5000 and the
number of detected junctions (90% autointegrants)
ranges from 30000 to 100000 according to the viral
quantity (Table S1).

The complete high throughput sequencing dataset has
been submitted to the Sequence Read Archive (SRA) /ci
(http://www.ncbi.nlm.nih.gov/sra) under accession num-
ber SRA056122.

Immunofluorescence assay

TZM-bl cells expressing specific KD vectors or a version
of the HA-tagged CPSF6 protein were fixed for 10 min
with 3% paraformaldhyde, quenched for 10 min with 0.1
M glycine, permeabilized for 10 min with 0.2% Triton-X
100, and blocked for 20 min with 1% BSA in PBS. Cells
were then incubated for 1 hour either with anti-HA
(Covance) or anti-CPSF6 antibodies (Novus Biologicals)
diluted in PBS with 1% BSA. After 5 washes, the cells were
incubated with anti-mouse (HA) or anti-rabbit (CPSF6)
Alexa Fluor 488-conjugated secondary antibodies for 1
hour, washed again, incubated for 1 min in Hoechst and
mounted with Mowiol. The slides were viewed with a
Zeiss LSM 510 confocal laser-scanning microscope.

Cellular fractionation

Control and TNPO3 KD TZM-bl cells were resuspended
in 1 ml of ice-cold hypotonic buffer (10 mM HEPES pH
7.9, 1.5 mM MgCl,, 10 mM KCl, 0.5 mM DTT, protease
inhibitors) and lysed in a 7-ml Dounce homogenizer by
15 stokes with pestle B. The lysate was centrifuged at
1,000 rpm for 5 min at 4°C and the supernatant was
used as cytoplasmic fraction. The nuclear pellet was
resuspended in 1 ml of sucrose buffer (0.25 mM sucrose,
10 mM MgCl,, protease inhibitors), layered over a 1 ml
sucrose cushion (0.88 mM sucrose, 0.5 mM MgCl,, pro-
tease inhibitors) and centrifuged at 3,500 rpm for 10
min at 4°C. The nuclear pellet was finally resuspended
in 1x SDS-PAGE loading buffer.

Fate of capsid assay

Fate of capsid assay was performed as previously
described [35]. TZM-bl cells expressing an empty vector,
CPSF6-358, rhTRIM5a or the TNPO3 KD were seeded
onto T75 flasks. 24 hours later, the confluent cells were
incubated with 10 ml of Env- HIV-1, pseudotyped with
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VSV G, and bearing either WT or A105T mutant CA,
for 30 min at 4°C and then shifted to 37°C. After 4
hours, the virus was removed, the cells were washed and
returned to 37°C for 12 hours. Cells were detached with
pronase (7 mg/ml in DMEM) for 5 min at 4°C, washed
3 times with ice cold PBS and finally resuspended in 2.5
ml of hypotonic lysis buffer (10 mM Tris—HCI, pH 8.0,
10 mM KCIl, 1 mM EDTA). After 5 min incubation on
ice, the cells were lysed in a 7-ml Dounce homogenizer
by 15 stokes with pestle B. The lysate was cleared by cen-
trifugation for 3 min at 3,000 rpm at 4°C to remove the
nuclear fraction. 100 pl of the cleared lysate was collected
to determine the viral input in the assay, while 2 ml was
layered on top of a 7-ml 50% sucrose gradient and
centrifuged for 2 hours at 30,000 rpm at 4°C using a
Beckman SW41 rotor. After centrifugation, 100 pl of the
top-most part were collected (supernatant) and the pellet
resuspended in 1x SDS-PAGE loading buffer. All samples
were analyzed by WB using antibody against p24.
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