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Abstract

Latently infected cells represent the major barrier to either a sterilizing or a functional HIV-1 cure. Multiple
approaches to reactivation and depletion of the latent reservoir have been attempted clinically, but full depletion of
this compartment remains a long-term goal. Compared to the mechanisms involved in the maintenance of HIV-1
latency and the pathways leading to viral reactivation, less is known about the establishment of latent infection.
This review focuses on how HIV-1 latency is established at the cellular and molecular levels. We first discuss how
latent infection can be established following infection of an activated CD4 T-cell that undergoes a transition to a
resting memory state and also how direct infection of a resting CD4 T-cell can lead to latency. Various animal,
primary cell, and cell line models also provide insights into this process and are discussed with respect to the
routes of infection that result in latency. A number of molecular mechanisms that are active at both transcriptional
and post-transcriptional levels have been associated with HIV-1 latency. Many, but not all of these, help to drive the
establishment of latent infection, and we review the evidence in favor of or against each mechanism specifically
with regard to the establishment of latency. We also discuss the role of immediate silent integration of viral DNA
versus silencing of initially active infections. Finally, we discuss potential approaches aimed at limiting the
establishment of latent infection.
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Latently infected cells represent the major obstacle to
either a sterilizing or a functional HIV-1 cure. HIV-1
latency can be defined as a reversibly nonproductive in-
fection of a cell [1], which is usually interpreted to refer
to an integrated provirus that is replication-competent
but transcriptionally silent. In light of recent evidence,
this definition might be expanded to include proviruses
that express some but not all gene products in the
absence of virion production [2-5]. The latent reservoir
is established very early after infection [6,7], and reacti-
vation of latently infected cells serves as a major source
of viral rebound upon treatment failure [8,9]. Recent
studies of the dynamics of viral load decay have shown
the presence of two kinetically distinct latent reservoirs,
i.e. the sources of plasma viremia during the third and
fourth phases of decay [7,10,11], potentially representing
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different memory CD4 T-cell subsets. Multiple approaches
to reactivation and depletion of the latent reservoir have
been attempted clinically (summarized in [12,13]), and
these efforts aim to reactivate latently infected cells so as to
render them susceptible to viral cytopathic effects, an anti-
viral immune response, or other means of targeted cell kill-
ing [14,15]. However, complete depletion of the latent
reservoir remains a long-term goal.
Although much attention is deservedly paid to defin-

ing how latency is maintained and how latent viruses
can be reactivated, the mechanisms involved in the es-
tablishment of latency are incompletely understood.
Given that the latent reservoir can be replenished during
infection [16,17], a deeper knowledge of how latency is
established would be invaluable. This review focuses on
how HIV-1 latency is established at the cellular and mo-
lecular levels, and discusses potential approaches to limit
the establishment of latent reservoirs.
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Figure 1 Cellular pathways of the establishment of HIV-1 latency in CD4 T-cells. (A) Generation of memory CD4 T-cells. Transcriptionally
active CD4+CD8+ (double positive) thymocytes transition to a resting state upon completion of thymopoiesis to become resting naïve CD4 T-
cells. Naïve cells are activated upon encounter with antigen-bearing dendritic cells and undergo rapid clonal expansion. A small fraction of
activated CD4 T-cells survive and transition to a resting state, to become resting memory CD4 T-cells. (B) Infection during deactivation. Infection
of an activated thymocyte can result in active integration or immediate silent integration. Latency can be established upon the transition to a
naïve CD4 T-cell. Infection of an activated CD4 T-cell can result in active integration or immediate silent integration. Latency can be established
upon the transition to a resting memory CD4 T-cell. Note that for immediate silent integration into an activated thymocyte or an activated CD4
T-cell, latency has already been established at the virological level. Due to the rapid deaths of activated cells, only cells which transition to a
resting state represent clinically relevant latent infections. (C) Direct resting cell infection. Infection of a naïve CD4 T-cell, or of a resting memory
CD4 T-cell, results in immediate silent integration, i.e., latency. Note that the relative contributions of the pathways shown here are not known.
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Establishment of HIV-1 latency at the cellular level
Although the pathways leading to latent virus reactiva-
tion can be studied ex vivo, it is not possible to study the
establishment of latency in this manner, since by defin-
ition latency has already been established in any latently
infected cells that can be isolated from an infected indi-
vidual. Nonetheless, studies that investigate which sub-
sets of resting cells harbor integrated virus in patients
can be instructive, since knowledge of cellular physiology
can shed light on how latent infection might have been
established in a given cell type. Latently infected resting
memory CD4 T-cells form the largest reservoir and rep-
resent the reservoir of greatest clinical importance due
to their long lifespan [1]. Although it is likely that
latency can occur in other cell types (reviewed in [1,18-20]),
this review primarily focuses on the establishment of la-
tency in CD4 T-cells.

Multiple CD4 T-cell subsets
Naïve CD4 T-cells are activated by interaction with den-
dritic cells (DC) that present an appropriate antigen. These
activated T-cells then rapidly proliferate and differentiate
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into several subsets of effectors including Th1, Th2, Th17
and inducible regulatory T-cells [21]. While the majority of
effector cells rapidly die, a small minority will survive and
undergo a transition to a resting state as memory CD4
T-cells. Memory CD4 T-cells, which provide for an
enhanced immune response upon future encounter
with the same antigen, are likely derived from all effector
subsets [22]. In addition, memory CD4 T-cells are them-
selves composed of several subsets that probably represent
a gradient of separate maturational stages [23]. Central
memory cells (TCM) migrate to secondary lymphoid organs
where they can be activated by DCs to generate multiple
waves of secondary effector cells. Effector memory cells
(TEM) are likely derived from TCM, and are found in per-
ipheral tissues, where they can act almost immediately as
secondary effectors upon activation at sites of inflamma-
tion. Transitional memory cells (TTM) represent an inter-
mediate cell type that possesses a phenotype intermediary
between TCM and TEM [23-26]. Thus, the term “activated”
CD4 T-cell can refer to either a primary effector cell that
resulted from activation of a naïve cell, or to a secondary
effector cell that resulted from activation of a memory cell.
Similarly, the term “resting” CD4 T-cell can either refer to
a naïve cell or to a memory cell. Resting cells can be distin-
guished from activated cells by their small size, low RNA
content, non-cycling status, and lack of activation markers
such as CD69, CD25 and HLA-DR [27].

Infection during deactivation vs. direct infection of resting
cells
HIV-1 latency can arise in CD4 T-cells from infection of an
activated effector cell that undergoes a reversion to a rest-
ing state during the process of memory cell generation
(referred to herein as “infection during deactivation”), or
from infection of a resting cell (direct resting cell infection),
as illustrated in Figure 1. If latency is established during de-
activation, then latent virus should be found mainly in
memory cells. Conversely, direct infection of resting cells
could result in latent virus being present in either naïve or
memory cells. These pathways are not mutually exclusive.
Latency can also be established during the deactivation
process associated with thymopoiesis (discussed below),
which would also result in latently infected naïve T-cells.
Infection of resting CD4 T-cells is inefficient due to

many factors including low CCR5 expression [28], cyto-
skeletal barriers [29], limiting levels of deoxynucleoside
triphosphates (dNTPs) [30,31] due to SAMHD1 [32,33],
and inefficient nuclear import and integration [30,34]. In
vitro, direct infection of naïve CD4 T-cells is less effi-
cient than direct infection of memory CD4 T-cells
[35,36]. This is because naïve cells have low to undetect-
able levels of CCR5 expression [28,37,38]; fusion is also
less efficient in naïve cells [39], and cortical actin dy-
namics are lower compared to memory cells [40].
Several studies have examined the distribution of HIV-
1 provirus in resting CD4 T-cells from peripheral blood
and lymphoid tissues of patients. While some reports
identified integrated DNA only in memory cells [41],
most others have shown that memory cells constitute
the major reservoir but that naïve cells harbour lower
provirus levels [35,38,42-46]. In one recent study of
patients on suppressive therapy, 98% of all provirus-
containing CD4 T-cells were memory cells (of these,
52% were TCM, 34% were TTM and 14% were TEM), and
only 2% were naïve cells [45]. In simian immunodefi-
ciency virus (SIV)-infected rhesus macaques, most
infected cells identified during early infection (i.e. the
time of reservoir formation) were found to be resting
CD4 T-cells [47]. Furthermore, cytokine/chemokine rich
microenvironments in lymphoid tissues can aid infection
of resting cells [48-51], and chemokine treatment of
resting cells can lead to the establishment of latency
in vitro [3,52,53]. It is, therefore, possible that the contri-
bution of direct resting cell infection to the establish-
ment of latency is greater than is commonly appreciated.
Given that HIV-1 preferentially infects activated CD4 T-
cells [30,34], coupled with the ongoing generation of
memory cells, the consensus is that infection prior to or
during deactivation is the major route of establishment
of latency, although this remains an unresolved issue.

Routes of latency establishment: in vivo models
SIV-infected macaques receiving suppressive antiretro-
viral therapy are now excellent models to better under-
stand the role of tissue reservoirs, sanctuary sites, viral
dynamics in response to therapy, and in vivo testing of
eradication strategies (reviewed in [54]). Humanized
mouse models of HIV-1 latency are also useful and in-
clude severe combined immunodeficient humanized
thymus/liver (SCID-hu Thy/Liv) mice [55], NOD/
SCID-gamma chain null (NSG) bone marrow-liver-
thymus (BLT) mice [56,57] and Rag2−/−γc

−/− mice [58].
In SCID-hu (Thy/Liv) mice, latent infection is estab-
lished during thymopoiesis, leading to generation of la-
tently infected naïve T-cells. Thymopoiesis mirrors the
generation of memory T-cells, since transcriptionally
active immature CD4+CD8+ thymocytes enter a quies-
cent state upon maturation to naïve T-cells (Figure 1A).
Therefore, the establishment of latency during thymo-
poiesis [55] is an example of latency arising from
infection during deactivation. Latent virus was also
identified in purified resting CD4 T-cells [57] and in
naïve lymphocytes [56] of infected BLT mice, and in
central memory CD4 T-cells of infected Rag2−/−γc

−/−

mice [58]. Collectively, these studies suggest that both
infection during deactivation and direct infection of
resting cells likely contribute to the establishment of
latency in vivo.
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Routes of latency establishment: in vitro models
Several primary cell latency models have been estab-
lished (for detailed comparisons see [59-63]). Some of
these models involve infection of activated CD4 T-cells
that are allowed to return to a resting state through vari-
ous culture conditions [64-69], with latency established
in 1% to 75% of cells depending on the system. Several
other models involve direct infection of either untreated
or chemokine-treated resting CD4 T-cells [52,70-72] and
result in up to a few percent of cells becoming latently
infected, reflecting the preferential infection of activated
cells. Taken together, these models demonstrate that
both pathways can give rise to latency under appropriate
conditions.
One report described the establishment of latency in

multiple subsets of CD34+ hematopoietic progenitor
cells (HPCs) derived from either bone marrow or umbil-
ical cord blood [73]. In this model, purified HPCs are
infected shortly after isolation and latency is established
within a few days, in a manner analogous to direct infec-
tion of resting CD4 T-cells. Although the detection of
HIV-1 DNA in HPCs from patients on suppressive
highly active antiretroviral therapy (HAART) is contro-
versial [74-77], it is clear that latency can be established
in HPCs in vitro [73,75] (reviewed in [78]). While a la-
tently infected HPC could theoretically give rise to other
types of latently infected cells in vivo, including CD4 T-
cells, it is unlikely that the virus would remain in a latent
state during HPC differentiation [75].
Finally, a number of reports have described models of

latency establishment at a population level in CD4 T-cell
lines, including Jurkat [79-84], SupT1 [85,86] and Molt-4
[81] cells. The establishment of latency in proliferating cell
lines implies that latency might be established in some
fraction of infected, activated CD4 T-cells, even in vivo
(included schematically in Figure 1B). However, the short
lifespan of activated cells in vivo [87] implies that any such
latent infections would be clinically irrelevant. Having
examined how latency is established in terms of cellular
physiology, we now turn our focus to the molecular level.

Molecular mechanisms of the establishment of HIV-1
latency
The mechanisms associated with latency, particularly its
maintenance and reactivation, have been extensively
reviewed (for recent reviews see [63,88-91]). These
mechanisms include transcriptional interference, insuffi-
cient levels of transcriptional activators, the presence of
transcriptional repressors, epigenetics, nucleosome posi-
tioning, insufficient Tat activity, blocks to mRNA spli-
cing or nuclear export, cellular microRNA (miRNA),
and homeostatic proliferation of latently infected cells.
While each of these is known to be involved in the
maintenance of latency, here we discuss which of these
mechanisms have been shown to promote viral entry
into latency (summarized in Table 1). Homeostatic pro-
liferation is an important mechanism of survival of rest-
ing CD4 T-cells that can be induced by homeostatic
cytokines including IL-7 and IL-15 [92]. Since its role in
maintaining latently infected cells occurs, by definition,
after latency has been established, and in keeping with
the focus of this review, homeostatic proliferation is not
discussed here as a mechanism of establishment of
latency.

Transcriptional interference
HIV-1 preferentially integrates into the introns of ac-
tively expressed genes in CD4 T-cell lines [93,94], and
both activated and resting primary CD4 T-cells that are
infected ex vivo [95-97]. Initial studies in the Jurkat-
based J-LAT system found that integration into both het-
erochromatin [79,98] and highly expressed genes [98]
was associated with latency. Proviruses in resting CD4
T-cells from patients on HAART were also shown to be
integrated into highly expressed genes, with no prefer-
ence for orientation relative to the host gene [99]. A
consequence of integration into regions of high tran-
scriptional activity is transcriptional interference, a
process whereby transcription that originates at one pro-
moter can interfere with transcription at another
(reviewed in [100,101]). One study found that conver-
gently oriented integration resulted in transcriptional
interference that silenced HIV-1 gene expression in a
TNF-α-reversible manner [102], and similar findings
were obtained in a Jurkat latency establishment model
[68]. Another study found that transcriptional interfer-
ence was responsible for latency in Jurkat and primary
CD4 T-cells [103]. Transcriptional interference was also
recently linked to the establishment of latency following
viral integration into highly expressed genes in Jurkat
cells, and the authors showed a role for chromatin re-
assembly factors in the maintenance of latency via tran-
scriptional interference [104]. Finally, transcriptional
interference contributed to the establishment of latency
in a primary cell model, in which latent but not active
proviruses had an orientation bias with respect to the
host gene [97]. Although it is difficult to differentiate be-
tween roles for transcriptional interference in the estab-
lishment versus the maintenance of latency [81,104],
most evidence suggests that both can occur depending
on the host cell chromosomal context.

Limited availability of transcription factors
A hallmark of quiescent lymphocytes is the low availabil-
ity of transcriptional activators, either due to cytoplas-
mic sequestration, or regulation of protein levels or
activity. This includes the transcription factors NF-κB
and NFAT, which recruit histone acetyltransferases [63]



Table 1 Mechanisms of latency establishment

Mechanisms associated with
latency

Evidence for a role in establishing latency in:

Cell line modelsa Primary cell modelsa

Transcriptional interference Yesb [68,102,104] Yes [97]

Limiting transcription factors Yes [81,84,106]* Yes [81]

Limiting P-TEFb ?c Yes [69,109]

Transcriptional repressors ? ?

Histone deacetylation Yes [113] Yes [69]

Nod [81]

Histone methylation Yes [111,112,114,115] Yes [69]

DNA methylation No [81] ?

Nucleosome positioning Yes [117] ?

Insufficient Tat activity Yes [82,83,113,114,121] Yes [69]

Insufficient mRNA nuclear export ? Yes [3]

Insufficient mRNA splicing ? Yes [4]

miRNA ? ?

Homeostatic proliferation ? ?
a Only studies that explicitly examined the establishment of latency are included.
b Yes: This mechanism has been shown to influence the establishment of latency.
c ?: The effects of this mechanism on the establishment of latency have not been studied.
d No: This mechanism has been shown to not influence the establishment of latency.
* In [106] transcription factors may not be limiting, but altered the establishment of latency.
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and aid transcription initiation, and are critical for viral
transcription. Both NF-κB and NFAT are sequestered in
the cytoplasm in the absence of activation signals, in
part due to the protein Murr1 in the case of NF-κB
[105]. In one study, the establishment of latency in Jur-
kat cells was found to result from low levels of active
NF-κB at the time of infection, and only cell lines with
low basal levels of NF-κB activity supported the estab-
lishment of latency. Furthermore, the induction of NF-
κB nuclear translocation by pre-treatment of Jurkat cells
with phorbol myristate acetate (PMA) or prostratin, or
of primary cells with phytohemagglutinin (PHA),
strongly inhibited the establishment of latency [81]. An-
other group found that Sp1 or κB site mutations (κB
sites can be occupied by both NF-κB and NFAT) in the
5’ long terminal repeat (LTR) led to higher levels of
latency [84]. In a model of latency establishment in
CD34+ HPCs, nuclear levels of NF-κB were low at the
time of infection but were increased upon stimulation
and subsequent reactivation of latent virus [73].
It has recently been reported that the establishment of

latency in a polyclonal population of Jurkat reporter cells
was regulated by an AP-1 binding site in the 5’ LTR
[106]. Deletion of this site severely limited the establish-
ment of latency. Conversely, extension of this site from
4 to 7 nucleotides (as found in HIV-1 subtypes A and C)
had no effect on initial latency levels but resulted in sig-
nificantly greater levels of latency after several weeks of
culture, likely due to lower rates of spontaneous reacti-
vation of latent viruses carrying the 7 nucleotide
sequence [106]. While this study does not necessarily
provide evidence for a role of AP-1 in the establishment
of latency, it suggests that variations in interactions in-
volving transcription factors can have profound effects
on the establishment of latency. Finally, it has been
hypothesized that immunosuppressive cytokines includ-
ing IL-10 and transforming growth factor beta (TGF-β)
might indirectly aid the establishment of latency by re-
ducing levels of T-cell activation [107], although this
remains speculative.

Limited availability of elongation factors
The elongation factor P-TEFb is composed of Cyclin T1
and CDK9, and converts promoter-proximally paused
RNA polymerase II complexes into efficient elongating
complexes [90]. In many cell types P-TEFb is seques-
tered in the cytoplasm in a complex containing 7SK
snRNA, HEXIM1, and other components [108], and a
study using a primary cell latency model found that low
P-TEFb levels contributed to latency establishment [69].
However, a recent study found that P-TEFb availability
in both naïve and memory CD4 T-cells is regulated by
tight control of Cyclin T1 levels (by proteasome-
mediated proteolysis and microRNA regulation) and
CDK9 T-loop phosphorylation (where only Thr-186-
phosphorylated CDK9 is active), and not by the 7SK
snRNA complex. The authors also showed that levels of
Cyclin T1 and Thr-186-phosphorylated CDK9 decreased
sharply during the transition of activated CD4 T-cells to
central memory cells, during which time latency was
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established [109]. Thus, multiple mechanisms of tran-
scriptional activator insufficiency can contribute to the
establishment of latency.

Chromatin modifications
Epigenetic modifications dictate which proteins can
interact with chromatin, and alter the physical structure
of chromatin [110]. Proviral silencing after single-round
infection of both Jurkat cells [111] and microglial cells
[112] was shown to be mediated by the histone H3
lysine 9 (H3K9) methyltransferase Suv39H1 and its part-
ner HP1γ. Entry into latency in Jurkat cells was
associated with CBF-1-dependent histone deacetylase
(HDAC)-1 recruitment to the 5’ LTR [113], and H3K9/
27 trimethylation [114]. Furthermore, CBF-1-dependent
H3 deacetylation, followed by Suv39H1- and HP1α-
dependent H3K9/27 trimethylation, led to the establish-
ment of latency in primary cells [69]. Interestingly, CBF-1
is expressed in resting CD4 T-cells but is strongly downre-
gulated upon T-cell activation [113]. Most recently, this
group has demonstrated a role for the H3K27 methyl-
transferase EZH2, a component of the polycomb repres-
sive complex 2, in establishing latency in Jurkat cells
[115]. However, a different study found no evidence for
histone deacetylation in the establishment of latency, since
pre-treatment of Jurkat cells with the HDAC inhibitor val-
proic acid did not reduce the number of latently infected
cells that were established [81].
DNA methylation at CpG islands is a repressive epi-

genetic modification that can inhibit transcription factor
binding and can recruit HDAC-2. The available evidence
suggests that DNA methylation is a later silencing event
that is more important for the maintenance of HIV-1
latency than for its establishment [89,116]. Additionally,
one study showed that pre-treatment of Jurkat cells with
the DNA methylation inhibitor 5-azacytidine did not in-
hibit the establishment of latency [81]. Finally, the SWI/
SNF chromatin remodeling complex BAF, but not PBAF,
was recently shown to facilitate the establishment of
latency through repressive nucleosome positioning on
the 5’ LTR. BAF knockdown resulted in fewer latent
infections in both Jurkat and SupT1 T-cell lines, without
affecting levels of productively infected cells [117]. The
evidence therefore supports a major role for epigenetic
histone modifications and chromatin remodeling leading
to provirus silencing and the establishment of latent
infection.

Insufficient Tat activity
Since Tat is required for high-level viral transcription,
due to recruitment of a super elongation complex to the
5’ LTR [118,119], it is perhaps unsurprising that insuffi-
cient Tat activity can lead to the establishment of la-
tency. In one study, resting CD4 T-cells from treated
patients were enriched for attenuated Tat variants [120].
Mutations that attenuated Tat activity led to higher levels
of latency establishment in both Jurkat [82,113,114] and
primary cell [69] models. Treatment of Jurkat cells with
Tat at the time of infection led to a subsequent decrease
in the frequency of latently infected cells [82]. Further, ex-
pression of Tat in trans prevented the silencing of actively
infected cells [114] and strongly inhibited the establish-
ment of latency in Jurkat cells [82]. Finally, random fluc-
tuations in Tat concentrations at the single cell level were
shown to influence the entry of HIV-1 into latency, as
shown in mathematical models and experimentally
[83,121]. Based on these findings, proteins that modulate
Tat activity might be expected to impact the establishment
of latency, as has been suggested for Tat acetylation via
SirT1 [121].

Post-transcriptional mechanisms
Multiply spliced mRNA was found in the nucleus, but not
in the cytoplasm, of resting CD4 T-cells from HAART-
treated patients. This block was shown to be due to low
levels of polypyrimidine tract binding protein (PTB), the
overexpression of which rescued multiply spliced mRNA
nuclear export and virus production [2]. However, it was
unclear whether limiting PTB levels contributed to the
initial establishment of latency. In a primary cell model in
which resting cells are directly infected after chemokine
treatment [52], it was shown that multiply spliced mRNA
accumulated in the nucleus but not the cytoplasm, in the
absence of other transcripts or viral proteins [3]. In an-
other resting cell model of latency establishment, [70] a
block to mRNA splicing was recently identified, whereby
latently infected cells produced Gag protein (at levels
1000-fold lower than in activated cells) but only barely de-
tectable levels of Env. This result was reflected at the
mRNA level, since unspliced transcripts were ~100-fold
more abundant than singly spliced transcripts and
~10,000-fold more abundant than multiply spliced tran-
scripts [4]. Together, these primary cell models highlight
two post-transcriptional blocks that contribute to the
establishment of latency. In addition, miRNA regulation
of viral protein expression has been associated with
latency, and several of the miRNAs that have been impli-
cated in this process are expressed in resting cells but are
downregulated upon T-cell activation. Although miRNAs
can contribute to the maintenance of latency, as shown
both in vitro and ex vivo [122,123], the potential role of
miRNAs in the establishment of latency remains un-
known [124].

Silencing of active infection vs. immediate silent integration
It is unclear whether latency is established by the silen-
cing of active infection or by the immediate silent inte-
gration of viral DNA (Figure 1B-C). Several in vitro
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studies have examined these alternatives, and additional
information can be gathered from close analysis of cell
culture models of latency establishment. First, it should
be noted that evidence in favor of one route of latency
establishment does not necessarily exclude the other.
Some Jurkat [114] and primary cell [67,69] models
involve cell sorting for active infections that are then
cultured and allowed to become latent, demonstrating
that the silencing of active infections can lead to the es-
tablishment of latency. In these reports some viral pro-
teins were mutated to prevent their expression, resulting
in reduced cytotoxicity, which might have allowed cells
to survive long enough in order for silencing to occur.
One study provided evidence for silencing of active
infections in both CEM and primary cells, without the
use of cell sorting and with replication-competent
virus [125].
Several other groups have provided evidence for im-

mediate silent integration. For example, J-LAT cells were
derived by sorting GFP-negative cells shortly after infec-
tion with a reporter construct [79]. Additional studies in
CD4 T-cell lines have provided evidence for silent inte-
gration leading to latency, sometimes by showing reacti-
vation of latent virus as early as one day post-infection
[81,82,86,106,126]. Data from a primary cell model in
which cells are infected during the transition to a resting
state suggest that latency occurred largely by silent inte-
gration [66]. Finally, all published latency models that
depend on direct infection of resting cells have shown
immediate silent integration [3,70-72]. Thus, silencing of
active infection, and immediate silent integration, both
contribute to the establishment of latency in vitro, and
direct infection of resting cells consistently results in im-
mediate silent integration. If, however, the majority of
latent infections in vivo arise from infection prior to or
during cellular deactivation, the pathway of latency es-
tablishment is likely to depend on how far along the de-
activation process a given cell is at the time of infection.

Prospects for inhibition of the establishment of latency
Depletion of the latent reservoir is a major goal of the
field, and this might be complemented by strategies
aimed at limiting the establishment of latent infections.
Whether the establishment of latent reservoirs can be
inhibited in patients is an important issue in the quest
for a functional cure [127]. This has been examined
in vitro, through studies in which treatment of Jurkat
cells with exogenous Tat protein led to a reduction in
the establishment of latency [82]. A novel approach has
recently been proposed which would involve interfer-
ence with chemokine-induced establishment of latency.
In this scenario, treatment with chemokine receptor
antagonists or engineered ‘dominant negative’ chemokines
would inhibit the establishment of latent infections that
result from direct infection of resting cells [128]. Several
clinical studies have observed that very early initiation of
HAART can lead to the establishment of smaller latent
reservoirs than are observed if treatment is started later
[7,45,129-132]. It remains to be determined whether early
treatment with compounds that counteract pathways of
the establishment of latency merits clinical consideration.
Conclusions
The establishment of HIV-1 latency is a complex process,
which likely results from the convergence of multiple
mechanisms (Table 1). The relative importance of these
mechanisms is probably dependent on the physiological
state of the cell undergoing infection (Figure 1). Are find-
ings in cell line models of establishment of latency repro-
ducible in primary cell models? Although they often
are, it also appears that not all mechanisms involved in
the establishment of latency play a role in cell lines. For
example, it has been proposed that epigenetic silencing
might have a greater role in cell lines than in primary
cells [71], since several other mechanisms of establish-
ment of latency, including limited availability of tran-
scription factors, P-TEFb, and the nuclear export factor
PTB are mainly associated with quiescent cells and
might be less important in actively dividing cells. Are
different mechanisms of silencing required depending
on the pathway of latency establishment, i.e. infection
during deactivation vs. direct resting cell infection, or
latency resulting from silencing of active infection vs.
immediate silent integration? Although this is an open
question, the evidence suggests that these different
routes of establishment of latency can all occur under
different circumstances.
It is not yet known whether the establishment of

latency might differ between memory CD4 T-cell sub-
sets, for example in TCM compared to TTM. Additionally,
little is known about how latency can be established in
other cell types, which might exhibit important differ-
ences compared to CD4 T-cells. It is also unclear how
well the different models of latency establishment recap-
itulate this process in patients. Which primary cell
model(s) might reflect the in vivo establishment of
latency most accurately? The answers to this and related
questions await a better understanding of the mechan-
isms and routes of latency establishment under in vivo
conditions. Finally, the feasibility of pharmacological
interventions that would limit the establishment of
latent reservoirs, and any potential clinical benefits this
might entail, remain important unanswered questions.
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