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Abstract

Background: Bone tissue is the main element of the human skeleton and is a
dynamic tissue that is continuously renewed by bone-resorbing osteoclasts and
bone-forming osteoblasts.

The bone is also capable of repairing itself and adapting its structure to changes in
its load environment through the process of bone remodeling.

Therefore, this phenomenon has been gaining increasing interest in the last years
and many laws have been developed in order to simulate this process.

Results: In this paper, we develop a new law of bone remodeling in the context of
damaged elastic by applying the thermodynamic approach in the case of small
perturbations.

The model is solved numerically by a finite difference method in the
one-dimensional bone structure of a n-unit elements model.

Conclusion: In addition, several numerical simulations are presented that confirm
the accuracy and effectiveness of the model.

Keywords: Numerical simulation, Thermodynamic approach, Small perturbations
hypothesis, Bone remodeling, Bone density, Damage, Fatigue, Osteocyte, Elasticity,
N-unit elements

Introduction
Bone is a living material that constantly replaces old tissue with new in a process called
remodeling. It is also able to respond adaptively to its environment [1,2].

The bone remodeling process replaces approximately 20% of bone tissue annually; in
healthy adults, bone remodeling occurs in a balanced, highly regulated manner in five
phases: activation, resorption, reversal, formation, and quiescence as shown in Figure 1
[3-5].

This process is assumed to repair the microdamage and maintain bone quality; and
also occurs continuously with each cycle lasting 4 to 7 months [6].

Over the past, the progress made in understanding bone remodeling, through two
groups: phenomenological approach and thermodynamic approach, has been truly
spectacular.

The thermodynamic approach was initiated first by chemists and was applied to con-
tinuum mechanics by Eckart and Biot around 1950. Furthermore, this approach was
adopted by introducing state variables [7,8] and thermodynamic potential which allows
to define associated variables chosen for the study of the phenomenon [9].
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Figure 1 Bone remodeling sequence.
- J

Many theoretical and experimental works have been published emphasizing the im-
portance of applying this thermodynamical approach to a bone structure [10-13].

In this study, we adopt thermodynamic approach of irreversible processes to get a
new law of bone remodeling taking into account the bone density described by the law
of Mullender et al. [14] and the damage evolution in the bone proposed by Martin [15].

The found equation is solved by the finite difference method (FDM) in the one-
dimensional bone structure of a n-unit elements model.

Finally, we present some examples of numerical simulation results.

Fundamental assumptions
In order to construct a general framework for the description of the bone remodeling

process, the following simplified assumptions are made:

1) The bone is considered as a linear-elastic, isotropic and inhomogeneous material.
2) The external mechanical loading acts as a stimulus for bone remodeling.

3) The n-unit elements model is applied to the damaged-bone structure in the one-
dimensional case.

4) The small perturbations hypothesis (displacements and their time and spatial
variations are small).

5) The state coupling of damage with elastic strain.

6) The remodeling processes can be considered isothermal, adiabatic and without
internal generation of heat.

7) The decoupling of the thermodynamic potential is assumed, such that:

v =y(e,D, ¢) = y.(e.D) + y,(¢)

With:

¥.(€°, D) is the thermodynamic potential depending on the elastic strain tensor €° and
the damage variable D.

¥, (¢) is the thermodynamic potential depending on the bone density ¢.
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Thermodynamic approach

The thermodynamics of irreversible processes allows the modeling of different materi-
als behavior. This is accomplished by defining the state variables and the state potential
and also the dissipation potential [16].

The general theory of adaptive damaged-elastic materials and general framework of
continuum thermodynamics is considered to find a new law of bone remodeling
[10,17].

A general definition of the thermodynamic forces associated with the internal vari-
ables is given by:
oy (

Ak:pa—‘/k k:1,27)

Where conjugate forces A; associated with internal variables (Vj, k=1,2,...) by speci-
fication of the thermodynamic potential (..., V) as shown in Table 1 [17,18].

Within the hypothesis of small strains and small displacements, the state variables,
observable and internal, are chosen in accordance with the physical mechanisms of
deformation and degradation of the bone as follows [18].

Observable variables:

— ¢ is the total strain tensor associated with the stress tensor o.
— T is the temperature associated with the specific entropy s.

Internal variables:

— £° is the elastic strain tensor associated with the stress tensor o.
— D is the damage associated with a variable Y.
— ¢ is the bone density associated with the bone remodeling variable R.

Table 2 summarizes the set of variables introduced [18].
We assume a bone remodeling variable, which is characterized by:

R > 0 in the case of the formation phase.
R = 0 in the case of the equilibrium phase.
R < 0 in the case of the resorption phase.

We postulate the existence of a thermodynamic potential from which the state laws
can be derived [16,18,19].
The state potential: y = (e, D, ¢)

Table 1 Thermodynamic variables

State variables Associated
Observable Internal variables
T s

€ o

Vk Ak
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Table 2 Chart of thermodynamic variables

State variables Associated
Observable Internal variables
T s
€ o
& o
Y
¢ -R

We assume the following decoupling:

¥ =v.(,D) + y.(¢)

With:
V(€% D) is the thermodynamic potential depending on the elastic strain tensor and
the damage variable.

¥,(¢) is the thermodynamic potential depending on the bone density.
The associated variables are defined by:

5 _ 9Y,
YfpaD (1)
_ ay,

The second law of thermodynamics imposes a restriction on dissipation which can be
represented in terms of the Clausius-Duhem inequality [7,16,18] :

0:é—p.y>0 (3)

The development of the Clausius-Duhem inequality:
We note that:

: A, . e . 1 dy, o1 e
Py :pafj : € +palD.D—|—p a‘/;,) .¢ with e=¢
and
oY,
o= p. 2 @)

(the thermo-elasticity law) [17]
Inequality (3) may be written :

Lo a‘r//e . Je al//e 3 al//r 3
0:é pase.s paD.D pa¢.¢20
Using the previous equations (1) (2) (4), we obtain:
~Y.D+ R.¢=0 (5)
Discussion:

In the case of constant damage: D = 0
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The inequality (5) gives +R.¢>0
In the resorption area:
¢§O and R<0

=> 4R.¢=0

In the formation area:
$>0 and R>0

=> +R.¢>0

Equilibrium area (dead zone):
$p=0and+R.¢p=0

=> +R.¢=0

We can conclude that the inequality (5) is verified in accordance with the law of bone

remodeling as shown in Figure 2 [20].

The conservation of energy equation:
The first principle of thermodynamics gives:

pé=0:+r—divqg (6)

[17,21]
With:

— e is the specific internal energy.
— r is the internal heat source.

— q is the heat flux.

We replaced pé by the expression derived from e =y + T.s [17,21]

pé=py+pTs+pTs (7)
& do/dt
formation
dead zone
B e
0 1
stimulus
resorption
Figure 2 Law of bone remodeling.
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and p ¢ by its expression as a function of the state variables and the associated

variables.
py=0:€+YD— R (8)

We introduce the specific heat (capacity) defined by:

C= Taa—; [16,17] and taking into account Fourier's law g = —k. ngiT [17]
We obtain:

divG = —k.div(gradT) = —k.AT (9)
Using the previous equations (6) (7) (8) (9), we can get:

YD—R$+pTs+p.Ts=r+kAT (10)

Assumptions:
The classical heat equation corresponds to a process: [17]

— Without internal generation of heat created by the external sources: r=0.
— With adiabatic evolution: k<. AT = 0.
— With isothermal transformation: 7'= 0 Therefore s = %.T = 0 Then s=0.

Equation (10) may be written:
YD—-R¢=0
Then,

_ D
¢

We have: Y = —Y

Where

1 .. .
Y=-E&:¢ (12)
2

(the strain energy release rate) [17]
We have also: p.y, =3.(1 — D).E.€ : & (the strain energy) [17] and the equivalent

constraint o,, is written by 0., = p %‘i’f = (1 — D).E.£° (The thermo-elasticity law)

Then,

, Oeq

_ 13

*“1_-DVE (13)
With: o,, = 0 in the one-dimensional case.
Using the previous equations (12) (13), equation (11) may be written:

a? D

R:_iz.—i (14)
2E(1-D)P §
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The Young's modulus of the bone which is an isotropic material and inhomogeneous

is expressed as:
E=(1-D).E, with Ey = c.¢" [22,23]
¢=100 and o =3 are two constants characteristic of the bone

Then,
E=(1-D).c.¢*

Equation (14) may be written:
o’ D 1
R(pD) = - ——5. ——
2¢ (1-D)" ¢%¢
This equation represents the new law of bone remodeling developed by applying the

thermodynamic approach in the context of damaged elastic.
In this study, we introduce the law of damage developed by Martin [15] which shows
that the damage in human cortical bone can grow exponentially until the fatigue failure

[15,24,25].
The evolution law for the damage is expressed as:

D = Dy.¢f* Then, 2 = D= f;D

With:
fa : the fatigue life of the bone devoid of the remodeling [26]

D, : the initial damage

¢ : the time
Finally, the new law of bone remodeling may be written as:

oy D 1

KD == DP9

Numerical resolution
The new law of bone remodeling (Equation 15) was solved numerically by dividing it

into three parts:

2
1. a constant 02—{”
: D
2. a damage function o7 1

3. a function of bone density s

In this study, we use the law of bone density proposed by Mullender et al. [14]:

o k=m i Sk
% S <— ) (16)

=T - S,ef
ot £ A
With :
- d)min < ¢ = Qsmax

—  ¢pun 18 the density of completely resorbed bone
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Figure 3 Model geometry with n-unit elements.

—  ®uax 18 the maximum density defined for a compact bone

— s a positive constant related to the reaction time of bone tissue (constant of bone
remodeling)

— 1<i<n

— ¢, density of bone tissue of element i

— m (m < n) is the total number of osteocytes in the solid

— I (I < k <m) corresponds to the series of numbers of the elements containing an
osteocyte

— Sk represents the density of deformation energy in I

— S, reference stimulus value

— pis a parameter reflecting the intensity of the stimulus cell

— d is the normalization factor limiting the area of influence of osteocyte

— d(i,[y) is the distance between the centers of geometric element i and the element I;

We discretize into n-unit elements a bone fragment and we apply a compressive
force evenly distributed over the various units (Figure 3) [23,27].

To solve the previous equation (16), we use the method of finite difference with an
implicit scheme and the fixed point method [23,27,28].

Table 3 Values of the parameters used during the numerical simulations

Data Symbol Values Units
Maximum density Grrax 175 g/cm?®
Minimal density Genin 001 g/cm?
Initial density b0 0.6 g/cm?®
The step of time At 5107 ut
The total force F 10 N

The distance between 2 centers d 25 mm
Reference stimulus value Sref 0.04 MPA
The fatigue life of the bone fy 3 years
n-unit elements of the bone fragment 50

m (m < n) is the total number of osteocytes in the bone fragment.
Constantsa =33 =05D,=08c=100Tt=1.
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We obtain:
n+1 n k=m a(ity) Sk
: L=7) e 7 | —/—F-3S§
1 ref
At e ¢€V"
0
¢ = ¢0

Results and discussion

i=1,2,n

We simulated the case of a uniform distribution of the osteocyte cells, and of another

heterogeneous case. The values of the parameters used during the numerical simula-

tions are given in Table 3 [23,28].
Numerical results are shown in Figure 4.

Evolution of the variable of bone remodeling
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Figure 4 Evolution of the variable of bone remodeling, (a) case of a uniform distribution of the
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Figure 4 shows the temporal evolution of the variable of bone remodeling in the case
of a uniform distribution of the osteocyte cells (n=m=50), and of another heteroge-
neous case (nzm with m=30 in the central package of the osteocytes).

The curves consists of three key periods. The first period of the curves corresponds
to the resorption phase, where the variable of the bone remodeling was negative. The
second period exhibits the formation phase, where the variable of the bone remodeling
was positive. The third period defined as the interval between the resorption phase and
the formation phase, which the variable of the bone remodeling reached zero.

The resorption phase takes approximately 18 days, which is then followed by an equi-
librium phase that can last for up to 10 days and finally by the formation phase from
17 to 35 days. This is in agreement with results from the literature [6,29,30].

By comparing the curves in Figure 4 to the graph proposed by Terrier et al. [20], we
see a good agreement. Furthermore, the curves that are found have a nonlinear shape.

Conclusion
In this paper, we proposed a thermodynamic approach in small perturbations for bone
remodeling process.

The adopted model takes into consideration both the bone density and the damage
and gives a new law of bone remodeling. Then, the governing equation of the process
was solved by the finite difference method in the one-dimensional bone structure with
n-unit elements model.

The numerical results obtained are in accordance with the experimental results found
in the literature.
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