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Abstract

Purpose: To estimate the effects of heterogeneity on tumour cell sensitivity to
radiotherapy combined with radiosensitizing agents attributable to differences in
expression levels of Epidermal Growth Factor Receptor (EGFr).

Materials and methods: Differences in radiosensitivity are not limited to cells of
different cancer histotypes but also occur within the same cancer, or appear during
radiotherapy if radiosensitizing drugs are combined with ionizing radiation. A
modified biologically effective dose (MBED), has been introduced to account for
changes in radiosensitivity parameters (α and α/β) rather than changes in dose/
fraction or total dose as normally done with standard biologically effective dose
(BED). The MBED approach was applied to cases of EGFr over-expression and cases
where EGFr inhibitors were combined with radiation. Representative examples in
clinical practice were considered.

Results: Assuming membrane EGFr over-expression corresponds to reduced
radiosensitivity (αH = 0.15 Gy-1 and αH/βH = 7.5 Gy) relative to normal radiosensitivity
(α= 0.2 Gy-1 and α/β= 10 Gy), an increased dose per fraction of 2.42 Gy was obtained
through the application of MBED, which is equivalent to the effect of a reference
schedule with 30 fractions of 2 Gy. An equivalent hypo-fractionated regime with a
dose per fraction of 2.80 Gy is obtained if 25 fractions are set. Dose fractionations
modulated according to drug pharmacokinetics are estimated for combined
treatments with biological drugs. Soft and strong modulated equivalent
hypo-fractionations result from subtraction of 5 or 10 fractions, respectively.

Conclusions: During this computational study, a new radiobiological tool has been
introduced. The MBED allows the required dose per fraction to be estimated when
tumour radiosensitivity is reduced because EGFr is over-expressed. If radiotherapy
treatment is combined with EGFr inhibitors, MBED suggests new treatment strategies,
with schedules modulated according to drug pharmacokinetics.
© 2012 Pedicini et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Background
Recently, radiobiology has been transformed thanks to new knowledge concerning cel-

lular activation processes in response to an external stimulus. This knowledge has led

to the identification of promising new drug therapies called "targeted therapy” [1].

Epidermal growth factor receptor (EGFr) has emerged as a central molecular target

for modulation during cancer therapy. The correlation between over-expression of

EGFr and clinically aggressive malignant disease suggested that EGFr was a promising

target for several epithelial tumours, which represent approximately two thirds of all

human cancers. Furthermore, the favourable interaction profile for EGFr blocking

agents combined with radiation has stimulated clinical trials in diverse anatomical sites

including head and neck, colorectal region, pancreas and lung [2], where molecular in-

hibition of EGFr signalling in combination with radiation represents a highly promising

area [3,4].

Therefore, new radiobiology studies have focussed on identifying correlations be-

tween radiosensitization and biological agents. However, these effects have not been

fully integrated into current radiobiological models [5-8]. One such model commonly

used in clinical practice, is the BED obtained from the LQ model [9], given by the fol-

lowing equation (proliferation ignored):

BED ¼ D⋅ 1þ d
α=β

� �
; ð1Þ

where α and β represent intrinsic and repair cell radiosensitivity, respectively, d repre-

sents the dose per fraction and D is the total dose delivered during the radiation treat-

ment. The BED is considered a “biological dose” delivered by a particular combination

of dose per fraction and total dose to a given tissue, characterized by a given α/β ratio,

and is commonly used to equate or compare various fractionation schedules [10].

However, eq. (1) demonstrates that the same number of cells killed – the equivalent

effect – could be obtained equating the BED not only for schedules with different num-

bers of fractions and various doses per fraction, but also for schedules where the dose

per fraction is increased if a reduction in radiosensitivity results (i.e. α or β is reduced).

This could be applicable for subsets of cells that over-express EGFr, representing a

source of heterogeneity closely connected with the repopulation rate and intrinsic

radiosensitivity. However, the heterogeneous population of EGFr expression cannot be

represented by a single equation of tumour control probability (TCP), as it is intrinsic-

ally linked to a group of tumours with identical characteristics [11].

Furthermore, equations considering the radiation response that take into account dif-

ferent compartments of sensitivity within tumours [12] or a Gaussian distribution of in-

dividual radio sensitivities [13,14] cannot be used because various levels of

radiosensitivity coexist in the tumors or in the statistical sample.

Therefore, during this computational study, a new mathematical interpretation of

radiosensitivity parameters that are normally used in standard radiobiological models

(i.e. as functions of EGFr expression) is proposed using simple examples.

The final aim of the current study is to provide an additional mathematical tool that

can be used to carry out radiobiological analysis, taking into account the radioresis-

tance effects due to EGFr over-expression and/or radiosensitization effects due to EGFr

inhibitors when they are combined with radiation.
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These examples are not intended to simulate a particular type of radiotherapy treat-

ment, but are designed to demonstrate a general effect.

Materials and methods
During the current analysis two separate groups of patients with various levels of EGFr

expression were considered. For each of the EGFr groups, various values for the para-

meters α, β, were considered. This approach allowed radiobiological analysis to be con-

ducted in cases where differences in radiosensitivity occurred within the same tumour

after combined treatments comprising radiation and radiosensitizing EGFr inhibitors

[4,15,16]. In the latter case, various levels of radiosensitivity did not coexist, but they

followed one another according to the concentration of radiosensitizing drug present

during the radiotherapy session (Figure 1).

Modified BED: Effects due to a change in EGFr expression levels EGFr expression has

been assessed through intensity of staining (i.e., absent, minimal, moderate, or intense

staining) in clinical practice [17]. During the present analysis, normal and high expres-

sion levels of EGFr (i.e. below and above 50% staining) were distinguished. The sub-

script H was added to indicate high EGFr expression.

The BED for the EGFr group with high expression may be indicated as:

BEDH ¼ n⋅d⋅ 1þ d
αH=βH

� �

Here, because αH and βH are lower than α and β (reduced radiosensitivity), the num-

ber of cells killed with the same dose per fraction (d) and the number of fractions (n)

were reduced with respect to standard radiosensitivity conditions. Therefore, the fol-

lowing inequality arose:

α⋅BED > αH ⋅BEDH

To obtain the same effect with an equal number of fractions, a change of dose/frac-
tion is necessary. We introduce the MBED:

MBED ¼ n⋅δ⋅ 1þ δ

αH=βH

� �
ð2Þ

where the dose δ, which refers to αH and βH, has the effect equivalent to d, which refers

to α and β, so that:

α⋅BED ¼ αH ⋅MBED ð3Þ

In eq. (3) the LHS provides a measure of treatment effect under standard conditions
of radiosensitivity, while the RHS represents the same effect achieved under non stand-

ard conditions of radiosensitivity.
Figure 1 Schematic representation of radiosensitivity variability within a single tumour due to the
presence of varying concentrations of radiosensitizer drugs (Light gray= high radiosensitivity, dark
gray= low radiosensitivity).
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From eq. (1), eq. (2) and eq. (3):

α⋅d⋅ 1þ d
α=β

� �
¼ αH ⋅δ⋅ 1þ δ

αH=βH

� �
;

and solving for δ

δ ¼ � αH
2βH

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αH
2βH

� �2

þ d⋅
α

βH
þ β

βH
d

� �s
ð4Þ

Therefore, the MBED distinguishes between changes in biological effect due to irrep-
arable and/or reparable damage variations, rather than changes due to dose/fraction or

total dose variations. A reduction in radiosensitivity due to increased membrane EGFr

expression [11,18] implies equivalence between treatments by increasing the dose per

fraction with an equal number of fractions.

Furthermore, to obtain isoeffective treatments with a different number of fractions m

(m < n hypo-fractionation, m > n hyper-fractionation) from eq. (3), the following results:

δ ¼ � αH
2βH

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αH
2βH

� �2

þ n⋅d
m

⋅
α

βH
þ β

βH
d

� �s
ð5Þ

Modified BED: Effects due to biological drugs

Combined treatment comprising radiation and radiosensitizing EGFr inhibitor drugs

requires the daily dose that achieves the same effect without drugs to be calculated.

This will result in a calculation of the daily radiosensitivity conditions induced by the

drug compared with standard radiosensitivity.

On the basis of a preclinical assessment, we propose a method to estimate the daily

radiosensitivity when radiotherapy treatment is combined with biological drugs. Subse-

quently, the MBED method is applied to assess the changes required in terms of dose

fractionation when such daily radiosensitivity is considered.

During the first phase, survival curves obtained with various concentrations of a

monoclonal antibody (mAb) EGFr inhibitor were selected from the literature [16,18].

From these curves, using a polynomial regression, the corresponding values of α and β

were calculated (Figure 2(a)). However, the drug concentrations reported in these
Figure 2 First phase to investigate the effects EGFr over-expression on radiosensitivity of Head and
Neck cell lines. Data from literature [16,18,19] demonstrate the correlation between EGFr over-expression
and reduced cellular radiosensitivity. This situation is indicated by an upward shift of the cell survival curve
in the line over-expressing EGFr compared with normal EGFr expression. A polynomial regression allows
radiosensitivity parameters corresponding to various surviving curves to be calculated.
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studies do not correspond to the effective drug concentrations used during the com-

bined treatment with radiation every day of treatment (Figure 2(b)).

Therefore, during the second phase, the daily in vivo concentration of EGFr inhibitor

drug was calculated from its pharmacokinetic curve and drug dosage [20]. Referring to

these daily concentrations, it is possible to interpolate plausible corresponding curves

of survival fractions, obtaining the researched values of α and β using a new polynomial

regression (Figure 3).

Subsequently, assuming a daily in vivo radiosensitivity, eq. (3) with a variable con-

centration of a radiosensitizing drug according to the weekly dosage can be written

as follows:

n⋅d⋅ αþ β⋅dð Þ ¼ nw⋅ δ1⋅ α1 þ β1⋅δ1ð Þ þ :::::þ δ5⋅ α5 þ β5⋅δ5
� �� �

where nw (nw=m/5) represents the number of weeks of overall treatment and the

numbers 1,2,. . .,5 indicate the day of the week. In compact form, we can write:

n⋅d⋅ αþ β⋅dð Þ ¼ nw⋅
X5
i¼1

δi⋅ αi þ βi⋅δi
� �

;

Therefore, an equivalent fractionation with the same number of fractions is obtained
using the following:

d⋅ αþ β⋅dð Þ ¼ 1
5

X5
i¼1

δi⋅ αi þ βi⋅δi
� �

; ð6Þ

From eq. (6), a solution with equal dose for each day is:

δ ¼ �
P
i
αi

2
P
i
βi
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
αi

2
P
i
βi

0
@

1
A

2

þ 5⋅d⋅ αþ β⋅dð ÞP
i
βi

vuuut ð7Þ

In addition, eq. (6) highlights the possibility of solutions with a dose adapted to the
daily radiosensitivity. By equating the effect day to day during the week, for the ith day

we obtain:

d⋅ αþ β⋅dð Þ ¼ δi⋅ αi þ βi⋅δi
� �

;

Figure 3 Second phase to estimate the effects on radiosensitivity of variable concentrations of
mAb EGFr inhibitor in Head and Neck cell lines. Surviving fraction curves corresponding to the daily
concentrations of mAb from pharmacokinetics curves [20] are obtained by interpolation. The following
concentrations of EGFr mAb inhibitor are obtained: 100, 61, 37, 22 and 13 nM. The corresponding
polynomial regression curves provide α/β= 5, 9, 12, 14 and 15 Gy (with α= 0.2 Gy-1), with respect to
untreated cells with α/β= 16 Gy (α= 0.2 Gy-1).
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therefore:

δi ¼ � αi
2βi

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αi
2βi

� �2

þ d⋅
α

βi
þ β

βi
d

� �s
ð8Þ

Eq. (8) leads toamodified fractionationmodulatedaccordingtothepharmacokineticsof the

drugcombinedwithradiation.Foraschedulewithdifferentnumbersoffractions:

δi ¼ � αi
2βi

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αi
2βi

� �2

þ n⋅d
m

⋅
α

βi
þ β

βi
d

� �s
ð9Þ

This solution leads to a modulated hypo-fractionation if the number of weeks is less
than the standard fractionation (vice versa for the hyper-fractionation).

Eq. (7) and eq. (9) represent dose values that have the same effect. However, as

in the drug is also absorbed by normal tissue cells, these cells will show increased

radiosensitivity. Therefore, modulated dose fractionation with a reduced dose of ra-

diation corresponding to higher radiosensitivity could lead to a reduction in harm-

ful effects.

This proposal could be verified through clinical trials.

Results
This section discusses results from representative examples occurring in clinical prac-

tice. Schedules with the equivalent effect of 30 fractions of 2 Gy/fraction (assumed as a

reference standard regime) were calculated. To analyze an increase in radiosensitivity, a

change in α or β, and consequently a change in α/β, has been assumed to simplify the

calculations without losing generality.

For examples 3, 4 and 5, substantial changes in β alone has been adopted, assuming

that data were obtained from the polynomial regressions of curves depicted in Figure 3.

Of note, the unchanged α, β (without polynomial regression) and the fractionation

schemes assumed in these examples are plausible but should not be considered as

recommendations for real clinical situations.
Figure 4 Weekly dose/fraction as a function of radiosensitivity for modified fractionations with (a)
same number of fractions as the reference fractionation (Example 1) and (b) hypo-fractionation with
one week less than reference fractionation (Example 2).



Figure 5 Dose/fraction as a function of daily radiosensitivity for modulated fractionations with (a)
same number of fractions as the reference schedule (Example 3: 6 weeks), (b) hypo-fractionation
with one week less than the reference schedule (Example 4: 5 weeks) and hypo-fractionation with
two weeks less than the reference schedule (Example 5: 4 weeks). The grey lines represent
radiosensitivity corresponding to the pharmacokinetics curves of absorption for the EGFr mAb inhibitor.
Abbreviations: (1) α/β= 5 Gy; (2) α/β= 9 Gy; (3) α/β= 12 Gy; (4) α/β= 14 Gy; (5) α/β= 15 Gy.
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Dose fractionations are presented for examples demonstrated in Figure 4 and Figure 5.

These figures present the extent of dose for fraction as a function of weekly or daily

radiosensitivity; tables 1 and 2 present numerical results.

Example 1

In this example a selection of patients that should be treated with the reference sched-

ule (consisting of 30 fractions of 2 Gy/fraction on PTV) was assumed. Patients in the

first subset (G1) were considered to have normal EGFr expression on clonogenic

tumour cells, with radiosensitivity corresponding to α= 0.2 Gy-1, β= 0.02 Gy-2 (α/β= 10

Gy). In addition, we considered a second subset of patients (G2) as presenting with

EGFr cell membrane over-expression, resulting in a reduction of radiosensitivity with

αH= 0.15 Gy-1, βH= 0.02 Gy-2 (α/βH= 7.5 Gy).

Therefore, with respect to the reference schedule, the effect for the subset G1 would be:

α⋅BED ¼ 0:2⋅30⋅2⋅ 1þ 2
10

� �
¼ 14:4

Owing to the reduction of the α component of irreparable damage, the same schedule
used for group G2 will produce the following effect:

αH ⋅BEDH ¼ 0:15⋅30⋅2⋅ 1þ 2
7:5

� �
¼ 11:4

with a noticeable reduction in the effect of overall treatment.
Table 1 Numerical results for Examples 1 and 2

EGFr expression α(Gy-1) β(Gy-2) α/β(Gy) dex1(Gy) dex2(Gy)

Normal 0.2 0.02 10 2.00 2.33

Over-expressed 0.15 0.02 7.5 2.42 2.80

Abbreviation: dex1 and dex2=doses from MBED for Example 1 and 2, respectively.



Table 2 Numerical results for Examples 3, 4 and 5

Day α(Gy-1) β(Gy-2) α/β(Gy) dex3(Gy) dex4(Gy) dex5(Gy)

Monday 0.2 0.040 5 1.68 1.94 2.31

Tuesday 0.2 0.022 9 1.86 2.18 2.62

Wednesday 0.2 0.017 12 1.93 2.27 2.74

Thursday 0.2 0.014 14 1.98 2.32 2.81

Friday 0.2 0.013 15 1.99 2.34 2.84

Abbreviation: dex3, dex4 and dex5=doses from MBED for Example 3, 4 and 5, respectively.
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To produce the same therapeutic effect for patients in G2 as received by patients in

group G1 (with the same number of fractions taken in the reference treatment), the dose

per fraction should be increased by imposing condition (3). Then, from eq. (4), we obtain:

δ ¼ 2:42Gy

To achieve the same effect on the PTV, 30 fractions of 2.42 Gy/fraction should be
given to compensate for reduced radiosensitivity due to over-expression of membrane

EGFr (Table 1 and Figure 4).

The new schedule will be not equivalent in terms of toxicity to organs at risk (OAR).

Therefore, the plan will require re evaluation of the harmful effects for OARs. In the

opposing situation, that is for an increase of radiosensitivity in the clonogens of G2

compared with G1 (owing to a radiosensitizing drug), one can adopt the same proced-

ure. In such cases, the equivalent effect on the PTV, with the same number of fractions,

will be reached by reducing the fraction dose.

Example 2

For the same subsets of patients used in Example 1, we analyzed a hypo-fractionated

schedule that lasted for one week less for patients in G2, with the same effect as the

standard schedule for patients in G1. In the hypo-fractionation schedule, the number

of fractions was m=5�(nw-1) = 5�5 = 25 fractions.

Applying eq. (5) we obtain:

δ ¼ 2:80Gy

therefore, the hypo-fractionated schedule for patients in G2 will be equivalent to the

standard schedule for patients in G1 if 25 fractions of 2.80 Gy/fraction are given. If

α/β= 10 Gy and a normal radiosensitivity is assumed, we would obtain:

0:2⋅30⋅2⋅ 1þ 2
10

� �
¼ 0:2⋅25⋅d⋅ 1þ d

10

� �
;

from which:

d ¼ 2:33Gy

which would underestimate the dose required to achieve the same effect on the

PTV (Table 1 and Figure 4).
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Example 3

In this example we refer to group G2 having substantial membrane EGFr over-expres-

sion, with αH= 0.2 Gy-1 and αH/βH= 16 Gy (similar estimated α/β values are reported in

the literature [21]). We compare the reference treatment with a combined treatment

comprising radiation and biological drugs that produce an increase in radiosensitivity.

In addition, we assume a weekly drug dosage with a pharmacokinetics curve showing

maximum absorption during the first day of treatment [20]. The weekly radiosensitivity

is assumed to be that described by the set of values reported in Table 2.

The equivalent treatment with the same number of fractions is obtained using eq. (7).

In this case, a constant dose for each day is obtained, equaling the global effect.

δ ¼ 1:88Gy

Subsequently, using eq. (8), a dose modulated according to the drug pharmacokinet-

ics is obtained, equaling the effect for each day of treatment. Results are presented in

Table 2 and Figure 5.

Examples 4 and 5

The equivalent global effect of the reference schedules could be obtained by subtracting

one or two weeks of treatment from eq. (9), with a modulated soft hypo-fractionation

(5 weeks) and with a modulated strong hypo-fractionation (4 weeks), respectively. The

results are presented in Table 2 and Figure 5.

Discussion
During practical applications of radiobiological models, the main difficulty is to decide

which parameter values should be included in individual calculations. It is important to

clarify that population based estimates of the α/β value represent averages, and that

values are likely to vary between and within tumour types. It is clear that the assump-

tion of a single value for α or α/β is a simplification and this could have a considerable

impact on the predictive use of BED when deciding on dose fractionation [22].

However, recent knowledge concerning molecular mechanisms allows new develop-

ments to be explored and provides important information relating to the intrinsic

radiosensitivity and fractionation sensitivity. Cell studies in vitro demonstrate that dif-

ferences in radiosensitivity occur among cell lines derived from different types of

tumours or from the same type of tumour, and during irradiation when combined

treatments using radiation and radiosensitizing drugs are utilised [16,23-25].

These considerations may lead the way for new studies concerning evaluation of α

and β, in which cellular radiosensitivity is modified using known concentrations of

radiosensitizing drugs, as described in Figure 4 and Figure 5.

Therefore, the historical inability to distinguish among effects resulting in differences

in radiosensitivity could be overcome through new knowledge concerning heterogen-

eity [26,27]. These effects are well known from preclinical studies, and could be used to

reduce uncertainties and investigated through clinical trials [28]. The ideal situation

could be to use assay methods to allocate patients to various treatment schedules on

the basis of individual measurements of tumour cell radiosensitivity (for example, due

to varied expression of EGFr) or absorption of drugs. This approach is expected to be

applied in the foreseeable future.
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On the basis of these considerations, a new method to interpret BED expression,

named MBED, was introduced during this computational study to take account of in-

trinsic differences in radiosensitivity.

The requirement to introduce MBED arises because radiosensitivity is usually consid-

ered to be fixed for a cell type and constant during any radiation treatment. For this

reason, α and β are considered fixed values with considerable uncertainty. Therefore, in

the standard use of the BED, the hypothesis that one fractionation is equivalent to an-

other underlies the assumption that the values of α and β are the same: to have the

same effect – resulting in the same number of cells being killed – changing the dose

per fraction, one must alter the number of fractions.

Herein, it is argued that for various values of radiosensitivity, the same number of

cells can be killed with the same number of fractions by varying the dose per fraction.

This requires identification of prognostic parameters such as the over-expression of

EGFr, which allows the radiosensitivity of the individual patient to be classified and the

most appropriate radiation dose fractionation to be identified.

The results of this study demonstrate that for a subset of patients presenting with

EGFr cell membrane over-expression, resulting in reduced radiosensitivity with respect

to a subset of patients with normal EGFr expression of clonogenic tumour cells, the

dose per fraction should be increased to produce the same therapeutic effect with the

same number of fractions taken in the reference treatment.

When radiation is combined with a biological drug that produces an increase in radio-

sensitivity, depending on the drug dosage, the equivalent treatment with the same num-

ber of fractions is obtained by a dose of radiation modulated according to drug

pharmacokinetics.

The dose needs to be increased if the number of fractions is reduced.

In the examples reported herein, the absorption of EGFr inhibitors was considered for

cancer cells alone. In general, cells of normal tissues also absorb the drug. In particular,

EGFr is over-expressed in skin cells. Therefore, the effect of increased radiosensitivity

will affect these cells, and modulated fractionations with a lower dose of radiation corre-

sponding to higher radiosensitivity could lead to a reduction of harmful effects.

With MBED, this study was not intended to implement a finely tuned model based

on accurate data obtained from preclinical analysis. The aim was to demonstrate the

potential of the model and its malleability in terms of including further information

that selective preclinical studies may provide [19].

In addition, previous analyses have depended on the validity of the LQ model, which

has limitations. In particular, the LQ model used during this study does not include the

time factor. In the generalized LQ model [5,10] the temporal factor is affected by differ-

ences in EGFr expression due to its influence on potential doubling time, TD [29-32].

This temporal factor can be particularly important when the MBED model is used to

compare treatment schedules that differ in terms of overall treatment times, tumour

control or acute effects (where time dependent repopulation may be important). The

difference of doubling time between the High EGFr group and the Low EGFr group

identified during the current study will be investigated further in new studies. This dif-

ference in terms of TD can be transformed into an equivalent dose that would be

required to offset the modified proliferation occurring in one day. The value of this

equivalent dose can be taken into account during the previous analysis.
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Overall, in practical applications of the MBED concept, there should be careful con-

sideration of the relevant physical dose variations, the possible range of biological para-

meters and pertinent clinical factors. The prudent clinical oncologist should use MBED

as a guide during clinical decisions rather than as an absolute indicator. The advice of

acknowledged experts in radiobiological modelling should be sought in more compli-

cated clinical situations.

Despite these limitations, the MBED model provides a valid means of accounting for

modulated intrinsic radiosensitivity effects, which is preferable to neglecting them by

using a biologically uncorrected physical dose.

Furthermore, the method is not intrinsically associated with the disease, and can be

applied to any case by integrating traditional treatment plans and improving the overall

radiotherapy performances in combined treatments comprising radiosensitizing drugs.

Conclusion
During this computational study, the MBED method was introduced. The MBED pro-

vides a new tool to estimate the effects of heterogeneity on tumour radiosensitivity and

to assess the dose per fraction required for increased tumour radiosensitivity due to

EGFr over-expression. Where radiotherapy treatment is combined with radiosensitizing

drugs, MBED suggests that the fraction sizes modulated according to drug pharmaco-

kinetics will allow new schedules of dose fractionation to be more effective.

In conclusion, the MBED method could improve overall radiotherapy performances

and be utilised to perform more appropriate radiobiological analysis, particularly when

combined treatment comprising radiation and biological drugs is employed.
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