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Abstract

Background: Elucidating the effects of drugs on solid tumours is a highly
challenging multi-level problem, since this involves many complexities associated
with transport and cellular response, which in turn is characterized by highly non-
linear chemical signal transduction. Appropriate systems frameworks are needed to
seriously address the sources of these complexities, especially from the cellular side.

Results: We develop a skeletal modelling framework incorporating interstitial drug
transport, intracellular signal processing and cell population descriptions. The
descriptions aim to appropriately capture the nature of information flow. The model
is deliberately formulated to start with simple intracellular descriptions so that
additional features can be incorporated in a modular fashion. Two kinds of
intracellular signalling modules which describe the drug effect were considered, one
a monostable switch and the other a bistable switch. Analysis of our model revealed
how different drug stimuli can lead to cell killing in the tumour. Interestingly both
modules considered exhibited similar trends. The effects of important parameters
were also studied.

Conclusions: We have created a predictive systems platform integrating drug
transport and cellular response which can be systematically augmented to include
additional layers of cellular complexity. Our results indicate that intracellular signalling
models which are qualitatively different can give rise to similar behaviour to simple
(and typical) stimuli, and that validating intracellular descriptions must be performed
with care by considering a variety of drug stimuli.

Keywords: Solid tumour, drug effect, transport, intracellular signalling, systems
approach, modelling framework, bottom-up approach.

Background
The need to systematically understand the complex aspects of solid tumours is evident

when one considers the potentially fatal consequences which are associated with solid

tumours growing unchecked. Solid tumours are a highly complex mini-universe in

themselves. They are typically fed by a complex vascular network which provides

blood and nutrients. This vascular network is itself more complex and irregular than

vascular networks in normal tissues. The interstitium (the region of the tumour other

than the vascular network) contains the tumour cells as well as the extracellular

matrix. It is worth pointing out that even such a picture masks important events that
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occur at different time scales. For instance, a growing tumour which is not vascular-

ized, secretes chemicals which eventually lead to its vascularization by the process of

tumour-induced angiogenesis.

The complexity of the tumour environment becomes even more relevant when one

attempts to evaluate systematically the effects of anti-cancer drug on tumours. Differ-

ent drugs such as doxorubicin and paclitaxel have been used (and delivered in different

forms) with the aim of effectively destroying tumour cells. These drugs are typically

injected into the blood stream and enter the interstitium through the capillary wall.

After entering the interstitium they diffuse in the interstitial space, where they may

also bind to albumin or other proteins [1]. The unbound drug may be taken up by

tumour cells, upon which they can act. Clearly, a number of complexities must be con-

sidered when one attempts to develop a mechanistic understanding of the effect of

drug on solid tumours. These include the complex microvasculature as well as the

complex structure of the interstitium [1]. Moreover, it is necessary to understand the

highly non-linear nature of the cellular response in tumours and how this is affected

by the tumour microenvironment [2], including both chemical and biophysical aspects.

Several attempts have been made to model mathematically the effect of drug on solid

tumours [3]. These include compartmental models describing the tumour as single or

discrete compartments [4,5], transport models focusing primarily on blood flow and

drug diffusion in tumours [6,7] and pharmacokinetic and pharmacodynamic models

including varying levels of description of the intracellular response. Recent computa-

tional work has begun to focus on combining interstitial transport with drug uptake by

cells [8]. While all these models provide varying levels of insights, there are no models

that offer a transparent systems level description of the constituent elements, with a

dynamical systems basis for the description of the cellular signalling.

In this paper we take the first steps towards developing an integrative modelling fra-

mework which combines blood flow and interstitial transport, while also systematically

accounting for the complexity of the relevant signal transduction in tumour cells. In

the last decade, considerable amounts of interest and research activity have focussed

on unravelling the intracellular and intercellular signal transduction, under the broad

umbrella of Systems Biology. The approach of systems biology is especially relevant in

the current context as many aspects of the cellular response to drugs in tumours are

not systematically understood, and these (along with other aspects of cellular commu-

nication and interaction) may play important and unexpected roles in the actual cellu-

lar response. A better understanding of these complex interactions could also pave the

way for refining treatment options. Indeed, an increasing awareness of the need for a

“systems pharmacology” approach is being advocated [9], which will require a mechan-

istic description of tumour response, as well as intracellular biochemical interactions,

with additional elements such as variability or patient specific information built into

this.

Therefore, the aim of this study is to formulate a spatially distributed model to

address the effects of anti-cancer drugs on tumour tissues, with a particular focus on

the complexities of cellular response. This is achieved by integrating interstitial trans-

port and cellular response, the latter presenting a considerable challenge given the

complexity of cellular signalling and the high degree of nonlinearity in cellular signal

processing. A unique feature of our approach is to account for the important aspects
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of intracellular response in a manner which is transparent and modular, so that the

models can be systematically refined and augmented. This is very important as it offers

the opportunity for further expansion, including incorporation of the powerful tools of

systems biology in the proposed modelling framework. Our framework may thus be

viewed as one which bridges the gap between pharmacodynamic type modelling and

detailed mechanistic systems biology modelling, while being firmly rooted in dynamical

systems approaches. Using the models presented here, analyses can then focus on

understanding the effects of potentially important contributing factors, such as the nat-

ure of the intracellular signalling, the microenvironment and how this differs from

tumour to tumour, the effect of intrinsic stochasticity as well as cellular variability.

Methods
Modelling strategy

It is recognized that the problem under consideration features a genuinely complex

system, and hence any model building attempt must make choices regarding what fea-

tures are central. In the work presented here, some explicit descriptions of the cellular

processes are included, expanding on the modelling description of Eikenberry [8].

However, a conundrum we must face is that despite a concerted and focussed effort

leading to modelling advances, many mechanistic gaps in understanding the apoptosis

network (the key step in cell killing) remain. In addition, mechanistic elucidation of

the role of signalling in apoptosis was performed in normal rather than tumour cells.

Therefore, it is important to incorporate cellular effects at an appropriate level, so that

the key features of the cellular and tissue dynamics are included without having to

wait for all the relevant cellular networks to be fully understood. This informs our

modelling approach: we use a combination of coarse grained descriptions of the cellu-

lar signalling dynamics, but also examine these alongside prototypical detailed models

(discussed briefly) to see if there is any essential difference between the two.

The modelling framework presented here is intended to be used as a skeletal systems

platform for gradual expansion to include further cellular/flow complexity. Thus data

fitting is not attempted at this stage. Our model descriptions for cells are continuum

based. This is to allow the additional tools available for continuum type analysis to be

utilised as further complexity is added in the future (note the comments in Hinkel-

mann et al. [10] regarding discrete models).

Model assumptions

The model is based on the description of drug distribution and cells in a fixed cylindri-

cal tumour cord (Figure 1) where the cells are assumed to be stationary and alive initi-

ally. In this setting, the tumour interstitium is represented as a cylindrical annulus,

with the inner radius (RC) corresponding to the capillary radius and the outer radius

(RT) for the tumour cord. To simulate drug distribution in the interstitium, it is

assumed that drug is injected directly, either at the entry point of the tumour or at

some other location in the body, each resulting in a specific drug concentration at the

capillary wall, which is the inner boundary of the tumour cord. Different forms of drug

infusion and input drug concentrations are examined.

The main assumptions of the model are (i) Cells are initially alive and present at uni-

form density in the tumour-cord (ii) There is minimal cell movement in the tumour
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cord (iii) Prior to injection of the drug, conditions are uniform inside the tumour cord

(iv) Cellular variability, stochasticity, and effects of cell-to-cell interaction (mechanical

and chemical) and cell-cycle are ignored.

Extracellular drug transport

The extracellular drug distribution in the tumour cord is determined by a balance of

diffusion, cellular uptake, and cellular release (pumping out) into the interstitium and

in addition the binding to, or unbinding from proteins such as albumin, similar to [8].

The convective effects in the interstitium are neglected, as is customary, and spatial

variation of the drug in the tumour cord is assumed to occur in the radial direction

only. Incorporating all these factors, the dynamics of the extracellular concentration is

governed by

∂E
∂t

= kd∇2E + ct

(
V2I
k2 + I

− V1E
k1 + E

)
− k3E + k4B (1)

where E refers to the extracellular drug concentration (a function of radial position

and time), kd is the diffusion coefficient of the drug in the interstitium while ct is the

cell density. The two terms in the equation which involve the cell density describe the

pumping out of intracellular drug concentration (denoted by I) and the cellular uptake

of the extracellular drug concentration. Both these terms are described by sigmoidal

saturating functions. The last two terms refer to the binding to and unbinding from

proteins such as albumin, present in the interstitium. B denotes the concentration of

bound extracellular drug.

The equation for the dynamics of the bound drug is given by

∂B
∂t

= kdb∇2B + k3E − k4B (2)

Figure 1 Diagrammatical representation of the tumour cord model (right) and the levels of
description incorporated in the modelling framework (left).
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where kdb is the diffusion coefficient of the bound drug.

The non-flux condition is applied for both free and bound drug concentrations at

the outer boundary, whereas at the inner boundary the well-known Kedem-Katchalsky

equation [11] is specified,

FE = K (S − E (rc)) + K1 (3)

which prescribes the flux FE at the capillary wall as the sum of two terms. The first

term is proportional to the difference between the drug concentration in the capillary

S, and the extracellular concentration at the edge of the interstitium (E(rc)) and

depends on the permeability of the capillary wall (K). The second term describes a

convective flux through the capillary wall, where the transmural velocity is described

by Starling’s Law.

Similarly an equation describing the intracellular concentration of drug can be writ-

ten, which depends on the pumping in and pumping out of drugs, similar to [8]

(though the possible effects of drug sequestration will also be examined later).

∂I
∂t

=
V1E
K1 + E

− V2I
K2 + I

(4)

Tumour cell density

The equation governing the tumour cell density describes a balance between growth

and death of cells. Although a more comprehensive description of birth and death of

cells can be achieved in population balance formalism, this approach is computation-

ally highly demanding and will be difficult to handle as additional cellular complexity

is added. Here cell densities are described by ordinary differential equations. The

ODEs are logistic equations [12], and naturally describe the growth and death, with a

balance leading to a steady state. These equations naturally incorporate saturating

growth (or equivalently non-linear death rates) leading to a finite steady state. The

equation governing the cell density is given by

∂ct
∂t

= act − bc2t (5)

Note that the logistic equation admits two steady states ct = 0 and ct = a/b, as long

as a > 0. The latter steady state is the stable steady state. However, when a < 0 the

only biologically relevant state is the zero steady state.

Eqn (5) can arise in two somewhat different ways giving the same essential result:

linear growth rate (a1ct) and a quadratic death rate (a2ct + bct
2). The net growth rate is

given by (a1 - a2)ct - bct
2, which is exactly of the above form if a1 > a2. This description

is adopted here. A second way in which a very similar equation results is if the growth

rate is a saturating function of cell density and equal to Act/(A1 + ct), where A is the

maximal growth rate, and the death rate is given by Bct. Here A, A1 and B are all con-

stants. Writing out the equation for ct in terms of growth and death gives

∂ct
∂t

=
[
(A − A1B) ct − Bc2t

]/
(A1 + ct) (6)

It is clear that this equation has a very similar form to Eqn (5) (except for the

denominator) and in fact the qualitative property of the steady states (the dynamical
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systems aspect of interest) is essentially identical to that described above. Thus the

logistic equation is adopted here, as it includes growth and death with saturating

effects. It can be noted that if a1 < a2 Eqn (6) has only one physical steady state which

is ct = 0.

Intracellular signalling

The modelling of intracellular signalling processes forms a substantial core of systems

biology. Given the complexity of signalling, it is a non-trivial issue as to what the

appropriate level of description should be, more so since there are many missing biolo-

gical details in the signalling and many parameters unknown. At the same time there is

an urgent need to start accounting for known and nontrivial aspects of the signalling,

so that a predictive platform can be built for examining the effects of different cellular

(intracellular or even intercellular) features. An appropriate degree of complexity is

necessary for systematic evaluation and analysis of data.

As described earlier, the strategy adopted here is to start with simpler descriptions,

and increase the degree of complexity gradually. In doing so, it is also important to

represent the nature of the information flow correctly, and ensure that the qualitatively

important features of detailed models must be accounted for. Sample detailed models

in the literature are used to check the validity of the simplified models, especially for

the type of drug signals encountered by cells.

In modelling the intracellular processes involving drugs, the main process of interest

is drug induced apoptosis. Here, there are two key features that any model, detailed or

simplified, must reflect. Firstly there must be some threshold effect present, and sec-

ondly and even more importantly, the “switch” to apoptosis must be realized in an

irreversible way. Based on the systems biology literature, two types of switches are

usually observed -monostable and bistable switches. Both switches are widely observed

in cellular signalling generally but have very different signal transduction properties;

monostable switches are completely reversible, while bistable switches can exhibit irre-

versibility and this has led them to be used in the modelling of irreversible processes.

Bistable processes have indeed been used in modelling irreversible cell fate decisions

leading to apoptosis [13,14]. Such modelling uses positive feedback in the caspase net-

work (which is known to biologically exist) as a source of generating bistability. In the

case of apoptosis in particular, it is not at all obvious that the irreversible fate (cell

death) is necessarily or even reasonably (at the cell fate decision level) reflected as a

steady state: it is very possible that an irreversible decision can lead to the triggering of

critical cellular events from which there is no turning back. Thus the irreversibility

could be reflected as a simple irreversible reaction, which is triggered only under very

special circumstances [15]. Noting this, two models are employed here: (1) a sequential

interconnection of a monostable switch and a downstream irreversible reaction effect,

and (2) a bistable switch. The latter has self-contained threshold behaviour and irrever-

sibility. It is noted that a combination of a bistable switch with an irreversible down-

stream reaction could also occur, with the bistable switch providing the threshold, and

the downstream reaction providing the irreversible nature of the response (discussed

later).

The equation of the monostable switch is given below. The upstream signal which is

the input to this module is the intracellular drug concentration, and the model
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employs a Hill-type non-linearity. The range of response is normalized.

dR
dt

= k
(

In

kh + In
− R

)
(7)

where n denotes the Hill coefficient, kh an associated constant in the Hill term, and k

is a parameter representing the time scale of the response. The above equation simply

depicts the element R responding in a non-linear fashion to the input I. When the Hill

exponent n is increased the steady state input-output response approaches a switch-

like function. The above model is one concrete representation of a (monostable) switch

like function: for each input value, there is only one steady state. We mention that

monostable switch responses could also be realized through other means in signalling,

for instance opposing enzymes acting at saturation, or the combination of stage-wise

effects in a signalling cascade. However for our purposes all these models exhibit very

similar input-output characteristics.

The response drives a second reaction which describes the activation of a species R1

from its inactive form.

dR1

dt
= kf R (1 − R1) − krR1 (8)

Note that in the above, under basal conditions R1 is very small and can only reach

appreciable levels when the R level is high enough (for a substantial period of time). In

our model cell death is triggered if R1 reaches a particular threshold Ro, and this is

reflected at the population level in an irreversible manner. Note that for R1 to be

above the threshold, the intracellular drug concentration must drive the upstream sig-

nal (R) above the threshold, and keep it there for a sufficient period of time.

In the above model, R represents a typical downstream intermediate element in the

signalling cascade, while R1 represents a signal responsible for directly triggering apop-

tosis (and may be regarded as the output of the cascade).

It is worth also pointing out that for both the monostable and bistable modules, our

signalling models are essentially minimal, but include a key intermediate step connect-

ing input to response. This is done so that the qualitative dynamics is correctly cap-

tured, and also so that additional complexity or other factors can be appropriately

incorporated.

The second model adopted is a sample bistable model which arises from a positive

feedback. While many similar models with minor variations have been examined and

simulated, (some employ Hill-type cooperative effects and others do not), the model

chosen here has saturated degradation with positive feedback [16]. The upstream signal

plays a role in catalyzing this positive feedback pathway (either independently or

together with other existing enzymes). This module describes the concentration of the

active form of a protein R which involves the activation and deactivation reactions, as

well as positive feedback from the active form of the protein in further activating inac-

tive protein. Here again, the total concentration of the protein is normalized to be 1.

The governing equations are

dR
dt

=
Vf (1 − R)

Km1 + (1 − R)
+

(
p + qI

)
kfbR (1 − R) − VrR

Km2 + R
(9)
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where Km1 and Km2 are Michaelis Menten parameters. kfb is a kinetic parameter

which parametrizes the feedback strength. Note that the upstream signal I enzymati-

cally acts to trigger the switch. The constants p and q serve to set the basal level and

dynamic range of the module. The factor p describes the feedback present under basal

conditions in the network (i.e. even in the absence of the stimulus I): even in the

absence of the stimulus, the feedback results in a bistable circuit. This allows for the

fact that even after the removal of a stimulus, an irreversible change in output could

occur, and is exactly the way in which bistable signal processing (in the caspase net-

work) leading to irreversible decision making in apoptosis is invoked [13].

The bistable switch has the feature that when the signal I crosses a threshold value, a

sharp increase in the steady state of R is observed (see Appendix for more details). It

should be noted that other variants of bistable modules examined all possess essentially

similar features and input-output characteristics. In all these cases an upstream signal

leads to the triggering of the bistable switch. While the equations of different modules

are different in details, the key dynamical systems aspect of interest is in fact very simi-

lar (and manifests itself in very similar qualitative behaviour of these modules to sig-

nals of the kind encountered here). Here the output of this reaction drives the same

activation of R1 just as before.

Cell death is triggered by a threshold of R1 being crossed. Note that the irreversibility

could arise, simply by the threshold (in the bistable module) being crossed for enough

time by the upstream signal. Thus even in the case where the upstream signal is transi-

ent, a different steady state of the bistable module can be attained, signifying an irre-

versible response. In contrast to the monostable switch, the effect of the crossing of a

threshold in R1 on cell population density is modelled in a reversible manner. Thus in

this case the irreversibility arises in the bistable switch itself: if it is permanently

switched on (for instance even in a transient signal), then this will be reflected as cell

death at that location in the population level.

Suitable representative parameters are employed for both switch modules. Although

detailed quantitative comparison between the two models is not attempted (given their

different dynamics), we seek to examine if the qualitative differences in these models

are reflected at the population level. Therefore the parameter values for the two mod-

els are chosen in such a way that the threshold (of the intracellular drug concentra-

tion) for switching on is the same in both, and that they have comparable time scales.

The latter is achieved by ensuring that the time to killing is the same for a reference

signal value in both models.

The only remaining point is how to represent cell death at the population level. Not-

ing that the cell population density is described in a continuous, rather than discrete

form, the triggering of the intracellular threshold is incorporated by a sharply (or com-

pletely) reduced growth rate at the population level. From the dynamics of the logistic

model, it is clear that if the growth rate becomes sufficiently low (i.e. a1 < a2), even-

tually all the cells will perish. The same effect could also be achieved by increasing the

death rate by adding an extra linear term. Both cases gave essentially similar results.

Importantly, in the computation, this threshold effect is implemented in a unidirec-

tional (irreversible) way in the monostable model but in a reversible way in the bistable

model.
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All the above equations are written in dimensionless form. The non-dimensionaliza-

tion has been performed as follows: the spatial co-ordinate is non-dimensionalized by

the outer radius, time by a typical diffusion time scale; the intra and extra cellular con-

centrations by reference concentrations which have representative values (0.001 μg/

mm3 for extracellular, 1 ng/105 cells for intracellular), and the tumour cell density is

non-dimensionalized by a typical value (106 cells/mm3). Likewise the input signal

(denoted by S) is non-dimensionalized by the same representative factor (0.001 μg/

mm3). Model parameters are determined as follows: based on non-dimensionalization,

the size of the domain and time scales, parameters are derived either directly or indir-

ectly from the literature, for the drug doxorubicin. The tumour growth parameters are

chosen to reflect both the range of steady state, as well as the appropriate time scale.

In the intracellular dynamics, the threshold to activate cell death and the time scale of

the activating pathways are of special interest, and the variations of these parameters

are examined here. Essential model parameters used in the present study are sum-

marised in Tables 1 and 2. We emphasize that many of our essential conclusions are

not strongly dependent on the choice of parameters.

Model simulations were performed in MATLAB by suitably discretizing the diffusion

in the radial direction in a standard way using finite differences [17], and solving the

resulting set of ODEs using the solver ode15 s. The effect of the discretization was

checked by doubling the mesh points. Further the simulation results in a few sample

cases were also checked with simulations performed in COMSOL.

Results
We present the results of the analysis of our model by considering and contrasting the

results for multiple variants of the intracellular signal transduction considered. In the

first case, constant levels of drug input at the capillary wall are examined, which pro-

vides important information about how the drug signal information arrives, and is pro-

cessed by the tumour cells. Following this, more complex forms of drug input are

analysed, specifically in the form of a single bolus, followed by multiple bolus injec-

tions. The effects of other important auxiliary parameters are also examined. A related

discussion with some analytical insight is presented in the Appendix.

Table 1 Parameters and values used in extracellular drug transport and uptake.

Parameter Symbol Value Reference

Free DOX diff. coefficient kd 0.568 mm[2]/hr [2]

Bound DOX diff. coefficient kdb 0.032 mm[2]/hr [2]

Rate of transmembrane transport V1, V2
(V1 = V2)

0.28 ng/(105 cells)/min [4]

Michaelis constant for transmembrane transport k1 0.219 μg/ml [4]

Michaelis constant for transmembrane transport k2 1.37 ng/(105 cells) [4]

Free DOX-albumin binding rate k3 3000 hr-1 [2]

DOX-albumin dissociation rate k4 1000 hr-1 [2]

Initial tumour cell density Ct,0 106 cells/mm3 [2]

Tumour cell growth rate a1 0.5 day-1 Estimated

Saturation constant in logistic equation b 0.02592 mm3/(105 cells)/day Estimated

Tumour cell natural decay rate a2 0.24 day-1 Estimated

Tumour capillary radius RC 10 μm [2]

Tumour cord radius RT 120 μm [2]

Doxorubicin (DOX) is chosen as the anti-cancer drug for parameterization purpose.
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We consider direct injections of drug, or liposomal release, at the entry to the

tumour cord. Drug input is represented by the drug concentration in the capillary,

through the Kedem-Katchalsky boundary condition. For constant input drug concen-

trations, results shown in Figure 2 suggest that when the drug concentration is rela-

tively low, no tumour cells are destroyed. Thus even with a constant stimulus of drug,

the system evolves to a steady state where the cells essentially remain intact. On the

other hand, as the drug concentration crosses a threshold, this results in the eventual

triggering of cell death throughout the domain. Simulations with even higher levels of

input reveal tumour cells being destroyed faster. These results are easy to rationalize

since if the threshold level of drug signal required to trigger apoptosis is not crossed,

no drug-induced death will occur. On the other hand, when the threshold is crossed,

all cells will die, due to the fact that drug is infused at a constant rate and also because

no element of variability or stochasticity is assumed in the model. This trend, seen for

Table 2 Parameters and values used in intracellular signal transduction modules.

Parameter Symbol Value Reference

Bistable switch

Michaelis Menten constants Vf 27 hr-1 [6]

Michaelis Menten constants Vr 0.459 hr-1 [6]

Michaelis Menten constants Km1 100 [6]

Michaelis Menten constants Km2 0.01 [6]

Kinetic parameter mediating feedback strength kfb 2.927 hr-1 [6]

Basal parameter in the bistable switch p 0.7 Estimated

Parameter mediating input regulation in the bistable switch q 0.3(ng/(105 cells))-1 Estimated

Monostable switch

Kinetic parameter reflecting the time scale of the response k 0.432 hr-1 Estimated

Associated constant kh 1 ng/(105 cells) Estimated

Hill coefficient n 10 Estimated

R1 protein activation rate kf 3.6 hr-1 Estimated

R1 protein degradation rate kr 0.144 hr-1 Estimated

R1 Threshold for apoptosis switch R1,th 0.9 Estimated

Figure 2 Temporal profiles of cell density at specific spatial locations for persistent infusion for
different dose intensities. (a) Bistable switch case, (b) Monostable switch case. It is noted in the current
and following figures that multiple plots might overlay one another at cell density equal to 1. In each of
the plots, the red line indicates the level of cell density (spatially uniform) for a below threshold dose,
showing that no killing results in this case.
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both the signalling variants, is intuitive, noting that for constant levels of stimuli, the

signalling behaves like simple switches with threshold effects.

The case of a bolus (pulse) injection, which is a more realistic form of injection is

considered in Figure 3. Following a pulse injection, the extracellular drug concentration

increases everywhere in the interstitium. In the early stages the extracellular concentra-

tion has a decaying spatial profile, but as time progresses, it starts to flatten out while

revealing a small spatial variation. The results also demonstrate how, as the injection

period is passed, the extracellular concentration starts to decline (Figure 3(c)). In the

transient period of elevated extracellular drug concentration, the drug is pumped into

the cells and is able to activate the intracellular pathways, and eventually induce apop-

tosis. This latter aspect is clearly seen in Figure 3(d) where the tumour cell density in

the region near the wall starts decreasing and eventually becomes zero. However, there

is a farther region where no cell death occurs, suggesting that a bolus is able to induce

cell apoptosis in a well defined spatial region. The simulation results shown in Figure

3 were performed with the bistable switch.

In order to examine the effects of the pulse strength (for fixed time) and the differ-

ences between monostable and bistable cases, a series of simulations were performed

(Figure 4). The simulation results in Figure 4(a), representing a temporal snapshot of

the cell density at 12 hours (for a 2 hour bolus injection), reveal that depending on the

strength of the pulse injection the following trend is observed. For relatively weak

strengths, no effect of the drug on the tumour cell density profile is seen. As the

strength of the injection is increased, cell density begins to decline in a region adjacent

to the capillary wall. Further increasing the strength of the injection leads to a broad-

ening of the region where cell death occurs, and eventually as the pulse strength

becomes high enough, cell apoptosis can be triggered throughout the domain. This is

because, even though the activating signal is transient, it can trigger an irreversible

Figure 3 Representative plots of spatial and temporal distributions of drug and cell density
following a pulse injection for bistable switch. Upper panel: Intracellular and extracellular drug
distribution in the tumour cord under pulse injection, S = 4, T = 1.75 h, profiles shown at (a) 30 min, (b) 12
h. Bottom left: (c) time course of intracellular drug distribution at various radial positions. Bottom right: (d)
spatial profile of cell density at 12 h, revealing cell death and living regions in the front and rear of the
tumour cord.
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change by its interaction with a bistable switch. The qualitative aspects of such interac-

tion are discussed in Seaton et al [18]. Figure 4(b) shows the corresponding results

with the monostable switch. Here again, the same basic trend can be observed, except

that there is a relatively narrow region in parameter space which leads to partial cell

death. This in turn can be explained by the fact that owing to the intrinsic dynamics

the bistable switch is a more sensitive differentiator between transient signals than a

monostable switch. Another point worth noting is the fact that in both the monostable

and bistable cases, the width of the cell death zone is a strongly non-linear function of

the injection level.

Numerical simulations were also performed for different combinations of pulse

height and infusion time, while keeping their product (i.e. total amount of drug) fixed.

Results shown in Figure 5 suggest that when the infusion time is too short or too long,

little cell death occurs. There is an intermediate infusion time at which cell death

reaches the highest level. Again similar trends are observed in the monostable and

Figure 4 Spatial profiles of cell density at 12 h for 2 h injection of different pulse heights. (a)
Bistable switch case, (b) Monostable switch case.

Figure 5 Spatial profiles of cell density at 12 h for different fractionations. (a) Bistable switch case, (b)
Monostable switch case. As the pulse injection time is reduced, the region of killing shrinks in both cases,
and in fact killing is eliminated in the monostable case.
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bistable cases, except that a broader spectrum of the cell death zone is observed in the

monostable case. These results may be explained as follows. For a fixed amount of

drug, if the infusion time is high, then the pulse height becomes low and no cell apop-

tosis is triggered, noting that even in a constant step input, no cell death is found for a

sufficiently low level of infusion (Figure 2). On the other hand, if the infusion time is

too short, there would be very little time for the drug to enter into the interstitium

and act on cells to cause cell death. Hence an optimal infusion time for causing maxi-

mum cell death will likely exist. Of course, it is recognized that such an analysis is

based on the asymptotic limits, and that arbitrarily high signal levels may not be possi-

ble in practice (either due to injection, or transcapilliary transport limitations).

It is also interesting to examine the effects of double bolus injections. Figure 6 shows

the response of the tumour to two bolus injections in both monostable and bistable

cases. Two different values of the time interval between the first and second bolus

injections are tested. It can be observed that a second bolus injection does indeed

increase the width of the cell death zone, and that an increase in the time interval

between injections has a detrimental effect on cell killing. Thus in the bistable case,

doubling the time interval causes a substantial reduction in the effect of the second

bolus. In the monostable case, for the parameters chosen, a second bolus could cause

cell death in the entire domain while the first bolus did not. However, even here

increasing the time interval between injections reduces the effectiveness. This is

because the second bolus is unable to make use of the residual effect from the first

bolus. It should be mentioned that while a second bolus expands the cell death zone,

it has a very weak effect in accelerating cell death in regions which are already part of

the death zone. The results of this simulation also indicate that one should be careful

about attributing such effects to drug resistance, since these trends are observed even

without any resistance.

As part of the analysis, the effects of other model parameters are also examined.

Generally, varying the threshold for cell apoptosis and intracellular kinetic parameters

has the expected effect with regard to destroying cells. Shown in Figure 7 are the

Figure 6 Spatial profiles of cell density for two rounds of pulse injection with the same pulse
height and weight, S = 4, T = 1.5 h. Upper panel: cell density at 36 h with 24 h interval between pulses,
(a) Bistable switch case, (b) Monostable switch case. Lower panel: cell density at 60 h with 48 h interval
between pulses, (c) Bistable switch case, (d) Monostable switch case.
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effects of the size of the tumour cord on the response of tumour to a bolus injection as

considered in Figure 3. The results show that as the tumour cord radius is increased,

the effect is to shrink the cell death region, in absolute terms. This is because the drug

is now spread out over a large region and becomes diluted. On the other hand a con-

stant infusion would result in the same effect independent of the tumour cord radius

(though the time for causing cell death may vary).

Discussion
In this paper we have taken the first steps towards a comprehensive systems-frame-

work to investigate the effect of drugs on solid tumours. Our ultimate goal is to com-

bine different aspects of the fluid mechanics and drug transport as well as intracellular

processes to develop a comprehensive framework for elucidating the role of different

factors which affect the efficacy of anti-cancer drugs. A particular impetus comes from

the area of systems biology, where detailed investigations of intracellular processes

have been performed in the past decade, with the promise that the fruits of such inves-

tigations will have an impact on human health and disease control.

Our approach is motivated by the desire to create an appropriate framework which is

based on a dynamical systems underpinning, which can seriously tackle different

aspects of the cellular complexity, and the non-linearity of cellular signal processing.

We recognize that for this a predictive systems framework is needed.

Thus our immediate focus is not to fit data (see comments below).

The systems framework proposed in this study incorporates three different levels of

description in a coupled manner: the dynamics of the extracellular drug, which

includes details of the drug transport; the intracellular dynamics; and the population

dynamics of tumour cells. Our framework incorporates basic descriptions of what we

regard as the minimal elements to obtain a mechanistic description connecting drug

input to cell killing, dynamically. For simplicity, a basic cylindrical-shaped tumour-cord

model is analysed which contains a capillary at the centre and an interstitium in the

surrounding annular space. Different modes of drug injection are simulated and model

parameters corresponding to doxorubicin are used. As a first step, blood flow in the

capillary vessel is not modelled explicitly (but will be included at the next stage),

instead an effective drug concentration at the capillary wall is specified to represent

Figure 7 Spatial profiles of cell density at 12 h for different tumour cord radii under a pulse
injection, S = 4, T = 1.75 h for bistable switch.
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the mode of drug injection. The extracellular drug transport in the interstitium primar-

ily includes drug diffusion, uptake by the cell and pumping out from the cell. The lat-

ter elements depend on the local cell density. The intracellular description also

incorporates the pumping in and out of drug, and minimal descriptions of the drug-

triggered cell death. In this case rather than accounting for all the biochemical details,

many of which are still unknown, coarse grained descriptions of signalling pathways

are employed, which account for qualitatively different characteristics of the signal

transduction dynamics (one involving a monostable irreversible switch, and the other a

bistable switch). Our intracellular descriptions compactly encapsulate the qualitative

nature of information flow in the cell.

The population level description of cells uses a basic logistic model which captures

the cell birth and death in a continuum description. Since the present model only pro-

vides a skeletal description of the processes involved, the focus here is to obtain pre-

dictions regarding qualitative trends rather than quantitative values. At the same time

this is very important, in order to seriously represent appropriately the complexity

from the cellular side in a manner which can be systematically augmented. Overall,

our modelling takes a hybrid approach which seeks to retain the predictive advantages

of mechanistic models, while coarse graining intracellular descriptions to retain the

relevant input-output signalling characteristics. We also avoid casting the intracellular

models in concrete biochemical terms, but will do this subsequently, using this frame-

work as a skeleton.

Two variants of intracellular description are examined to address the important

question as to whether the difference between these descriptions plays an important

role in the current context. Both models (monostable and bistable) are used to analyse

different forms of drug input, such as sustained drug input, single and multiple bolus

injections. The numerical results demonstrate that sustained drug injection results in

either the entire tumour tissue being destroyed or the entire tissue surviving, depend-

ing on the concentration of drug. In the case of a single bolus, cell death occurs in a

region close to the capillary wall, and the size of this region increases with an increase

in the time period or concentration of the bolus. This also means that subsequent

bolus injections will result in deeper penetration of the drug and hence broadening the

region where cells are destroyed. Interestingly, the essential trends predicted by the

monostable and bistable switches are similar, suggesting that the complexity of cellular

signal processing notwithstanding, the responses to stimuli of the kind which may be

encountered in realistic drug treatment are in fact basically similar. Differences could

arise when one considers more complex temporal stimuli. We extended our analysis to

a case where drug is released at a location away from the tumour and the drug con-

centration input to the tumour is determined using a pharmacokinetic model [19].

Results (not shown here) show a much smaller cell death zone, since a fair portion of

the drug has been absorbed in other parts of the body. All these demonstrate that our

model can be used to systematically investigate the cellular response to different forms

of drug injections.

It is clear that the proposed modelling framework is the first step and thus has a

number of limitations. Firstly, the most basic descriptions are used for the three levels

of the modelling. Further work to include more biochemical details of the signalling

network (including the detailed dynamics of the caspase network and its regulation) is
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needed in order to obtain a more detailed depiction of the cellular signalling. Clearly

additional elements may involve either feed forward pathways, or possibly even multi-

ple-switch type signalling, as well as redundant pathways, which may have a quantita-

tive effect on the dynamics of the tumour. However since the two signalling models

examined here, which are qualitatively completely different, produce very similar basic

trends, we expect that essential conclusions arising purely from these additional var-

iants in the signalling are likely to play a minor role. Indeed basic simulations of both

the models we employ and a more detailed model of Tyson and co-workers [14] at the

ODE level reveal similar characteristics of response for the types of signals considered.

Therefore, the general response of more complex models is expected to indicate essen-

tially similar trends. Based on our analysis it can be speculated that the additional

layers of internal feedback/complexity are likely to be more important in affecting the

tumour response to multiple bolus stimuli which are not too spaced out. It is worth

pointing out that if signalling includes both a bistable switch and a downstream irre-

versible element (combining features of our models, with the switch effect being rea-

lized by a bistable circuit, but the irreversibility present through a downstream

irreversible switch), we expect the behaviour to be very similar to the monostable

switch we examined, for simpler temporal signals; in more complex temporal signals,

we expect the bistable feature of signalling to play a dominant role in the signal trans-

duction and response (analyzed subsequently). A related point to be made is that one

should be very careful about claims of validating models which include cellular signal-

ling, from scanty data.

Secondly, the present model does not include any cell variability, heterogeneity or

cellular interaction. We fully recognize that inclusion of such factors can lead to partial

survival of cells. Although incorporation of these factors may allow some fraction of

cells to survive in a particular region, they need to be examined systematically to

understand both their individual and combined effects. Noting that the complexity and

specifically the non-linearity of cellular signal transduction will play an important role

in conjunction with these, the entire modelling of these factors must be examined in a

systematic and thorough manner, and this will be done carefully building on this fra-

mework. A similar comment can be made on cell cycle effects (which is of special rele-

vance to analyzing the effect of drugs which target different stages of the cell cycle).

Likewise the effects of factors which confer cell resistance need to be examined. All

the above mentioned factors involve additional aspects of the cellular description and

response. Other elements include the description of cell movement, and the effect of

realistic microvascular geometries with comprehensive fluid mechanical descriptions.

Noting that multiple combinations of these effects may be present in different

tumour types, it is vital to assess the roles of these factors in a systematic and predic-

tive way, which makes clear testable predictions, and where possible to assess the role

of these factors individually and together in an unambiguous fashion. This underscores

our approach in dealing with the complexity of this system.

Conclusions
Overall we have combined three levels of description to take the first steps towards a

comprehensive systems description of drug effects on tumour cells. Since a particular

focus in the future is to use this platform to investigate different effects of cellular
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complexity, a basic model structure has been adopted in the first stage. This is vital in

order to build a credible platform which seriously and systematically addresses differ-

ent aspects of cellular complexity. This in turn would be a necessary bridge to effec-

tively exploit the progress in systems biology of cellular processes and bring this to

bear on the problem of understanding drug delivery processes and improving their effi-

cacy in eliminating tumour cells.

Appendix
In this section, we briefly discuss some features of the model equations which are rele-

vant to the work presented here. While we will not perform a detailed and exhaustive

theoretical analysis, we examine some selected aspects which complement the numeri-

cal work.

We first start by examining the steady state of the kinetic monostable and bistable

modules. In the case of the monostable threshold module, the steady state of the mod-

ule is given by

R = In/
(
kh + In

)
(A1)

R1 =
R

R + kr/kf
(A2)

where I is the upstream signal (in our case the intracellular drug concentration).

Since the first equation is a Hill type equation, we see that if I is above the threshold,

this results in a steady state of R which is essentially 1, and further a high level of R1

which triggers the threshold. Note that in this model, once the threshold for apoptosis

is triggered, the irreversibility implies that subsequent dynamics or approaching of a

steady state for the monostable module variables R and R1 are irrelevant. Thus it is

important to also look at the dynamics. In general, for a time varying signal I(t), we

have

R (t) = R (0) exp (−kt) + exp (−kt)
∫ t

0

(
kI(w)n

kh + I(w)n

)
dw (A3)

from which R1(t) can be calculated. Now the important piece of information from

the dynamic variation of R1 is whether or not the threshold value is crossed for a

given static or time-varying input I, and at what time the threshold is crossed.

The bistable model is one which involves positive feedback. In this case, the steady

state of R in terms of the input I is a cubic equation, which is difficult to solve analyti-

cally. However, using numerical bifurcation analysis, one can determine the steady

state of R as a function of I. This is shown in Figure 8. We see that at the reference

basal condition, the system has two stable steady states (and an intermediate unstable

steady state). The important point to note is that as I crosses its threshold of 1, the

system moves into the monostable regime and evolves to a higher steady state level.

However if I subsequently decreases below the threshold, the system may or may not

come back to the lower steady state. Depending on the time spent beyond the thresh-

old, the system may either return to its original state or be permanently switched on,

indicating an irreversible transition.
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As mentioned in the text, when R1 crosses a threshold, a significant lowering of the

growth rate in the population description is implemented. This is done explicitly in an

irreversible way in the monostable model simulations, and in a reversible way in the

bistable model simulations. Clearly from the discussion above, we see that both models

embody the fact that if the signal is above a threshold level for a sufficient period of

time, this can lead to cell killing.

We now discuss some aspects of the distributed model. Looking at the logistic model

for the growth rate, we see that the basal steady state is ct = a/b, where a = a1 - a2 with

a1 and a2 being the linear growth and death rates, with a1 >a2. When the apoptosis

threshold is crossed in the model, a1 is reduced to a value less than a2. Thus as a result

of the cellular dynamics, in both the monostable and bistable cases, a second steady

state exists which is ct = 0, which is the attained state if the threshold is crossed (note

that in our monostable model if the threshold is temporally attained, then this is the

only eventual state which can be reached, while in the bistable case one can say that if

the threshold remains crossed at steady state, the cell density eventually becomes 0).

Thus it is possible at steady state at any location for the steady state to be the basal

level or to become 0. Our simulations provide ample evidence of the fact that some

region gets killed completely, while others remain/regain their basal level.

We can also comment on the steady state levels of the extracellular drug concentra-

tion. An analysis of the equation for the intracellular drug concentration reveals that at

Figure 8 Steady state input-output curves.
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steady state there is a balance between the pumping in and out of the drug. Likewise,

by examining the binding to and unbinding from albumin in the interstitium, and con-

sidering the steady state of the bound extracellular drug (in the particular case where

the bound drug is regarded as non-diffusible), we immediately see that this binding

unbinding reaction must be at equilibrium. Thus at steady state, the extracellular drug

concentration satisfies

kd∇2E = 0 (A4)

which implies that the extracellular drug concentration is spatially uniform and this

depends on the level of drug being pumped in. If a persistent stimulus is maintained,

the drug concentration in the interstitium attains a commensurate value. If the stimu-

lus was applied as a bolus, it means that eventually no drug is pumped in and at steady

state the extracellular drug concentration is zero everywhere. However there can be

regions in the interstitium where the cell density is zero, as we have seen in the simu-

lations and from the discussion above. Thus at steady state the extracellular drug con-

centration will be uniform but the tumour cell density can be non-uniform.

The dynamics of the coupled system may also be studied. Without presenting this in

greater detail here, we comment that the variation of the cell density is much slower

than the remaining dynamics, so that the remaining dynamics can be analyzed using a

perturbation analysis where the cell density variation occurs on a slower time scale.

Supplementary results

In this subsection, we present some additional results to supplement those presented

in the main text. We briefly present two sets of results, both related to bolus injections.

In the case of the single bolus injection, the effect of a single bolus on cell killing was

examined, and the effect of bolus fractionation was considered as well. Here we pre-

sent results related to the effect of infusion time of a bolus injection.

The effect of infusion time of bolus injection is shown in Figure 9 where it is seen

that an increase in infusion time broadens the cell death region and does so in a very

Figure 9 Normalized position of cell killing region as a function of infusion time for different pulse
heights. (a) Bistable switch case, (b) Monostable switch case.
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non-linear fashion. Again the same trends are observed in both monostable and bis-

table cases.

The effect of double bolus injections are considered in the text. To extend these

results, we briefly examine how the second bolus may be fractionated for a fixed first

bolus. The effect of second bolus fractionation is shown in Figure 10. For a fixed first

bolus and time interval between injections, there seems to be an optimal way of frac-

tionating the second bolus. It is worth pointing out that in the monostable case, the

possibility of killing regions separated by a living region is seen.
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