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Abstract

Background: Competing risks, which are particularly encountered in medical studies,
are an important topic of concern, and appropriate analyses must be used for these
data. One feature of competing risks is the cumulative incidence function, which is
modeled in most studies using non- or semi-parametric methods. However,
parametric models are required in some cases to ensure maximum efficiency, and to
fit various shapes of hazard function.

Methods: We have used the stable distributions family of Hougaard to propose a
new four-parameter distribution by extending a two-parameter log-logistic
distribution, and carried out a simulation study to compare the cumulative incidence
estimated with this distribution with the estimates obtained using a non-parametric
method. To test our approach in a practical application, the model was applied to a
set of real data on fertility history.

Conclusions: The results of simulation studies showed that the estimated cumulative
incidence function was more accurate than non-parametric estimates in some
settings. Analyses of real data indicated that the proposed distribution showed a
much better fit to the data than the other distributions tested. Therefore, the new
distribution is recommended for practical applications to parameterize the
cumulative incidence function in competing risk settings.

Background
In medical research with time-to-event data, there may be more than one final out-

come of interest, and this circumstance can complicate the statistical analysis. In such

cases, events other than the desired one(s) are considered as competing risks when

their occurrence prevents the event of interest [1,2]. An important quantity in compet-

ing risk settings is the cumulative incidence function (CIF), which makes it possible to

calculate the probability of a particular event. In contrast, the cause-specific hazard

function (CSHF) calculates the instantaneous rate of the event. For example, in fertility

studies in women, researchers are interested in calculating the cumulative live birth

rate in the presence of competing risks over time. Competing events, such as the prob-

ability of stillborn fetuses or abortions, can be calculated.

Most competing risk analyses of CIF are estimated non- or semi-parametrically [3,4].

However, the parametric model is another available approach for modeling CIF. The
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advantage of parametric methods compared to non- and semi-parametric ones is that

if a parametric model is selected correctly, it can predict the probability of the occur-

rence of events in the long term and provide additional insights about the time to fail-

ure and hazard functions [5]. Also, when the survival pattern follows a particular

parametric model, the estimates from true model fit are usually more accurate than

the non-parametric estimates.

The best known distributions for modeling CIF are the Weibull and Gompertz distri-

butions. However, these are suitable only for hazard functions that increase or decrease

monotonically; they are inadequate when the hazard function shape is unimodal. In

such cases, simple distributions such as the two-parameter log-logistic or log-normal

distributions are likely to be better choices. One approach to the construction of flex-

ible parametric models is to add a shape parameter to provide a wide range of hazard

shapes and improve the models in survival data. In 1996, Mudholkar et al. proposed a

generalized Weibull family with a range of hazard shapes [6] and Foucher et al. in

2005 applied this distribution in semi-Markov models [7]. In 2006, Sparling et al. pre-

sented a three-parameter family of survival distributions that included the Weibull,

negative binomial, and log-logistic distributions as special cases [8]. These distributions

can fit U-shapes or unimodal shapes for the hazard function, and therefore can be

appropriate for survival data.

In light of the issues summarized above, a more efficient parametric distribution with

various shapes of hazard patterns would appear to be useful for estimating CIF in com-

peting risk situations. In recent years, various parametric distributions have been devel-

oped specifically for analyzing competing risk data that offer more flexibility. For

example, in 2006 Jeong introduced a new parametric distribution for modeling CIF [5].

In 2009, Wahed et al. developed Weibull’s distribution, resulting in a beta-Weibull

four-parameter distribution for use in competing risks [9]. Here, we propose a new

four-parameter log-logistic distribution by extension of a two-parameter log-logistic

distribution that contains different kinds of hazard shapes in survival data and

increases the efficiency of the CIF over the non-parametric approaches. Also, this is an

improper distribution which enjoys more flexibility for modeling of CIF. Therefore, it

would be suitable for competing risk models. We have performed a simulation study

to compare CIF estimates obtained with the four-parameter distribution and a non-

parametric method. After using simulated data to assess the method, we analyzed a

real data set to examine the efficiency of our proposed distribution.

Methods
Introduction of the new distribution

The survival function according to a two-parameter log-logistic distribution is as fol-

lows:

S(t) =
1

1 + λtτ
(1)

where l > 0 and τ > 0 are the scale and shape parameters, respectively. If τ ≤ 1, the

hazard function decreases monotonically, whereas if τ > 1, the hazard function is unim-

odal [10].
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Survival function of the four-parameter log-logistic distribution

The two-parameter log-logistic distribution is expanded on the basis of the family of

Hougaard stable distributions, whose survival function is as follows:

S(t) =

exp{−υθα

α
[(
H

θ
+ 1)α − 1]} (2)

where H is the cumulative hazard function [11]. If a two-parameter log-logistic

cumulative hazard function is used instead of H, we obtain a new distribution that is

improper. In addition, to reduce the number of parameters, the substitution υ = θ2-a is

used [12]. The survival function of the new distribution is constructed as:

S(t;λ, τ , θ ,α) =

exp{−θ2

α
[(
log(1 + λtτ )

θ
+ 1)α − 1]}

(3)

where the parameter space is θ > 0, l > 0, τ > 0, -∞ <a < ∞. The survival function

must be between zero and one, as shown in the Appendix. If a < 0, the survival func-

tion is improper. This is an important characteristic of CIF modeling that differs from

the two-parameter log-logistic distribution and other distributions.

Hazard function

The hazard function can be directly obtained from equation (3), as:

h(t;λ, τ , θ ,α) =
− d
dt
S(t)

S(t)
=

θτλtτ−1

1 + λtτ
[
log(1 + λtτ )

θ
+ 1]α−1

(4)

Because of the complexity of this hazard function formula, there is no simple mathe-

matical expression for different types of hazard function. The flexibility of the hazard

function is shown in Figure 1. Compared to the two-parameter model, the four-para-

meter log-logistic distribution has a flexible hazard function that can be monotonically

decreasing or increasing, unimodal, or U-shaped.

Cumulative incidence function

Competing risks data are represented as a pair (T, δ) where δ is the indicator variable,

defined as δ = 0 if the observation is censored, and as δ = 1,2,...,K where K is the num-

ber of competing events. T is the time to first event or censoring. The two major

quantities in the analysis of competing risks data are CSHF and CIF. The CSHF rate

for event k is the instantaneous event rate for an individual who experiences event k at

time t given that the subject experiences no other type of event up to t. The CIF for

event k, Fk(t) = P(T ≤ t, δ = k), is the cumulative probability of observing event k by

time t. The CIF for event k is defined as follows:

Fk(t) =
∫ t

0
S(u)hk(u) du (5)
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where S(u) = P(T > u) and hk(u) is the hazard function for the kth cause-specific

event. In the literature, parametric methods are proposed to estimate CIF with the

CSHF method [5,9,13]. Here we have also used the CSHF method to model CIF.

To estimate the CIF non-parametrically, the overall survival function should be

replaced with the Kaplan-Meier estimate and the cause-specific cumulative hazard

function with the Nelson-Aalen estimate [3].

Estimation method

For convenience, we have assumed throughout this paper that there were two events:

the desired event k = 1 and a competing event k = 2; and that n is the sample size.

Because the two event are mutually exclusive, the overall survival function factored

into a product of two cause-specific survival functions, i.e. S(t, ψ) = S1(t,ψ1) S2(t, ψ2).

Therefore, the likelihood function of the parametric inference is constructed as:

L(ψ1,ψ2) =
n∏
i=1

(f1(ti,ψ1)δ1i f2(ti,ψ2)δ2i

S1(ti,ψ1)1−δ1i S2(ti,ψ2)1−δ2i)

(6)

Figure 1 Hazard function of the four-parameter log-logistic distribution.
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where ψk = (lk, τk, θk, ak) is the parameter vector for event k, Sk(t, ψk) is the survival

function for event k, and fk(t, ψk) is the density function of event k based on a four-

parameter log-logistic distribution.

If event k occurs, δki = 1; otherwise δki = 0 (k = 1,2, i = 1,2,...,n). The covariance

matrix, I−1(ψ̂1, ψ̂2), is estimated by the inverse of the Fisher information matrix [14].

According to the invariant property of the maximum likelihood estimate (MLE), the

CIF is estimated by substituting ψ̂ in expression (5), which yields

F̂k(t) =
∫ t

0
Ŝ(u)ĥk(u) du..

Simulation study

A simulation study was used to compare the cumulative incidence estimate of the pro-

posed distribution with a three-parameter distribution proposed by Sparling [8] and

the non-parametric method at different times. As described by Beyersmann in 2009,

we first simulated survival times T with all-cause hazards h1(t) + h2(t) on the basis of a

two-parameter log-logistic distribution, with l1 = 0.3, τ1 = 2.97 for the event of interest

and l2 = 0.03, τ2 = 1.1 for the competing event (based on fertility data). The event type

was then determined by a binomial experiment with probability h1(t)/(h1(t) + h2(t)) on

event type 1 [15,16]. Additionally, we generated censoring times with a binomial

experiment. The data sets were simulated with sizes n = 1000, and a 7% censoring

level. Using the data thus produced, we applied the four-parameter log-logistic, Spar-

ling distributions, and non-parametric method to these data. Accordingly, 1000 sam-

ples were generated and the bias and empirical mean square error (MSE) of the CIF at

time t were calculated as follows:

biast =
1000∑
j=1

(F̂1j(t)/1000)− F1(t)

MSEt =
1000∑
j=1

(F1(t)− F̂1j(t))2/1000

where F1(t) is the true value of CIF at time t [17].

To test the efficiency of the parametric distribution proposed here, we used another

simulation study. Failure times were generated on the basis of a two-parameter Wei-

bull distribution with k1 = 1.4, p1 = 0.45 for the event of interest and k2 = 1.04, p2 =

0.03 for the competing event. We used the same method to fit the new distribution to

these data.

The maximum likelihood estimates of the parameter vectors were calculated by

PROC NLMIXED in SAS v. 9.1, and the non-parametric estimate of CIF was obtained

with the “cuminc” R function from the “cmprsk” library. Because the determination of

a suitable initial value to fit the models is an important problem in numerical studies,

many initial values were examined to find a suitable convergence.

Results
Table 1 summarizes the results of the first simulation in which the four-parameter log-

logistic, Sparling distribution and non-parametric methods were fit for different times
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with n = 1000. The results showed that the bias and MSE of the CIF estimates

obtained with the four-parameter method for the event of interest at t = 1.25 to t = 2

were smaller than with the Sparling distribution and the non-parametric method. For

the competing event, the bias and MSE of the CIF estimates were lower than with the

non-parametric method.

The results of the second simulation are summarized in Table 2. Up to t = 1.5, the

bias and the MSE of the CIF estimates obtained with the non-parametric method for

the event of interest were lower than with the four-parameter method, but after t = 2,

the bias and MSE of the CIF estimates for the competing event with the new distribu-

tion were equivalent or slightly lower than with the non-parametric method. For the

competing event, the bias and MSE of the CIF estimates were lower than with the

non-parametric method at all times.

In summary, these two simulations indicate that the four-parameter modeling of CIF

was as efficient as the non-parametric method and the Sparling distribution and some-

times led to better estimates of CIF. Moreover, the four-parameter log-logistic model

performed well under a Weibull distribution.

Table 1 The results of parametric and non-parametric estimates of CIF based on a four-
parameter log-logistic and Sparling simulation for different times.

Time

0.75 1.00 1.25 1.50 2.00 3.00 5.00

True value of CIF for event 1 0.11 0.23 0.36 0.49 0.68 0.85 0.92

Distribution

Four-parameter log-logistic

CIF 0.06 0.18 0.32 0.45 0.64 0.82 0.91

Bias -0.05 -0.05 -0.04 -0.04 -0.04 -0.03 -0.01

MSE × 102 0.30 0.30 0.20 0.20 0.20 0.10 0.01

Sparling

CIF 0.07 0.17 0.30 0.44 0.65 0.83 0.91

Bias -0.04 -0.06 -0.06 -0.05 -0.03 -0.02 -0.01

MSE × 102 0.17 0.40 0.39 0.32 0.12 0.05 0.02

Nonparametric

CIF 0.07 0.18 0.31 0.44 0.64 0.82 0.91

Bias -0.04 -0.05 -0.05 -0.05 -0.04 -0.03 -0.01

MSE x102 0.20 0.27 0.26 0.29 0.22 0.10 0.02

True value of CIF for event 2 0.020 0.030 0.033 0.037 0.043 0.050 0.052

Distribution

Four-parameter log-logistic

CIF 0.052 0.054 0.055 0.055 0.056 0.057 0.057

Bias 0.032 0.024 0.022 0.018 0.013 0.007 0.005

MSE × 102 0.100 0.100 0.010 0.040 0.020 0.010 0.010

Sparling

CIF 0.048 0.053 0.056 0.058 0.060 0.061 0.062

Bias 0.028 0.023 0.023 0.021 0.017 0.011 0.010

MSE × 102 0.100 0.100 0.100 0.100 0.040 0.020 0.020

Nonparametric

CIF 0.059 0.059 0.059 0.059 0.059 0.059 0.059

Bias 0.039 0.029 0.026 0.023 0.016 0.009 0.007

MSE × 102 0.150 0.100 0.070 0.050 0.030 0.010 0.010

The true model is a two-parameter log-logistic distribution.
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Example: women’s fertility history

We tested the proposed distribution on a set of real data. In a cross-sectional study,

the fertility history of 858 women aged 15-49 years in rural areas of the Shiraz district

(southwestern Iran) was reviewed (unpublished data). The women were selected by

multistage random sampling from a list of villages in 2008. Only the first pregnancy of

each woman was included in this study. A self-administered questionnaire regarding

fertility history was used. After women with an undesired first pregnancy were

excluded, the final sample consisted of 652 women. Live birth as a result of the first

delivery was our desired event, and a stillborn fetus or abortion was the competing

event. The event time was defined as the interval between marriage and a live birth, a

competing event or censoring. Also, women who had not given birth on the date of

interview (7% in this data set) were censored.

The estimated cumulative incidence of live births and abortions or stillborn fetuses

based on the two- and four-parameter log-logistic, Weibull, Gompertz and Sparling

distributions and the non-parametric estimates are shown in Figure 2. Up to time t =

3, the cumulative incidence of live births increased rapidly; thereafter, cumulative inci-

dence tended to plateau. This means that the probability of live births during the first

four years after marriage increased rapidly, and remained approximately constant

thereafter. The curves also show that the four-parameter log-logistic distribution was

closer to the non-parametric estimate than the other distributions at all times. For

shorter intervals since marriage, the two-parameter log-logistic and Sparling distribu-

tions were closer to the non-parametric estimates than to the Weibull and Gompertz

distributions. After t = 5, all distributions were close to the observed data.

Table 2 The results of parametric and non-parametric estimates of CIF based on a four-
parameter log-logistic simulation for different times.

Time

0.75 1.00 1.25 1.50 2.00 3.00 5.00

True value of CIF for event 1 0.19 0.27 0.35 0.43 0.56 0.75 0.91

Distribution

Four-parameter log-logistic

CIF 0.13 0.21 0.29 0.37 0.52 0.73 0.89

Bias -0.06 -0.06 -0.06 -0.06 -0.04 -0.02 -0.02

MSE × 102 0.42 0.49 0.47 0.45 0.22 0.06 0.04

Nonparametric

CIF 0.14 0.22 0.30 0.38 0.52 0.72 0.89

Bias -0.05 -0.05 -0.05 -0.05 -0.04 -0.03 -0.02

MSE × 102 0.26 0.25 0.26 0.29 0.23 0.14 0.05

True value of CIF for event 2 0.017 0.023 0.027 0.031 0.037 0.046 0.051

Distribution

Four-parameter log-logistic

CIF 0.021 0.027 0.032 0.036 0.043 0.052 0.058

Bias 0.004 0.004 0.005 0.005 0.006 0.006 0.007

MSE × 102 0.003 0.003 0.010 0.010 0.010 0.010 0.010

Nonparametric

CIF 0.014 0.014 0.036 0.036 0.049 0.055 0.058

Bias -0.003 -0.009 0.009 0.005 0.012 0.009 0.007

MSE × 102 0.002 0.010 0.010 0.010 0.020 0.010 0.010

The true model is a two-parameter Weibull distribution.
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Table 3 shows the Akaike information criterion (AIC), Bayesian information criterion

(BIC) and estimated cumulative incidence for two events in different times. Based on

AIC and BIC criteria, the four-parameter log-logistic model with the lowest AIC and

BIC showed a better fit to the data than the two-parameter log-logistic, Sparling, Wei-

bull or Gompertz distributions. Because the two-parameter log-logistic distribution is

nested within the Sparling and the four-parameter log-logistic distributions, we can

compute likelihood-ratio chi-square statistics to test the fit of the nested models. The

likelihood-ratio chi-square statistics and their corresponding p-values are:

Figure 2 Cumulative incidence function estimates of live births (a) and abortions (b) with the non-
parametric and two- and four-parameter log-logistic, Weibull, Gompertz and Sparling distributions
in a fertility history study.

Table 3 The Akaike information criterion (AIC), Bayesian information criterion (BIC) and
the estimates of the cumulative incidence function under competing risks based on
different distributions with the non-parametric method.

Time (years)

Distribution 0.75 1 1.5 2 3 5 10 AIC BIC

Two-parameter log-logistic 1894.0 1912.0

Live birth 0.1145 0.2317 0.4946 0.6857 0.8556 0.9307 0.9497

Stillborn fetus or abortion 0.0189 0.0246 0.0333 0.0375 0.0457 0.0514 0.0477

Four-parameter log-logistic 1685.3 1721.1

Live birth 0.0257 0.2373 0.5552 0.6949 0.8133 0.8876 0.9274

Stillborn fetus or abortion 0.0200 0.0278 0.0370 0.0419 0.0467 0.0503 0.0525

Two -parameter Weibull 2195.0 2212.0

Live birth 0.1942 0.2749 0.4292 0.5626 0.7532 0.9098 0.9472

Stillborn fetus or abortion 0.0173 0.0225 0.0310 0.0372 0.0457 0.0507 0.0526

Two -parameter Gompertz 2299.9 2317.9

Live birth 0.2862 0.3617 0.4890 0.5897 0.7317 0.8718 0.9425

Stillborn fetus or abortion 0.0185 0.0231 0.0307 0.0365 0.0441 0.0507 0.0533

three-parameter Sparling 1817.2 1856.0

Live birth 0.0856 0.2198 0.5416 0.7290 0.8539 0.9047 0.9242

Stillborn fetus or abortion 0.0188 0.253 0.0345 0.0394 0.0439 0.0473 0.0499

Nonparametric

Live birth 0.0062 0.2601 0.5542 0.6723 0.8194 0.8934 0.9287

Stillborn fetus or abortion 0.0170 0.0279 0.0405 0.0437 0.0455 0.0490 0.0535
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c2 = 69.2, df = 1, p < 0.001 for two-parameter log-logistic versus Sparling and c2 =

217.1, df = 2, p < 0.001 for two-parameter log-logistic versus four-parameter log-logis-

tic. Likelihood-ratio test, AIC and BIC show the four-parameter log-logistic distribu-

tion fits the data better than two-parameter log-logistic and Sparling distributions.

These results confirm the findings in Figure 2, and again indicate that the proposed

distribution shows a closer fit to the observed data than the other distributions to

which it is compared.

Discussion
Although non-parametric methods such as the Kaplan-Meier approach are widely used

in survival analysis and may show a very close fit to the data, they do not provide addi-

tional information about the nature of the data. Therefore, in this study our ultimate

aim was to develop a new parametric distribution by extension of the two-parameter

log-logistic distribution. The addition of third and fourth parameters allows the model

to capture U-shaped hazards.

Our simulation study showed that the parametric estimate of CIF with the new dis-

tribution was slightly less biased and had a smaller MSE than the estimate obtained

using non-parametric methods. Simulations with the two-parameter log-logistic and

Weibull distributions showed that our proposed four-parameter distribution had

appropriate efficiency. Also, analyses of real data indicated that the proposed distribu-

tion showed a much better fit to the data than the other distributions tested. Our

results are consistent with other studies in finding that an appropriate parametric

model yields more precise estimates of cumulative incidence than non-parametric

methods, and is thus a potentially suitable way to describe quantities of competing

risks [9,18]. In contrast, if a parametric model is mis-specified, the quantities will be

estimated incorrectly, which will clearly bias the inferences [12]. However, our pro-

posed distribution captures various hazard shapes well, which extends its applicability

to a variety of survival data.

In addition to this advantage, the proposed distribution is improper for a < 0. This

property makes our proposed distribution superior to other distributions such as the

Weibull, two-parameter log-logistic, three-parameter Sparling and generalized Weibull

models [6,8]. This characteristic of our distribution also makes it possible to evaluate

the direct effect of covariates on CIF, which is not possible in the CSHF model [19,20].

The potential applications of direct modeling of CIF and parametric regression models

with the four-parameter log-logistic distribution will be examined in forthcoming

papers.

Conclusions
Despite the complexity of this distribution for modeling CIF (which is one of its limita-

tions), the results of our simulation study and real-data application show that the new

distribution achieves a much better fit to the data than other distributions that use

fewer parameters. Whereas the two-parameter log-logistic is a proper distribution, the

four-parameter log-logistic is an improper distribution in the subset of parameter

space. Therefore, this distribution is suitable for parameterizing CIF directly in com-

peting risk models. Moreover, it is can be added to a family of distributions and also

potentially useful for parameterizing survival data in general.
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Appendix
The survival function of the new distribution is as follows:

S(t;λ, τ , θ ,α) =

exp{−θ2

α
[(
log(1 + λtτ )

θ
+ 1)α − 1]}

The parameter space is θ > 0, τ > 0, l > 0, -∞ < a <∞. The survival function must be

between zero and one for all values in the parameter space. If (θ2[(log(1+ltτ)/θ+1]a/a-1)
> 0, then the condition holds. First, if a > 0, log(1+ltτ)/θ + 1 must be positive, which

implies that log(1+ltτ)/θ > 0 since l > 0, τ > 0 and θ > 0, log(1+ltτ)/θ is always positive.

Thus, the condition holds for a > 0. The same result follows for the case a < 0.

List of abbreviations
CIF: cumulative incidence function; CSHF: cause-specific hazard function MSE: mean square error; MLE: maximum
likelihood estimate; AIC: Akaike information criterion; BIC: Bayesian information criterion.
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