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Abstract

Background: Understanding gene interactions in complex living systems can be
seen as the ultimate goal of the systems biology revolution. Hence, to elucidate
disease ontology fully and to reduce the cost of drug development, gene regulatory
networks (GRNs) have to be constructed. During the last decade, many GRN
inference algorithms based on genome-wide data have been developed to unravel
the complexity of gene regulation. Time series transcriptomic data measured by
genome-wide DNA microarrays are traditionally used for GRN modelling. One of the
major problems with microarrays is that a dataset consists of relatively few time
points with respect to the large number of genes. Dimensionality is one of the
interesting problems in GRN modelling.

Results: In this paper, we develop a biclustering function enrichment analysis
toolbox (BicAT-plus) to study the effect of biclustering in reducing data dimensions.
The network generated from our system was validated via available interaction
databases and was compared with previous methods. The results revealed the
performance of our proposed method.

Conclusions: Because of the sparse nature of GRNs, the results of biclustering
techniques differ significantly from those of previous methods.

Background
The major goal of systems biology is to reveal how genes and their products interact to

regulate cellular process. To achieve this goal it is necessary to reconstruct gene regu-

latory networks (GRN), which help us to understand the working mechanisms of the

cell in patho-physiological conditions. The structure of a GRN can be described as a

wiring diagram that (1) shows direct and indirect influences on the expression of a

gene and (2) describes which other genes can be regulated by the translated protein or

transcribed RNA product of such a gene [1].

The local topology of a GRN has been used to predict various systems-level pheno-

types. For instance, Dyer et al. [2] recently analyzed the intraspecies network of Pro-

tein-Protein Interactions (PPIs) among the 1,233 unique human proteins spanned by

host-pathogen PPIs. They found that both viral and bacterial pathogens tend to inter-

act with hubs (proteins with many interacting partners) and bottlenecks (proteins that

are central to many paths in the network) in the human PPI network.

Within the last few years, a number of sophisticated approaches to the reverse engi-

neering of cellular networks from gene expression data have emerged. These include
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Boolean networks [3], Bayesian networks [4], association networks [5], linear models

[6], and differential equations [7]. The reconstruction of gene networks is in general

complicated by the high dimensionality of high-throughput data; i.e. a dataset consists

of relatively few time points with respect to a large number of genes. In this study we

develop a biclustering function enrichment analysis toolbox (BicAT-plus) to study the

effect of biclustering in reducing data dimension.

Clustering algorithms [8-10] have been used to reduce data dimension, on the basis

that genes showing similar expression patterns can be assumed to be co-regulated or

part of the same regulatory pathway. Unfortunately, this is not always true. Two limita-

tions obstruct the use of clustering algorithms with microarray data. First, all condi-

tions are given equal weights in the computation of gene similarity; in fact, most

conditions do not contribute information but instead increase the amount of back-

ground noise. Second, each gene is assigned to a single cluster, whereas in fact genes

may participate in several functions and should thus be included in several clusters

[11].

A new modified clustering approach to uncovering processes that are active over

some but not all samples has emerged, which is called biclustering. A bicluster is

defined as a subset of genes that exhibit compatible expression patterns over a subset

of conditions [12]. During the last ten years, many biclustering algorithms have been

proposed (see [13] for a survey), but the important questions are: which algorithm is

better? And do some algorithms have advantages over others?

Generally, comparing different biclustering algorithms is not straightforward as they

differ in strategy, approach, time complexity, number of parameters and predictive

capacity. They are strongly influenced by user-selected parameter values. For these rea-

sons, the quality of biclustering results is also often considered more important than

the required computation time. Although some comparative analytical studies have

evaluated the traditional clustering algorithms [14-16], no such extensive comparison

exists for biclustering even after initial trials have been made [12]. Ultimately, biologi-

cal merit is the main criterion for evaluation and comparison among the various

biclustering methods.

To the best of our knowledge, the biclustering algorithm comparison toolbox has not

been made available in the literature. We have developed a comparative tool, BicAT-

Plus (Figure 1), that includes comparative biological methodology and is to be used as

an extension to the BicAT program [17]. BicAT-Plus and its manual can be down-

loaded from these two links: http://home.k-space.org/BicAT-plus.zip and http://home.

k-space.org/Bicat-plus-manual.pdf. BicAT is a java biclustering toolbox that contains

five biclustering and two traditional clustering algorithms.

In this work, one of our goals was to study the value of biclustering algorithms for

constructing GRNs.

Bonneau et al. [18] developed a GRN algorithm (The Inferelator) based on an inte-

grated biclustering method (cMonkey) [11]. cMonkey groups genes and conditions into

biclusters on the basis of three components: the expression component, the sequence

component, and the network component. Not all the biclustering algorithms that are

implemented either in BicAT or in our modified version BicAT-Plus required prior

information, so we excluded cMonkey from further analysis.
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Methods
Data Acquisition

Two well-known datasets of yeast microarray gene expression (Gasch et al. [19]; Spell-

man et al. [20]) were used in this work; they can downloaded from the Stanford

Microarray Database (http://smd.stanford.edu/). The Spellman dataset consists of four

synchronization experiments (alpha factor arrest, elutriation and arrest of CDC15 and

CDC28 temperature-sensitive mutants), which were performed for a total of 73 micro-

arrays during the cell cycle. The Gasch dataset contains 6152 genes and 173 diverse

environmental transition conditions such as temperature shock, amino acid starvation,

and nitrogen source depletion.

Figure 1 BicAT-Plus comparison panel. Algorithms required to be compared could be selected from the
biclustering list (left list) to the compared list (right list). External biclustering results for other algorithms
could be included in the comparison process. Also the organism model, selectable significance level, and
GO category should be selected. Finally, comparison criteria have to be selected on the basis of the user
biological metric.
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Preprocessing

Owing to daily Yeast chromosomal changes, the experiments of Gasch et al. [19] and

Spellman et al. [20] contain genes that no longer exist. We used the SGD Batch Down-

load web tool (http://www.yeastgenome.org/cgi-bin/batchDownload) to remove all the

merged, deleted and retired genes from further processing.

Also, microarray measurements may be biased by diverse effects such as efficiency of

RNA extraction, reverse transcription, label incorporation, exposure, scanning, spot

detection, etc. This necessitates the preprocessing of microarrays prior to data analysis.

The datasets used in this work had already been preprocessed for background correc-

tion and normalization. Further steps should also be applied for data refinement. In

this paper, we applied commonly used preprocessing such as gene filtration and miss-

ing value imputation[21,22].

Data Partitioning

BicAT is an open source tool written in Java swing and containing five biclustering

clustering algorithms (OPSM [23], ISA, CC [24], BIMAX [17] and X-motive [25]) as

well as two traditional ones (K-means and HCL [26]). The proposed BicAT-Plus adds

some features to BicAT. It is flexible and has a well-structured design that can easily

be extended to employ more comparative methodologies, helping biologists to extract

the best results from each algorithm and interpret them in biologically useful biological

ways. The goal of BicAT-plus is to enable researchers and biologists to compare differ-

ent biclustering methods on the basis of a set of biological merits and to draw conclu-

sions about the biological meaning of the results. BicAT-Plus also helps researchers to

compare and evaluate the results of algorithms multiple times according to user-

selected parameter values as well as the required biological perspective on various

datasets. It adds many features to BicAT, which can be summarized as follows:

• Two more biclustering methods are added: MSBE constant biclustering and

MSBE additive biclustering [27]. This enables the package to employ most of the

commonly used biclustering algorithms. MSBE is a polynomial time algorithm for

finding an optimal bi-cluster with maximum similarity score. We added it because

it has the following advantages: (1) no discretization procedure is required, (2) it

performs well for overlapping bi-clusters and (3) it works well for additive bi-clus-

ters. When MSBE runs on real data (the Gasch dataset [19]), it outperforms most

existing methods in many cases.

• BicAT [17] is extended to perform functional analysis using the three subontolo-

gies or categories of Gene Ontology (GO) (biological process, molecular function

and cellular component) and visualizing the enriched GO terms for each bicluster

in a separate histogram.

• A mean for the evaluation and result display is also added. This feature helps in

evaluating the quality of each biclustering algorithm result after the GO functional

analysis is applied. It then displays the percentages of enriched biclusters at differ-

ent significance levels.

• A method for comparing the different biclustering algorithms is also provided.

The comparison can be done according to the percentage of the functionally
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enriched biclusters at the required significance levels, the selected GO category and

with certain filtration criteria for the GO terms.

• A further important feature (to be added) is the ability to evaluate and compare

the results of external biclustering algorithms. This gives BicAT-Plus the advantage

of being a generic tool that does not depend only on the methods employed. For

example; it can be used to evaluate the quality of new algorithms introduced to the

field and compare them against existing ones.

• The gene ontology enrichment results for each bicluster are visualized using gra-

phical and statistical charts in different modes (2D and 3D). BicAT-Plus provides

reasonable methods for comparing the results of different biclustering algorithms

by:

• Identifying the percentage of enriched or overrepresented biclusters with one or

more GO term per multiple significance level for each algorithm. A bicluster is

said to be significantly overrepresented (enriched) with a functional category if the

P-value of this functional category is lower than the preset threshold. The results

are displayed using a histogram for all the algorithms compared at the different

preset significance levels, and the algorithm that gives the highest proportion of

enriched biclusters for all significance levels is considered the optimum because it

effectively groups the genes sharing similar functions in the same bicluster.

• Identifying the percentage of annotated genes per each enriched bicluster.

• Estimating the predictive power of algorithms to recover interesting patterns.

Genes whose transcription is responsive to a variety of stresses have been impli-

cated in a general Yeast response to stress (awkward). Other gene expression

responses appear to be specific to particular environmental conditions. BicAT-Plus

compares biclustering methods on the basis of their capacity to recover known pat-

terns in experimental data sets. For example, Gasch et al. [19] measure changes in

transcript levels over time responding to a panel of environmental changes, so it

was expected to find biclusters enriched with one of response to stress

(GO:0006950), Gene Ontology categories such as response to heat (GO:0009408),

response to cold (GO:0009409) and response to glucose starvation(GO:0042149).

Network Learning

Many reverse engineering approaches to establishing cellular networks from gene

expression data have emerged. Bayesian networks (BNs), which were first used by

Friedman et al. [4], have been widely used because of their solid basis in statistics. BNs

are also able to handle missing data and work with incomplete knowledge about the

biological system. There are two important components to representing BNs: the quali-

tative part, which is called the directed acyclic graph (DAG); and the quantitative part,

which is the conditional probability of children given their parents. The popular

approach to finding the best DAG is to search the DAG space and find the one with

the best score. Because the DAG space is huge, we have to use heuristic searches. K2

algorithm, Greedy Search, Genetic Algorithm and Greedy Hill Climbing are the popu-

lar search algorithms. The common objective of these algorithms is to reduce the

search space. More about the differences among Bayesian network learning structure

algorithms can be found in our previous paper [28].
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In this step, we first learn the biclusters produced from different algorithms using the

Greedy Hill Climbing search algorithm and BDe Scoring Function implemented in Bio-

learn [29] at the Department of Biological Sciences, Columbia University.

Network Generation

After we had obtained all the subnetworks generated from each biclustering algorithm,

these subnetworks were integrated by merging new edges and deleting repeated edges

to produce the final networks. For examples, for the 219 biclusters generated by the

ISA algorithm, learning these biclusters would produce 219 subnetworks. Merging

them produced the whole network from the ISA algorithm, which is consisted of 2558

edges.

Finally, we can summarize the procedures in the previous section for generating the

final networks as follows:

1. We applied the KNN imputation algorithm [21] to the Spellman dataset in order

to substitute the missing data point with the nearest values.

2. All data set genes showing no significant changes were removed.

3. We applied the spectral subtraction denoising algorithm to the dataset [30].

4. Six biclustering algorithms (ISA [31], CC [24], MSBE [27], Bivisu [32], OPSM

[23], SAMBA) and one traditional clustering algorithm (k-means) were applied to

the Spellman dataset. The total number of biclusters/clusters produced was 683.

5. We ran the Greedy Hill Climbing search algorithm implemented in the Biolearn

program [29] to these biclusters and produced 683 subnetworks.

6. These subnetworks were integrated to generate the whole gene network for each

biclustering algorithm. When we merged the edges from all the biclustering/clus-

tering algorithms, we produced a big network containing 5440 unique edges. We

refer to this network as the ALL network.

Network Analysis and Validation

After the interactions among genes have been inferred, it remains assess whether these

relationships exist biologically. It is time and money consuming to validate the full set

of predictions experimentally. During the last decade, interaction databases have grown

exponentially. More than 230 web-accessible biological pathway and network databases

(http://www.pathguide.org) have been reported. These large databases are very promis-

ing for assisting GRN inference and validating the inferred networks.

These interaction databases use different identifiers to identify the same gene (GI,

SwissProt, internal identifiers, etc.), which requires the resolution of synonymous

names/IDs across databases. So, we want to integrate molecular interactions and other

types of high-throughput data from different public databases to build biological net-

works automatically. For this purpose we used BioNetBuilder [33], which is an open-

source client-server Cytoscape plug-in that offers a user-friendly interface to create

biological networks integrated from several databases. For example, the BioNetBuilder

client-server [33] retrieved more than 100,000 interactions for S. cerevisiae from differ-

ent databases as follows: (BIND, 16244); (BioGrid, 99485); (DIP, 17465); (IntAct,

14331); (Interologger, 5395); (KEGG, 5478); (MINT, 11907); the numbers here
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represent the number of interactions for each corresponding database. Although the

network retrieved by BioNetBuilder is still incomplete, we consider it a gold standard

network for comparison.

In addition, we have to compare our algorithm’s performance via previous methods. In

this paper, we compare our algorithm with the Friedman algorithm. Friedman [4] devel-

oped a new framework for discovering interactions between genes based on multiple

expression measurements that are capable of revealing causal relationships, interactions

between genes other than positive correlations, and finer intra-cluster structure. He

applied his approach to the dataset of Spellman et al. [20], containing 76 gene expression

measurements of the mRNA levels of 6177 S. cerevisiae ORFs. (Friedman’s network is

available from (http://www.cs.huji.ac.il/~nirf/GeneExpression/top800/).

Receiver operator characteristic (ROC) curve and precision recall (PR) curves are

commonly used for binary decision problems. We used the DREAM2 [34] evaluation

script to compute area and ROC and PR curves. We define some important terms as

follows:

• TP: Number of edges present in the gold network and in the predicted network.

• FP: Number of edges not present in the gold network but included in the pre-

dicted network.

• FN: Number of edges present in the gold network but not in the predicted

network.

• TN: Number of edges not present in the gold network and also not included in

the predicted network.

Definitions of TPR, FPR, Recall and Precision can be found in [35].

We also assess the credibility of the network generated by analyzing the network

topology using NetworkAnalyzer [36] and finding putative modules using MCODE

[37] and BINGO [38].

Results and Discussion
Biclustering

We applied BicAT-Plus to the S. cerevisiae gene expression data provided by Gasch et

al. [19]. The dataset contains 2993 genes and 173 diverse environmental transition

conditions such as temperature shock, amino acid starvation, and nitrogen source

depletion.

Table 1 shows the biclustering algorithm parameter settings as recommended by the

authors in their corresponding publications.

Table 2 demonstrates the statistical comparison of the bicluster outputs for each

algorithm. They differ in the number of bicluster outputs, the number of genes and

conditions within each bicluster, and the ability to recover genes and conditions within

its biclusters. CC produces large bicluster size (2259 × 134) because the objective func-

tion of this algorithm is to find large biclusters. To that end, it includes an optimiza-

tion algorithm that maximizes the number of genes within the bicluster and at the

same time minimizes the residual, which is the difference between the actual value of

an element xij and its expected value as predicted from the corresponding row mean,

column mean, and bicluster mean.
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Comparison of these algorithms using the percentage of enriched biclusters is shown

in Figure 2 (histogram). By comparing Figure 2 with Figure 3 in [12,27], we found that

the percentages of enriched biclusters for the matched algorithms are almost the same.

This validates the results of the proposed comparative tool. Investigating both figures,

we observed that the OPSM algorithm gave a high portion of functionally enriched

biclusters at all significance levels (from 85% to 100%). Next to OPSM, ISA shows rela-

tively high portions of enriched biclusters.

In many simulations, we found that most of the enriched biclusters contain few

annotated genes. Figure 3 shows the percentage of enriched biclusters in which at least

half of their genes are annotated in any GO category. OPSM and ISA have highly

enriched biclusters with many annotated genes. In contrast, the Bivisu and k-means

biclusters are strongly affected by this filtration as they contain fewer annotated genes

in each category. Figure 3 helps to identify the most powerful and reliable algorithms

for grouping the maximum numbers of genes sharing the same functions in one

bicluster.

Finally, given the ease of comparison allowed by BicAT-Plus, it was straightforward

to do further analysis to assess predictive power for recovering interesting patterns;

Table 1 Parameter settings of biclustering algorithms applied to the Gasch dataset [19].

Algorithm Parameters Parameter Description

ISA tg = 2.0 Genes threshold level

tc = 2.0 Condition threshold level

SN = 500 No of seeds

CC Delta = 0.5 Maximum of accepted score

Alpha = 1.2 Scaling factor

M = 100 Number of biclusters to be found

OPSM l = 100 Number of passed models for each iteration

K-means M = 100 Number of Biclusters to be found

IN = 100 Number of Iterations

RN = 10 Number of replications

DM = ED Distance Metric is Euclidean Distance

Bivisu NT = 0.82 Data Noise threshold

% NR = 0.33 Minimum % of rows

NC = 5 Minimum number of columns

O% = 25% Maximum overlap allowed

Parameter settings of biclustering algorithms applied to cell cycle gene expression data of S. cerevisiae provided by
Spellman et al. [20]. For more details about these parameters, see corresponding publication.

Table 2 Statistical comparison of bicluster outputs when using the Gasch Dataset [19].

Biclustering
Algorithm

No of Biclusters Bicluster/Cluster
Size

GeneCoverage
%

ConditionCoverage
%

Min Max

ISA 9 50 × 35 155 × 37 25 97

CC 69 11 × 5 2259 × 134 100 100

OPSM 2 11 × 15 575 × 6 88.5 32.9

BiVisu 100 27 × 142 99 × 52 55 100

Kmeans 100 20 × 173 50 × 173 100 100

These biclusters were produced when biclustering algorithms were applied with the parameter settings in Table 1 on
the Gasch et al. [19] dataset. The size of a bicluster is determined by its number of values, i.e. the product of the
numbers of rows and columns; GeneCoverage% and ConditionCoverage% are the percentage of genes, and conditions
were recovered for each algorithm respectively.
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that is, to compare biclustering methods on the basis of which of them recover known

patterns in the particular experimental dataset used. Table 3 shows the differences

between the bicluster contents based on their predictability to recover the response to

stress category. Although OPSM showed a high percentage of enriched biclusters, it

had no biclusters with genes matching any of the known GO categories for the Gasch

data set. Although there were few ISA biclusters (9) and a low percentage of gene cov-

erage (25%), it showed better performance with one of its biclusters having 11 genes

matching response to oxidative stress (GO:0006979). We also see that three methods

(k-means, CC and ISA) were able to define biclusters with 4 out of 5 genes in the cel-

lular response to nitrogen starvation functional category, which is very striking. Finally,

we observe that several methods appear to be unique in detecting biclusters related to

certain function categories. For example, ISA and CC detected two genes belonging to

response to cold and cellular response to starvation functions, respectively.

The comparison methodology used in this study indicates that the present methods

show no clear winner, and in fact it seems that all methods should somehow be inte-

grated together to capture the information in the data (i.e. biclustering algorithms dif-

fer in strategy, approach, time complexity, number of parameters and predictive

Figure 2 Percentage of enriched biclusters. The percentage of enriched biclusters for Biological Process
GO annotations (y-axis) is shown against the selected biclustering algorithms (x-axis) at different
significance levels. Biclustering algorithms and k-means were applied to the Gasch dataset [19] using the
parameter settings in Table 1 with GO annotations of the Biological Process category. A bicluster is said to
be significantly overrepresented (enriched) with a functional category if the P-value of this functional
category is lower than the preset threshold P-value. The OPSM algorithm gave a high portion of
functionally enriched biclusters at all significance levels (from 85% to 100%). Next to OPSM, ISA shows
relatively high portions of enriched biclusters.

Figure 3 Percentage of enriched biclusters using restricted criteria. This Figure is similar to Figure 2
with restriction in the enrichment definition. A bicluster is said to be significantly enriched if the p-value of
any of GO category is lower than the preset threshold P-value. The Bivisu and k-means biclusters are
strongly affected by this filtration as they contain fewer annotated genes per each category. This filtration
criterion helps to identify the most powerful and reliable algorithms that group the maximum numbers of
genes sharing the same functions in one bicluster.
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capacity, so we expect that each algorithm can recover what other algorithms cannot.

So on inspection of Table 3, we recommend biologists to run all biclustering algo-

rithms on their data set and select the enriched results.)

As Friedman used the Spellman [20] cell cycle dataset, we applied BicAT-Plus to this

dataset. We used the parameter settings shown in Table 4 and produced the biclusters

shown in Table 5. One remarkable observation is that the gene coverage percentage of

the ISA algorithm differs from the Spellman dataset (91%) (see Table 5) and the Gasch

dataset (25%) (see Table 2). This confirms that each dataset has its unique signature,

so integrating more than one dataset enables biological knowledge to be extracted that

could not be extracted from a single dataset.

Table 3 Comparing biclustering algorithms on the basis of their predictive capacities for
recovering selected patterns.

GO Term/number of annotated genes K-means CC ISA Bivisu OPSM

GO:0042493
Response to drug (118)

4 5 7 6 0

GO:0006970
Response to osmotic stress (83)

3 5 6 3 0

GO:0006979
Response to oxidative stress (79)

2 7 11 0 0

GO:0046686
Response to cadmium ion (102)

2 3 2 2 0

GO:0043330
Response to exogenous dsRNA (7)

2 3 2 2 0

GO:0046685
Response to arsenic (77)

2 0 2 2 0

GO:0006950
Response to stress (532)

9 11 16 2 0

GO:0009408
Response to heat (24)

3 0 2 2 0

GO:0009409
Response to cold (7)

0 0 2 0 0

GO:0009267
Cellular response to starvation (44)

0 2 0 0 0

GO:0006995
Cellular response to nitrogen starvation (5)

4 4 4 0 0

GO:0042149
Cellular response to glucose starvation (5)

0 2 0 0 0

GO:0009651
Response to salt stress (15)

2 7 0 0 0

GO:0042542
Response to hydrogen peroxide (5)

0 0 0 2 0

GO:0006974
Response to DNA damage stimulus (240)

0 22 0 3 0

GO:0000304
Response to singlet oxygen (4)

2 0 0 0 0

We tested the predictive capacities of different biclustering algorithms for recovering the gene ontology category within
response to stress (GO:0006950). Rows represent the known gene ontology function categories under the response to
stress category and the columns are tge different biclustering methods, with the highest relevant performance cluster
result as the entry for a given functional category and clustering method. Several interesting observations can be made.
First, although OPSM showed a high percentage of enriched biclusters, it had no biclusters with genes matching any of
the known GO categories for the Gasch data set. Second, despite the low number of biclusters (9) and low percentage
of gene coverage (25\%), ISA showed better performance, with one of its biclusters having 11 genes matching response
to oxidative stress (GO:0006979). Finally, we observe that several methods appear to be unique in detecting biclusters
related to certain function categories. For example, ISA and CC detected two genes belonging to the response to cold
and cellular response to starvation functions, respectively.
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Network Validation

Figure 4 and Table 6 show the performance of the biclustering networks via the gold

network retrieved by BioNetBuilder [33] and the Friedman network [4]. Inspecting Fig-

ure 4 and Table 7, we find that neither the networks generated from different bicluster

algorithms nor the ALL network perform well. There are two important considerations

when interpreting the results of this comparison. First, the interactions documented

are either physical or genetic. This implies that they may not be direct interactions.

The precision may be lower than the actual precision since links may be missing in

the interactome databases; and the recall may be lower than the actual recall in part

because some of the links reported in the interactome databases may be indirect [39].

Second, some presently unsupported edges in the constructed network may find

Table 4 Parameter settings of biclustering algorithms applied to the Spellman dataset
[20].

Algorithm Parameters Parameter Description

ISA tg = 2.0 Gene threshold level

tc = 2.0 Condition threshold level

SN = 500 No of seeds

CC Delta = 0.5 Maximum accepted score

Alpha = 1.2 Scaling factor

M = 100 Number of biclusters to be found

OPSM l = 100 Number of passed models for each iteration

K-means M = 100 Number of biclusters to be found

IN = 100 Number of Iterations

RN = 10 Number of replications

DM = ED Distance Metric is Euclidean Distance

Bivisu NT = 0.5819 Data noise threshold

% NR = 1.57 Minimum% of rows

NC = 5 Minimum number of columns

O% = 25% Maximum overlap allowed

MSBE alpha = 0.4 Similarity threshold

beta = 0.5 Bonus similarity threshold

gamma = 1.2 Threshold of the average similarity score

SAMBA MHS = 100 Maximal memory allocated for hashing

KHS1 = 4 stage

PC = 100 Maximal kernel size in the hashing stage

KHS2 = 4 Minimal number of responding probes per condition

O% = 25% Minimal kernel size in the hashing stage Maximum overlap between two biclusters

Parameter settings of biclustering algorithms applied to cell cycle gene expression data of S. cerevisiae provided by
Spellman et al. [20]. For more details about these parameters, see the corresponding publication.

Table 5 Statistical comparison of bicluster outputs using the Spellman dataset [20].

Biclustering Algorithm No of Biclusters GeneCoverage% ConditionCoverage%

Kmeans 100 100 100

ISA 219 91 100

CC 69 100 100

OPSM 12 84 57

BiVisu 100 62 100

These biclusters were produced when biclustering algorithms were applied with the parameter settings in Table 4 to the
Spellman et al. [20] data set. GeneCoverage% and ConditionCoverage\% are the percentages of genes and conditions
recovered per each algorithm respectively.
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experimental evidence in the future. Therefore, these unsupported edges are not neces-

sarily false [40].

For the above reasons, the False Positive (FP) edges could be considered True Posi-

tive (TP) if supporting evidence were found in the interaction databases (gold net-

work). For example, if the inference network includes an edge between gene1 and

gene3, which does not exist in the gold network, and if these two genes were con-

nected indirectly via another intermediate gene such as gene2, we can now consider

the edge between gene1 and gene3 to be a true positive edge. To be entirely consistent

we change TN edge into a FN every time there is an interaction via an intermediate

gene.

Table 8 and Figure 5 show the improvement in performance of the networks after

taking the above evaluation modification into consideration. Furthermore, they show

Figure 4 ROC and PR curves of different biclustering networks that have learned using Bayesian
networks [29]. A performance comparison of networks generated from learning corresponding
biclustering algorithms using the Bayesian networks method via the Friedman network [4] and the gold
network retrieved by BioNetBuilder [33]. This figure shows that most of these networks contained few true
positive edges. Neither the networks generated from different bicluster algorithms nor those generated
from all biclustering networks (dashed line) perform well. ALL: This network is produced by integrating
edges from all biclustering networks; Friedman Network [4]; SAMBA: This network is generated by
integrating SAMBA [43] subnetworks; Kmeans: This network is generated by integrating k-means
subnetworks; ISA: This network is generated by integrating ISA [31] subnetworks; OPSM: This network is
generated by integrating OPSM [23] subnetworks; CC: This network is generated by integrating CC [24]
subnetworks; Bivisu: This network is generated by integrating Bivisu [32] subnetworks; CMSBE: This network
is generated by integrating MSBE [27] subnetworks.

Table 6 Number of network edges generated from different biclustering algorithms and
Friedman network.

Bicluster Network Number of Edges

K-means network 380

ISA network 2558

OPSM network CC network 220 590

Bivisu network 1515

MSBE network 735

SAMBA network 1611

Total Number of Edges(ALL Network) 5440

Friedman Network 947

For example, applying the ISA algorithm to the Spellman dataset produced 219 biclusters (Table 5); learning these
biclusters produced 219 subnetworks. Integrating them produced the whole ISA network, which contains 2558 edges.
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how most of the false positive edges in these networks have evidence in the gold net-

work (the seventh column in Table 8).

It should be mentioned that, as we expected, the sparse nature of the GNR makes

biclustering techniques (ISA, SAMBA, Bivisu) outperform the Friedman network. This

promotes the use of biclustering algorithms to overcome the dimensionality problem

in GRN inference.

As the success of biclustering algorithms in grouping functionally related genes (i.e.

producing highly enriched biclusters), the corresponding learned subnetworks contain

many true positive edges. This explains the performance difference in Table 8. So the

challenge to produce a real network is reflected in finding enriched biclusters. Figures

2 and 3 and table 3 explain the high and low performance of algorithms ISA and

OPSM, respectively. As ISA produces highly enriched biclusters (Figures 2 and 3) and

is able to recover the selected pattern (Table 3), it produced a more realistic network;

the opposite was the case for the OPSM algorithm. On the other hand, the ISA net-

work even outperforms the SAMBA network: SAMBA produces fewer biclusters than

ISA and recovers a lower percentage (see Table 5).

Table 7 Performance comparison of the biclustering networks.

Methods EdgeCount TP FP TN FN AUROC AUPR

Gold 2194 2194 0 400396 0 1 1

ALL 5440 94 5346 395050 2100 0.5148 0.0073

SAMBA 1611 46 1565 398831 2148 0.5085 0.0072

ISA 2558 56 2502 397894 2138 0.5097 0.0067

OPSM 220 12 208 400188 2182 0.5025 0.0067

Friedman 947 22 925 399471 2172 0.5039 0.0065

CMSBE 735 20 715 399681 2174 0.5037 0.0063

K-means 380 13 367 400029 2181 0.5025 0.0061

Bivisu 1515 13 1502 398894 2181 0.5011 0.0055

CC 590 3 587 399809 2191 0.5000 0.0054

Performances of biclustering networks are compared with the Friedman network and gold network. EdgeCount: the
number of network edges; TP: number of true positive edges; TN: number of true negative edges; FP: number of false
negative edges; AUROC: area under ROC curve; AUPR: area under precision recall curve.

Table 8 Performance comparison of the biclustering network using new evaluation
criteria.

Methods EdgeC ount TP FP TN FN FP to TP TN to FN AURO C AUPR

Gold 2194 2194 0 400396 0 0 0 1 1

ALL 5440 94 5346 395050 2100 4623 2150 0.7530 0.4614

SAMBA 1611 46 1565 398831 2148 1340 2501 0.6958 0.3644

ISA 2558 56 2502 397894 2138 2141 1151 0.8451 0.6306

OPSM 220 12 208 400188 2182 190 2453 0.5423 0.089

Friedman 947 22 925 399471 2172 794 2700 0.6364 0.2491

CMSBE 735 20 715 399681 2174 653 2750 0.6181 0.2333

K-means 380 13 367 400029 2181 323 3100 0.5667 0.1307

Bivisu 1515 13 1502 398894 2181 1265 2610 0.6845 0.3326

CC 590 3 587 399809 2191 507 2800 0.5943 0.1788

The performances of the various biclustering algorithms improved when false positive edges could be considered true
positive edges on the basis of strong evidence in the gold network. Column 7 shows the number of false positive edges
in each algorithm that could be considered true positive edges (i.e. have evidence in the gold standard network).
Column 8 shows the number of true negative edges that are considered as false negative.
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We also tried more than scoring functions. Figure 6 suggests that the ISA network

performs equally using NormalGamma and the BDe scoring function. On the other

hand, Figure 7 demonstrates that the ISA network using GreedyHillClimbing outper-

formed the SparseCandidate algorithm with a different size of candidate sets. Further-

more, decreasing or increasing the size of the candidate sets beyond five affects the

network performance negatively.

To examine whether the performance on the datasets is typical of all network recon-

struction methods and is not particular to Bayesian networks with biclustering, we ran

another construction algorithm (linear regression) and compared the resultant net-

works with those generated from the Bayesian networks method. We used the LASSO

algorithm, which is implemented in Faisal et al. [41] at the Helsinki Institute for Infor-

mation Technology (http://users.ics.tkk.fi/faisal/Softwares/LassoRegression.tar.gz).

Figure 5 ROC and PR curves of biclustering networks using modified evaluation methodology. The
poor result of the previous figure (Figure 4) should be considered with regard to two important issues.
First, some of the links reported in the interactome databases may be indirect rather than the direct.
Second, the available interactome databases are still incomplete, so the false positive edges that are
unsupported are not necessarily false and may find experimental evidence in the future. The False Positive
(FP) edges could be considered True Positive (TP) if they have evidence in the literature (gold network). For
example, if the inference network includes an edge between gene1 and gene3, which does not exist in
the gold network, and if these two genes connect indirectly via another intermediate gene such as gene2,
we can now consider the edge between gene1 and gene3 as a true positive edge. To be entirely
consistent we change a TN edge into FN every time there is an interaction via an intermediate gene.

Figure 6 ISA network performance using different scoring function. This figure suggests that the ISA
network performs equally using the NormalGamma (dotted line) and BDe (solid line) scoring functions.
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We used the cross-validation method to determine the best optimum lambda. Figure

8 shows network performances using linear regression. Comparing Figure 8 with the

Bayesian results in Figure 5, we find the following:

• The performance of the CMSBE network does not change significantly.

• The performances of the ALL, OPSM and Bivisu, networks are greater using the

LASSO method than with the Bayesian networks method.

• The performances of the ISA, SAMBA and K-means, networks are lower using

the LASSO method than with the Bayesian networks method.

Figure 7 ISA network performance using different search algorithms. Network performance using
Greedy Hill Climbing outperformed the SparseCandidate learning algorithm. For the SparseCandidate
algorithm, decreasing or increasing the size of the candidate sets beyond five worsens the network
performance.

Figure 8 ROC and PR curves of different biclustering networks that have learned using linear
regression method [41]. A performance comparison of networks generated from learning corresponding
biclustering algorithms using linear regression via the gold network retrieved by BioNetBuilder [33].
Comparing Figure 8 with the Bayesian results in Figure 5, we find that the performance of the CMSBE [27]
network does not change significantly; the performances of the ALL (this network is produced by
integrating edges from all biclustering networks), OPSM [23] and Bivisu [32] networks are greater using the
LASSO method than the Bayesian networks method; and the performances of the ISA [31], SAMBA [43]
and K-means, networks are lower using the LASSO method than with the Bayesian networks method. We
may conclude from Figures 5 and 8 that while different network reconstruction algorithms will lead to
differences in the absolute performance, different biclustering schemes consistently have similar relative
performances, irrespective of the network reconstruction algorithm used.
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We could conclude from Figures 5 and 8 that while different network reconstruction

algorithms will lead to differences in absolute performance, different biclustering

schemes consistently have similar relative performances, irrespective of the network

reconstruction algorithm used.

Furthermore, analyzing network topology increases the credibility of the predicted

network. We therefore analyzed the ISA network and the gold network using NET-

WORKANALYZER [36]. Table 9 shows that these three important parameters are the

same in the two networks, indicating the high performance of the ISA network.

Finally, one of the best methods for validating a network is to assess its accumulated

information using the information published in the biological literature. Clustering

algorithms have been used to identify molecular complexes or modules in a large pro-

tein interaction network through network connectivity [37]. A network module is a

group of nodes in the network that work together to execute some common function.

We used the MCODE Cytoscape plug-in [37] to detect densely connected regions in

the ISA network, which retrieved 39 modules. Figure 9 shows the highly scored mod-

ules with the number of nodes and edges and the topology of each module discovered.

To validate the significance of the recovered modules, their nodes are a portion of a

complex, so there should be some process in which they all operate. Thus, if we

explore Gene Ontology (GO) term enrichment using functional enrichment tools such

as BINGO [38], we should see some biological process with significant enrichment for

these nodes [42]. Figure 10 demonstrates the functional enrichment of a highly scored

module using BINGO [38], which indicated that the module genes share three related

biological process: Chromatin assembly or disassembly, DNA Packaging and Establish-

ment and/or Maintenance of Chromatin Architecture.

Conclusions
The ongoing development of high-throughput technologies such as microarray

prompts researchers to study the complexity of gene regulatory networks (GRNs) in

cells. GRN inference algorithms have significant impact on drug development and on

understanding of disease ontology. Many GRN inference algorithms based on genome-

wide data have been developed to unravel the complexity of gene regulation. Tran-

scriptomic data measured by genome-wide DNA microarrays are traditionally used for

GRN modelling. This is because RNA molecules are more easily accessible than pro-

teins and metabolites. One of the major problems with time series microarrays is that

a dataset consists of relatively few time points with respect to a large number of genes.

Reducing the data dimensions is one of the interesting problems in GRN modelling.

The most common and important design rule for modelling gene networks is that

their topology should be sparse. This means that each gene is regulated by only a few

Table 9 Analyzing the topologies of the ISA and gold networks using NetworkAnalyzer
[36].

Parameters Gold Standard Network ISA Network

Network Diameter 8 9

Network Density 0.011 0.012

Avg. no of neighbors 6.91 6.933

NetworkAnalyzer performed topological analysis on the ISA and gold networks. Topological network parameters have
biological meaning in regard to the propagation of information among genes. The closeness in the parameters of the
ISA and gold networks indicates the credibility of the ISA network.
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other genes. In this work, a new gene regulatory network (GRN) construction system

from a large microarray dataset and prior biological information was proposed. As we

expected, because GRNs are sparse, biclustering techniques show significant results

compared to the Friedman network [4]. In this paper, we show the impact of using

Figure 9 Detecting modules of ISA network using MCODE [37]. We used the MCODE Cytoscape plug-
in [37] to detect densely connected regions in the ISA network, and this retrieved 39 modules (five are
shown). MCODE finds putative complexes through network connectivity. This figure shows the highly
scoring modules with the number of nodes and edges and the topology of each module discovered. A
significant number of modules have high scores and few nodes and edges.
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biclustering algorithms in GRN construction. Sophisticated filtration procedures such

as data filtration, missing value imputation, normalization and discretization were used

to reduce the number of expression profiles to some subset that contains the most sig-

nificant genes.

Also, the biclustering comparison toolbox (BicAT-Plus) implemented in this paper

confirms that the bicluster and cluster algorithms can be considered as an integrated

module; there is no single algorithm that can recover all the interesting patterns. What

algorithm A recovers in certain data sets, Algorithm B might fail to recover, and vice

versa. We can identify the highly enriched biclusters in all the algorithms compared,

integrating them to solve the dimensionality problem of GRN construction.

Moreover, the study in this paper confirms the ability of Bayesian Networks (BNs)

structure algorithms to recover gene network structures accurately. BNs allow us to

deal with the noise inherent in experimental measurements and to model the hidden

variables in the data.

Surprisingly, the networks generated in this study show sufficient accuracy when

compared to previous work and existing biological databases such as BIOGRIDE. Also,

validation of the generated network using popular validation algorithms such as

Figure 10 Functional enrichment of highly scored ISA network module. To validate the significance of
the modules recovered by MCODE [37], the highly scored module (with Rank 1 in Figure 8) was validated
using the functional enrichment analysis by the BINGO program [38]. The figure indicates that module
genes share three related biological process: Chromatin assembly or disassembly, DNA Packaging and
Establishment, and/or Maintenance of Chromatin Architecture.Uncolored nodes are not overrepresented,
but they are the parents of overrepresented categories further down. Yellow nodes represent GO
categories that are overrepresented at the significance level.
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MCODE and NetworkAnalyzer adds more credibility to our algorithm. The data used

in the validation step is not used for modelling. On the other hand, putative modules

were recovered from our method, which suggests the need for more analysis to recover

and test unknown complex modules.

We implemented the algorithm in Java. The program is open source and can be

obtained from the authors.
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