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Abstract

Background: The concept of disaster surge has arisen in recent years to describe
the phenomenon of severely increased demands on healthcare systems resulting
from catastrophic mass casualty events (MCEs) such as natural disasters and terrorist
attacks. The major challenge in dealing with a disaster surge is the efficient triage
and utilization of the healthcare resources appropriate to the magnitude and
character of the affected population in terms of its demographics and the types of
injuries that have been sustained.

Results: In this paper a deterministic population kinetics model is used to predict
the effect of the availability of a pediatric trauma center (PTC) upon the response to
an arbitrary disaster surge as a function of the rates of pediatric patients’ admission
to adult and pediatric centers and the corresponding discharge rates of these
centers. We find that adding a hypothetical pediatric trauma center to the response
documented in an historical example (the Israeli Defense Forces field hospital that
responded to the Haiti earthquake of 2010) would have allowed for a significant
increase in the overall rate of admission of the pediatric surge cohort. This would
have reduced the time to treatment in this example by approximately half. The time
needed to completely treat all children affected by the disaster would have
decreased by slightly more than a third, with the caveat that the PTC would have to
have been approximately as fast as the adult center in discharging its patients. Lastly,
if disaster death rates from other events reported in the literature are included in the
model, availability of a PTC would result in a relative mortality risk reduction of 37%.

Conclusions: Our model provides a mathematical justification for aggressive
inclusion of PTCs in planning for disasters by public health agencies.

Background
In the modern era, humanity has spread across and settled all habitable areas of the

globe, thereby greatly increasing potential exposures to catastrophic events, whether

natural or manmade, as demonstrated most recently by the 2010 Haiti earthquake [1]

as well as the tragic earthquake, tsunami and nuclear disaster that devastated Japan in

March, 2011 [2]. It is imperative that planning be undertaken to deal effectively with

the vast number of injured survivors. These conditions can be described as a disaster
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surge, which can be thought of as an unusually high fluctuation over and above the

normal background rate of patient utilization of medical services [3-12]. Multiple

strategies have been proposed to maximize patient throughput and efficiency of

resource utilization under surge conditions, and the overall consensus is that detailed

planning for various disaster contingencies is the key to this process.

Because of the random, stochastic nature of disaster events, this planning can be

greatly aided by simulation. A considerable amount of work has been done in modeling

disaster surges and the response of health systems to them [13]. More generally, a

patient population having to wait for medical triage and treatment can be thought of as

a problem in queueing theory [14-17]. This field grew out of A. K. Erlang’s pioneering

approach to modeling demand for telephone service in the early 20th century [18,19],

and has been applied to a diverse range of problems including not only telecommunica-

tions, but airport and automobile traffic patterns, other service industries, and hospital

and factory design [20-22]. If the length of the queue is long, then its behavior can often

be approximated to that of a continuous variable, thereby simplifying the mathematics

greatly. This approach results in what are referred to in the queueing theory literature as

fluid models [23-25], and can be used for predicting the behavior of, for example, queues

for service from a call-in center [26]. It has also been shown that if a system satisfies the

Markov property, that is, if its future behavior depends only on its current state, then its

behavior can be approximated deterministically by simple ordinary differential equations

(ODE’s) [27,28]. While more complicated stochastic methodologies such as Monte

Carlo simulation have been successfully used in modeling the response to a patient

surge [29,30], the simplicity of the ODE approach has motivated the use of kinetic or

compartmental models for such problems [31]. In this method, the population evolves

from an initial state to a number of subsequent states with each state change having a

rate constant. This approach has also long been used in physics and chemistry to model

reactions and series of reactions, as well as in population biology [32-34]. Here, we make

use of this mathematically elementary and well-established approach to predict the

behavior of pediatric and adult populations after a mass casualty event, with and without

the availability of a facility specifically designed to treat children.

A significant proportion of disaster victims are children, who have unique physiology,

patterns of injury, and psychosocial needs in such settings [35]. Studies have shown that

the availability of a pediatric trauma center (PTC) would probably improve the overall

response to a mass casualty incident, but the available data are sparse [36]. In the absence

of more extensive data, in this paper we use a population kinetics approach to estimate

the effect of the availability of a pediatric trauma center upon the rates of admission and

discharge of a disaster surge population by extrapolating from historical data. We find

that the initial rate of discharging patients from the PTC early in the surge is the dominant

influence on the time needed to fill the hospital’s maximum bed capacity as well as on the

time needed to definitively treat and discharge all patients in the surge. On the other

hand, the PTC admission rate and the rate of discharging patients once the PTC is full are

the most important factors in determining the time needed to admit the entire surge. We

then add historical mortality rates to our model and calculate the reduction in deaths that

would be conferred by a PTC. We conclude that within the limits of our model, the avail-

ability of a PTC would greatly enhance the response to a disaster as measured by the total

time needed to appropriately triage and treat the surge population.
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Methods
I. Approach

Before describing the details of our model, we shall first solve a simpler problem that

will provide its mathematical underpinnings. We begin by assuming that an unspeci-

fied disaster instantaneously produces an initial surge population. This scenario is a

good approximation for a subset of mass casualty events (MCEs) that occur suddenly

without appreciable buildup or exposure time, such as bombings, earthquakes, or air-

plane crashes. (The more general case, where there is a delay between the inciting

event and the onset of the surge, is mathematically more complicated, requires more

unknown parameters than the current scenario, and is developed for completeness in

Appendix A.) This population, which we shall denote by Ns(t), is defined at time zero

to be Ns(t = 0) = N0, and changes as it is admitted to a trauma center into a popula-

tion Na(t) of admitted patients with rate ka, which in turn can become a population of

Nd(t) discharged patients with rate kd:

Ns
ka−→ Na

kd−→ Nd (1)

Appropriate estimates for kaand kdwill be discussed later when we apply our model

to real-world historical data. We note that “discharge” would include mortality in this

scheme, as no explicit provision is made for categories of discharge (discharged to

home, discharged to a long term care facility, deceased, etc.). Equation 1 governs the

behavior of the surge population as patients transition to being admitted and treated,

and ultimately discharged; this behavior is described mathematically by a set of three

coupled first-order differential equations:

dNs

dt
= −kaNs (2)

dNa

dt
= kaNs − kdNa (3)

dNd

dt
= kdNa (4)

To solve Eqs. 2-4, we require the boundary conditions:

Ns(t = 0) = N0 (5)

Ns(t → ∞) = 0 (6)

Na(t = 0) = Na(t → ∞) = 0 (7)

Nd(t = 0) = 0 (8)

Nd(t → ∞) = N0 (9)

Eqs. 5 and 6 state that the number of surge patients begins at N0, and decays to zero

at long times since all patients are admitted and discharged. Eq. 7 reflects the fact that

there are no patients admitted at time zero, and at long times all admitted patients
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have been discharged. Eqs. 8 and 9 therefore state that there are no discharged patients

at time zero, while at long times the entire population has been discharged.

We can now solve the system of equations 2-4. Equation 2 can be solved by direct

integration, and applying the boundary conditions 5 and 6 gives:

Ns(t) = N0e
−kat (10)

Eq. 10 can be substituted into equation 3, yielding with some rearrangement:

dNa

dt
+ kdNa = kaN0e

−kat (11)

Multiplying Eq. 11 by the integrating factor exp(kdt), integration and application of

boundary condition (7) gives:

Na(t) = N0
ka

kd − ka

(
e−kat − e−kdt

)
(12)

This can be substituted into Eq. 4, which after direct integration and application of

boundary conditions (8) and (9) gives

Nd(t) = N0

(
ka

kd − ka
e−kdt − kd

kd − ka
e−kat + 1

)
(13)

Figure 1 shows a schematic of the behavior of the populations Ns, Na, and Ndas

described by Equations 10, 12 and 13. No units are shown here for the sake of concep-

tual clarity; quantitative results are shown in the Results section. The surge population

decays with typical single exponential behavior; the admitted population rises to a

maximum and decays, and the discharged population exhibits an exponential rise.

II. Maximum Capacity Model

At this point, we note that the model as currently formulated has a limitation in that

no provision is made for the maximum capacity of the trauma center. In other words,

the maximum value of Na(t) predicted by Eq. 12 is a function only of N0, kaand kd,

with no dependence on the number of available beds in the center. To see this, Na(t)

Figure 1 Qualitative behavior of surge (blue), admitted (red), and discharged (green) populations
with time as predicted by Equations 10, 12 and 13. Curves are normalized for clarity.
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can be maximized by setting its derivative equal to zero and solving this expression for

t, which gives

tNmax
a

=
1

kd − ka
ln

(
kd
ka

)
(14)

This value for t is inserted back into Eq. 12, giving

Nmax
a = N0

ka
kd − ka

⎡
⎢⎢⎣

(
kd
ka

) −ka
kd − ka −

(
kd
ka

) −kd
kd − ka

⎤
⎥⎥⎦ (15)

which is a function only of N0, kaand kd, and has no relation to any real-world hospi-

tal bed capacity.

This limitation can be overcome by modifying the model with some intuitive assump-

tions. First, we shall identify our trauma center’s intrinsic maximum capacity as Na
max,

and assume that the surge population behaves just as we have described above until

Nareaches Na
max. This maximum census is not equal to the total number of beds in the

trauma center, but rather its surge capacity over and above normal operations, or equiva-

lently the fraction of its beds allotted in the center’s planning for an MCE [37]. After

Na
max is reached, we assume that the center will remain at maximum capacity until the

surge is exhausted. That implies that the admission and discharge rates are equal during

this period. Next, we assume that the admission rate will be somewhat lower after the

trauma center is full compared with early times, as during this period many of its surge

beds will be occupied with critically injured patients. Finally, we assume that once 100% of

the surge has been admitted, the trauma center’s discharge rate will return to that prior to

maximum patient load. We will call this modified model the “maximum capacity model.”

To formulate this modification of the model mathematically, it is helpful to define two

times t1 and t2 as illustrated in Figure 2. At t1, the trauma center has reached its maximum

capacity and can only admit a patient if another is discharged, i.e., t1 = tNamax . This situa-

tion persists until t2, at which time the surge population has declined to zero and the

trauma center can again discharge patients at the pre-MCE rate. In the language of

Figure 2 Behavior of surge (blue), admitted (red), and discharged (green) populations with time in
the maximum capacity model described by Equations 16-18. Curves are not normalized or scaled.
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queueing theory, t2 is the time at which the queue has vanished. The resulting population

behavior is shown in Figure 2, where again, no units are shown for conceptual clarity;

quantitative data are shown below in Results.

We are now ready to solve the necessary differential equations for the maximum

capacity model. Overall, we have three separate regions in time with different behavior,

defined by

0 ≤ t < t1 :
dNs

dt
= −kaNs

dNa

dt
= kaNs − kdNa

dNd

dt
= kdNa

(16)

t1 ≤ t < t2 :
dNs

dt
= −k′

dNa

dt
= 0

dNd

dt
= k′

(17)

t ≥ t2 :
dNs

dt
= 0

dNa

dt
= −kdNa

dNd

dt
= kdNa

(18)

All variables and parameters have the same meanings as previously defined, except

for a single new parameter k’ that describes the admission and discharge rates during

the period of time between t1 and t2 when the trauma center is operating at maximum

capacity. We again note that k’ will likely be less than either kaor kd, as both admis-

sions and discharges will be slower once the trauma center is filled with critically

injured surge patients.

The solution of Eq. 16 is identical to Equations 10, 12 and 13. However, at t1 the

system’s behavior changes to conform to Equation 17, giving

t1 ≤ t < t2 : Ns = Ns,t1 − k′(t − t1)

Na = Na,t1

Nd = Nd,t1 + k′(t − t1)

(19)

where Na,t1= Na
max. At t2, the entire surge population has been exhausted, and the

system’s behavior changes to that entailed by Eq. 18, the solution of which is

t ≥ t2 : Ns = 0

Na = Na,t2e
−kd(t−t2)

Nd = Nd,t2 +Na,t2

(
1 − e−kd(t−t2)

) (20)

Barthel et al. Theoretical Biology and Medical Modelling 2011, 8:38
http://www.tbiomed.com/content/8/1/38

Page 6 of 32



We note that t1 has already been determined to be equal to tNamax as defined in Eq.

14 and again Na,t2 = Na,t1= Na
max. We are now also in a position to determine t2,

which is the time when Na= 0. Eq. 19 then gives

t2 = t1 +
Ns,t1

k′ (21)

III. Maximum Capacity with Pediatric Trauma Center Model

Armed with Equations 16-18 we can now include the effect of an available pediatric

trauma center in the maximum load model. We shall call what follows the “maximum

capacity with pediatric trauma center model.” We now assert that the initial N0 disas-

ter victims are composed of A0 adults and P0 pediatric patients, viz:

N0 = A0 + P0 (22)

We also note that the total number of surge patients as a function of time is equal to

the sum of the adult and pediatric subpopulations:

Ns(t) = Ps(t) + As(t) (23)

where Asand Psnow indicate the adult and pediatric cohorts of the surge, respectively.

We then assume that adult patients are only admitted to adult trauma centers, while

pediatric patients may be triaged and admitted to either adult or pediatric trauma cen-

ters (PTCs); this assumption is similar to the approach taken by Perry and Whit in

modeling call center capacity overloads [26], except that our case is asymmetric: adults

are never triaged to PTCs in this model. These assumptions result in the following

kinetic scheme:

As
kaa−→ Aa

kad−→ Ad (24)

Ps
kpaa−−→ Paa

kpda−−→ Pd (25)

Ps
kpap−−→ Pap

kpdp−−→ Pd (26)

where kaaand kadrepresent the rates of adult admission to and discharge from an

adult center, kpaaand kpdathe rates of pediatric admission to and discharge from the

adult center, and kpapand kpdpthe rates of pediatric admission to and discharge from

the PTC. Similarly, Aa(t) and Ad(t) are the populations of admitted and discharged

adults, while Paa(t) and Pap(t) are the pediatric populations admitted to adult and

pediatric centers, respectively, and Pd(t) represents the discharged pediatric population,

irrespective of the center at which they were treated.

The differential equations entailed by Equation 24, boundary conditions, and their

solution are identical to Equations 1-4 except for subscripts:

As(t) = A0e
−kaat (27)

Aa(t) = A0
kaa

kad − kaa

(
e−kaat − e−kadt

)
(28)
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Ad(t) = A0

(
kaa

kad − kaa
e−kadt − kad

kad − kaa
e−kaat + 1

)
(29)

On the other hand, the coupled differential equations resulting from Equations 25-26

are slightly different:

dPs
dt

= −(kpaa + kpap)Ps (30)

dPaa
dt

= kpaaPs − kpdaPaa (31)

dPap
dt

= kpapPs − kpdpPap (32)

dPd
dt

= kpdaPaa + kpdpPap (33)

The differences arise from the fact that there are potentially different rates of admis-

sion of pediatric patients to, and discharge of these patients from, the adult and pedia-

tric trauma centers in the model. If the admission and discharge rates are equal,

Equations 31-32 collapse into a single equation that is analogous to (1) and (24). The

boundary conditions on (30) and (33) are the same as (5-6) and (8-9); those for (31)

and (32) are identical to (7). At this point it is helpful to define:

k ≡ kpaa + kpap (34)

Eq. 26 essentially defines an effective or total admission rate constant for pediatric

patients in the model. The solution to (30-33), though slightly more complicated, is

obtained via the same algorithm that led to (10-13) and is as follows:

Ps(t) = P0e
−kt (35)

Paa(t) = P0
kpaa

kpda − k

(
e−kt − e−kpdat

)
(36)

Pap(t) = P0
kpap

kpdp − k

(
e−kt − e−kpdpt

)
(37)

Pd(t) = P0

[
kpaa

kpda − k
e−kpdat +

kpap
kpdp − k

e−kpdpt

+
(

kpdakpaa
k(k − kpda)

+
kpdpkpap

k(k − kpdp)

)
e−kt + 1

] (38)

Equations 35-38 describe the behavior of the pediatric cohort of the surge prior to

the maximum load times for the adult and pediatric trauma centers. The behavior will

change to one similar to Eq. 19 after these maxima are reached. However, there is no

longer a single time for the maximum load, but rather separate ones for the adult and

pediatric centers. Moreover, the behavior between the maximum load for the faster
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facility and that of the slower one requires a separate set of differential equations to be

solved. To show this, Figure 3 displays the qualitative behavior of the model we are

about to derive, with the necessary boundary conditions and regions where each set of

differential equations holds (I, II, III and IV) noted on the figure. The time for maxi-

mum load for the center that admits and discharges patients more rapidly is analogous

to Eq. 14. For the purposes of developing the model, we shall assume that the adult

center is faster, but the derivation proceeds identically if the opposite assumption is

made, except for the subscripts on the parameters; this issue is discussed further in

additional files 1 and 2. We shall also omit the constant prefactor P0 from all the equa-

tions that follow, since it can be added back in after the derivation is complete with no

loss of generality. Therefore:

t1,a ≡ tmax
paa =

1
kpda − k

ln
(
kpda
k

)
(39)

Figure 3 Behavior of pediatric cohort of the surge (top panel), admissions to adult center (second
panel), admissions to pediatric center (third panel), and discharged patients (fourth panel) with
time as predicted by the maximum capacity with PTC model, Eqs. 40-50. Uppercase letters indicate
boundary conditions for the appropriate differential equations; see text for details.
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The equations governing the system’s behavior in region II of Figure 3 are

t1,a ≤ t < t1,p :
dPs
dt

= −ka
′ − kpapPs

dPaa
dt

= 0

dPap
dt

= kpapPs − kpdpPap

dPs
dt

= ka
′ + kpdpPap

(40)

The solution to these equations is

t1,a ≤ t < t1,p :

Ps = − ka
′

kpap
+ αe−kpap(t−t1,a)

Paa = C

Pap =
ka

′

kpdp

(
e−kpdp(t−t1,a) − 1

)
+γ

(
e−kpap(t−t1,a) − e−kpdp(t−t1,a)

)
+He−kpdp(t−t1,a)

Pd =
(
H − γ +

ka
′

kpdp

)(
1 − e−kpdp(t−t1,a)

)

+γ
kpdp
kpap

(
1 − e−kpap(t−t1,a)

)
+ E

(41)

where the constants are given by

α = A +
ka

′

kpap

γ =
Akpap + ka

′

kpdp − kpap

A = e−kt1,a

C =
kpaa

kpda − k

(
A − e−kpdat1,a

)

E =
kpaa

kpda − k
e−kpdat1,a +

kpap
kpdp − k

e−kpdpt1,a

+
(

kpdakpaa
k(k − kpda)

+
kpdpkpap

k(k − kpdp)

)
A + 1

H =
kpap

kpdp − k

(
A − e−kpdpt1,a

)

(42)

The time for the maximum load D on the slower center (the pediatric trauma center

in this derivation) can be found by maximizing the expression for Papin (41). Thus the

expressions for t1,p and D are:

t1,p =
1

kpap − kpdp
ln

(
αkpap
βkpdp

− γ

β

)

D = Pap
(
t1,p

)
=

ka
′

kpdp

(
e−kpdp(t1,p−t1,a) − 1

)
+γ

(
e−kpap(t1,p−t1,a) − e−kpdp(t1,p−t1,a)

)
+He−kpdp(t1,p−t1,a)

(43)
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with b given by:

β = H − γ +
ka

′

kpdp
(44)

B and F are also obtained by substituting t1,p into the appropriate expressions in (41):

B = − ka
′

kpap
+ αe−kpap(t1,p−t1,a)

F =
(
H − γ +

ka
′

kpdp

)(
1 − e−kpdp(t1,p−t1,a)

)

+γ
kpdp
kpap

(
1 − e−kpap(t1,p−t1,a)

)
+ E

(45)

After t1, p, the slower pediatric center is also at its maximum capacity, and both cen-

ters can admit a patient only if another is discharged. The kinetics then becomes zer-

oth order similarly to Eqs. 17 and 19, so in region III of Figure 3, the governing

equations are

t1,p ≤ t < t2 :
dPs
dt

= −κ

dPaa
dt

=
dPap
dt

= 0

dPd
dt

= κ

(46)

where � = ka’ + kp’, the sum of the discharge rates of the adult and pediatric centers

during the period of time while they are at maximum capacity (region III). The solu-

tion to (46) is

t1,p ≤ t < t2 : Ps = B − κ(t − t1,p)

Paa = C

Pap = D

Pd = F + κ(t − t1,p)

(47)

The value for t2, the time when the surge is exhausted, is just the t-intercept of the

line describing Psin region III. This can also be used to find G:

t2 = t1,p +
B

κ

G = F + κ(t2 − t1,p) = F + B
(48)

Because the surge cohort has vanished at t2, there is no more external load upon

either trauma center, so we again make the assumption that each center can resume

discharging patients at the pre-MCE rate as in Eq. 18. This is only a simplifying

assumption, as arbitrary rates could be assumed with no effect on the derivation except

for subscripts. The differential equations for region IV are then

t > t2 :
dPs
dt

= Ps = 0

dPaa
dt

= −kpdaPaa

dPap
dt

= −kpdpPap

dPd
dt

= kpdaPaa + kpdpPap

(49)
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All boundary conditions are known and illustrated in Figure 3, including that at long

times Pdmust be unity. Therefore the solution to (49) is:

t > t2 : Ps = 0

Paa = Ce−kpda(t−t2)

Pap = De−kpdp(t−t2)

Pd = 1 − Ce−kpda(t−t2) − De−kpdp(t−t2)

(50)

Results
I. Application of the maximum capacity model to an historical example

Equations 40-50 now allow us to examine the behavior of the pediatric surge popula-

tion P0 under a variety of conditions. We begin by identifying the appropriate para-

meters in the simpler maximum capacity model that define real-world timescales. We

then proceed to work through an example of applying the model by considering litera-

ture admission and discharge data from an historical disaster surge. We fit the equa-

tions to these data, and then include the full maximum capacity with pediatric trauma

center model to extrapolate the effect a pediatric trauma center would have had on the

time necessary to treat the patients.

There are several potentially observable parameters in the models presented here.

The rates of admission and discharge in the initial and maximum capacity regimes are

certainly observable in principle, but they are rarely reported as such. Also, the maxi-

mum surge capacities Na
max, C and D are available to disaster planners, but not usually

reported directly. Rather, what is often available are the times of maximum load (t1 in

the maximum capacity model, t1,a and t1,p in the maximum capacity model with pedia-

tric trauma center available) and the time at which the surge population has been

completely dispositioned. The latter time does not correspond to t2, since the trauma

centers are still full to capacity at this point. Rather, this is the time at which, in region

IV of Figure 3, the discharged population has increased to very nearly unity. We note

that it cannot be defined as the time that exactly 100% of the surge has been dis-

charged, since the exponentials governing the behavior of the populations do not reach

this value until infinity. Rather, we can define a time at which some specified fraction

of discharges has been reached: we shall choose 99% and call this time t99. From Equa-

tion 20, it follows that in the maximum capacity model t99 is given by

t99 = t2 − 1
kd

ln
(
1 − 0.99 − Nd,t2

Na,t2

)
(51)

However, in the maximum capacity with PTC model, Equation 50 is transcendental

so t99 cannot be solved for in closed form, but it can be found numerically. We note

that our choice of the parameters t1 and t99 was motivated in large part by the avail-

ability of such data in the literature, but also by the importance of t1 as a defining

timescale of the behavior of populations in the model. On the other hand, we include

t2 primarily as a natural timescale of the model itself (where the surge or queue length

vanishes and the system’s deterministic behavior changes again) rather than as a

descriptor of available historical data, and we examine the effect of varying it in the

sensitivity analysis. Finally, the effect of including the explicit contribution of death

rates for each population is derived in Appendix B.
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The historical example we shall use in demonstrating the implementation of the model

is that of an Israeli Defense Forces mobile field hospital that responded to the 2010 Haiti

earthquake. In that case, 1111 patients were treated over a course of 10 days, and the hos-

pital’s maximum capacity of 60 to 72 beds was reached prior to 2 days of operation [1].

We chose this example because the disaster itself was sudden as required by our assump-

tions, and because of the quality of the data available with which to fit our model in com-

parison to other historical MCEs. We will begin by fitting the maximum capacity model

(without a pediatric trauma center available) to these data. This amounts to solving a sys-

tem of equations consisting of (13), (14) and (21) for ka, kd, and k’ with the historical data

of t1 = 2 days, t99 = 10 days. Since we have three equations with two unknowns, the

system is not uniquely determined and actually has two solutions, one for the case of ka>k-

dand another for ka <kd. To overcome this we must impose a constraint for t2: for this case

we shall arbitrarily assume that it took approximately the same time to discharge all

admitted patients once the surge was exhausted as it did for the hospital to reach maxi-

mum capacity, that is, t2 = 8. In other words, we are requiring in this example that

t99 − t2 = t1 (52)

With this constraint, the model can be numerically solved uniquely given the historical

data. This assumption could be eliminated if real historical data were available for t2, and

we examine the effect of varying this constraint in the sensitivity analysis. The results

given the observed data and the constraint (52) are ka= 0.158 ± 0.066 day-1, kd= 1.151 ±

0.377 day-1, k’ = 0.122 ± 0.014 day-1; the uncertainties are one standard deviation. The

model was fit using the Frontline Systems (Incline Village, NV, USA) Solver add-in for

Microsoft Excel 2008 for Macintosh. To obtain estimates of parameter uncertainties, we

assumed unit variance for the input data t1, t2, and t99. We then fit the sums of squared

errors as polynomial functions of the parameters ka, kd, and k’, obtained their derivatives,

and approximated the variances of the parameters as twice the inverse of the second

derivative of the error with respect to each (neglecting covariances), as in [38]. We can

now use these results as our baseline and proceed to add a hypothetical pediatric trauma

center to this example as part of our sensitivity analysis.

II. Sensitivity analysis

A. Approach

In general, the output of a mathematical model depends upon the model methodology

and the input parameters. Accordingly, the sensitivity of the output to the uncertainties

in the parameters fit to experimental data can be assessed in a formal sensitivity analysis.

For kinetic models of this type, much work has been published in the physics and chem-

istry literature on methods to perform this analysis [39-42], but in this section we follow

Atherton et al.’s approach [41]. In this section of the paper, we apply this methodology

to fits obtained with the maximum capacity model in the previous section. In addition,

though literature values are not available for some of the parameters in the more com-

plicated maximum capacity with PTC model, we shall also make predictions about the

effects of the availability of a pediatric trauma center on triage and discharge times if

some reasonable assumptions are made about these parameters. Lastly we shall address

mortality of the surge population using a modification of the model that includes explicit

death rates of each population and is fully derived in Appendix B.
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In the maximum capacity model, there are three parameters, ka, kd, and k’, and three

outputs, t1, t2 and t99. In general, if covariances are neglected, the variance or squared

standard deviation of the ith output Xi, in terms of the parameters pjof a model, is:

σ 2
Xi
=

∑
j

(
∂Xi

∂pj

)2

σ 2
pj (53)

In our case, the sum index j runs from one to three for the three parameters for

each output variable. Therefore, there are nine elements of the relevant sensitivity

matrix S, with the matrix elements given by

Sij =
∂Xi

∂pj
(54)

We can then define an output variance matrix V with the matrix elements

Vij = S2ijσ
2
pj (55)

Again following Atherton et al., the effects of parameter uncertainties on the ith out-

put variable are then ranked in order of their magnitude.

To accomplish this, we require the nine partial derivatives implied by Equation 54,

which are shown below:

∂t1
∂ka

=
1

kd − ka

(
t1 − 1

ka

)
(56)

∂t1
∂kd

=
1

kd − ka

(
1
kd

− t1

)
(57)

∂t1
∂k′ = 0 (58)

∂t2
∂ka

=
(
1 − ka

k′ e
−kat1

)
∂t1
∂ka

− t1
k′ e

−kat1 (59)

∂t2
∂kd

=
(
1 − ka

k′ e
−kat1

)
∂t1
∂kd

(60)

∂t2
∂k′ = − 1

k′2 e
−kat1 (61)

∂t99
∂ka

=
∂t2
∂ka

− 1
kd

⎡
⎢⎢⎣

∂Nd,t2

∂ka
+

(
0.99 − Nd,t2

Na,t2

)
∂Na,t2

∂ka
Na,t2 − (0.99 − Nd,t2 )

⎤
⎥⎥⎦ (62)

∂t99
∂kd

=
1

k2d
ln

(
1 − 0.99 − Nd,t2

Na,t2

)
+

∂t2
∂kd

− 1
kd

⎡
⎢⎢⎣

∂Nd,t2

∂kd
+

(
0.99 − Nd,t2

Na,t2

)
∂Na,t2

∂kd
Na,t2 − (0.99 − Nd,t2)

⎤
⎥⎥⎦

(63)
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∂t99
∂k′ =

∂t2
∂k′ (64)

with the first partial derivative in the numerator of the bracketed expression in Equa-

tion 62 given by

∂Nd,t2

∂ka
=

∂Nd,t1

∂ka
+ k′

(
∂t2
∂ka

− ∂t1
∂ka

)
(65)

where the first term in Equation 65 is

∂Nd,t1

∂ka
=

(
e−kdt1 − e−kat1

)(
kd

(kd − ka)
2 − kakd

kd − ka

∂t1
∂ka

)

+t1
kd

kd − ka
e−kat1

(66)

The other partial derivative in the bracketed expression in Equation 62 is

∂Na,t2

∂ka
=

(
ka

kd − ka

)[(
kde−kdt1 − kae−kat1

) ∂t1
∂ka

− t1e−kat1

]

+
kd

(kd − ka)
2

(
e−kat1 − e−kdt1

) (67)

Similarly, the required expressions to evaluate Equation 63 are

∂Nd,t2

∂kd
=

∂Nd,t1

∂kd
+ k′

(
∂t2
∂kd

− ∂t1
∂kd

)
(68)

∂Nd,t1

∂kd
=

(
e−kat1 − e−kdt1

) (
ka

(kd − ka)
2 +

kakd
kd − ka

∂t1
∂kd

)

−t1
ka

kd − ka
e−kdt1

(69)

∂Na,t2

∂kd
=

(
ka

kd − ka

)[(
kde−kdt1 − kae−kat1

) ∂t1
∂kd

+ t1e−kdt1

]

− ka
(kd − ka)

2

(
e−kat1 − e−kdt1

) (70)

Substituting the appropriate values for the rate constants and outputs from the maxi-

mum capacity model gives

S =

⎛
⎝ −4.36 −1.14 0

−12.23 −0.06 −49.37
−7.87 −2.40 −49.37

⎞
⎠ (71)

where the first row gives the derivatives for t1, the second for t2, and the third for t99,

and the columns correspond to differentiation with respect to ka, kdand k’, respectively.

After squaring each element and multiplying each column by the variance of the

appropriate parameter, we finally obtain

V =

⎛
⎝0.082 0.184 0
0.649 0.0005 0.500
0.268 0.815 0.500

⎞
⎠ (72)
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B. Effect of varying the constraint t99 - t2
As noted in our introduction of Equation 52, in order to obtain a unique solution for

the fit of the maximum capacity model to the data available from Reference [1], we

had to impose a constraint on the difference between the time at which 99 percent of

the patients had been discharged and the time at which the patient surge was

exhausted. We arbitrarily assumed that this difference would be equal to the time

needed to evolve from time zero to steady state, t1 in the maximum capacity model.

To determine the effect of relaxing this constraint, we varied this difference by ± 50%,

i.e., we defined

τ = t99 − t2 (73)

we varied τ from 1 to 3 days and re-fit the data, bracketing our initial constraint of 2

days. The net effect of this approach is to vary t2, because t99is fixed at 10 days by the

historical data. The results of this calculation are shown in Figure 4, which depicts the

three rate constants ka, kd, and k’ as a function of τ. Since t1 is also constant and fixed

by the ratio of kdto ka, as kddecreases with increasing τ, kamust increase accordingly.

Because t99is fixed, and by Equation 20 the behavior of the maximum capacity model

in region III is governed by kd, a smaller kdresults in a larger τ and a shorter time

Figure 4 Effect of changing the constraint on τ = t2-t1 on the fitted values of the rates for the
maximum capacity model. Error bars represent one standard deviation; see text for details.
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spent in the steady state regime of region II. Therefore, the steady state discharge rate

k’ must therefore increase with increasing τ, which is indeed the case.

C. Availability of a Pediatric Trauma Center speeds admission of the pediatric cohort

We are now in a position to include the hypothetical effect predicted by the maximum

capacity with PTC model of the availability of a pediatric trauma center upon the flow

of pediatric patients in this historical example. The approach we take is to vary the

three parameters kpap, kpdp, and kp’ from much less than the corresponding adult cen-

ter parameters kpaa, kpda, and ka’ smoothly up to the latter values fitted from our his-

torical example. We then determine the effect on observable quantities t2 and t99 from

the model, the times needed to completely admit and discharge the surge population,

respectively. For this paper, we did not independently vary the three parameters from

zero to the fitted adult values. Rather, we first chose to look at a subset of the para-

meter space, that in which the pediatric parameters are uniformly scaled by a single

factor, ranging from much less than one up to nearly one, multiplied by the corre-

sponding adult parameters. Our rationale in this approach was that without historical

data for the ratios of the pediatric admission and discharge rates to one another, it was

reasonable to fix them to the proportions between those of the adult center, for which,

in contrast, we were able to fit available data. At this point, we also recall that in the

derivation of the model, we assumed that the steady state discharge rates kp’ and ka’

were less than their corresponding discharge rates prior to achieving maximum capa-

city, kpdpand kpda, which restricts the parameter space available to explore, though this

had no effect on the analysis that follows.

Figure 5 shows the effect on t2 and t99 of varying the pediatric parameters from a

factor of 10-3 times the fitted adult parameters up to a factor of 0.999, and some clear

behavior emerges. It can be seen that despite the monotonic decrease in t2 as the

pediatric center’s effect is scaled up from near zero to approaching that of the adult

center (Figure 5A), there is an initial increase in t99 that peaks at a scale factor of

approximately 0.04, and this only falls below the baseline value of 10 days when the

pediatric parameters are scaled by 0.4 or greater (Figure 5C). We hypothesized that

this effect arose largely from trapping of patients in the pediatric center when it was

unable to discharge them at a sufficient rate. To test this, we investigated a second

case where the pediatric discharge rate was fixed at the adult rate for all values of

kpaaand ka’, and the latter two were scaled as in the first case. As shown in Figure 5B

and 5D, if kpdpis set equal to kpdathe prolongation of t99 is eliminated and both t2 and

t99 decrease as kpaaand ka’ are scaled from near zero to the adult values.

The initial increase of t99 for small uniform scale factors can be explained in greater

detail by examining the behavior of the population of discharged patients in the maxi-

mum capacity with PTC model at long times when this factor is small. In this case, we

can write:

kpdp = εkpda (74)

where ε < < 1. The population of discharged patients, the final expression in Equa-

tion 50, can then be approximated at long times by

Pd ≈ 1 − De−kpdp(t−t2) (75)
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since the C term decays much faster than the D term. It is then easy to show that

t99 = t2 − 1
εkpda

ln
(
0.01
D

)
(76)

The derivative of t99 with respect to ε is then

∂t99
∂ε

=
∂t2
∂ε

+
1

ε2kpda
ln

(
0.01
D

)
+

1
εkpda

∂lnD
∂ε

(77)

We must show that the right hand side of Equation 77 is positive for small but finite

positive scale factor ε. Although D is a nonlinear function of kpdp(cf. Equation 43) and

therefore of ε in this approximation, its behavior is constrained by physical considera-

tions that allow for a simple justification of this hypothesis. First, since D is the propor-

tion of inpatients admitted to the pediatric trauma center after steady state has been

achieved in Region III, it can never be negative, and it must necessarily be identically

zero if the rate of admission to the PTC is also zero, or equivalently, if ε vanishes. Sec-

ondly, for very small but finite positive ε < < 0.01, calculations reveal that D is positive

but also much less than 0.01. These conditions guarantee that the second term in Equa-

tion 77 is positive for very small ε. In turn, because D increases from zero for any finite

ε, its logarithm must also increase, and the third term is also therefore positive for small

Figure 5 Time needed to admit (t2, panels A and B) and definitively treat to discharge (t99, panels
C and D) the pediatric surge population for two subsets of the input parameter space. When the
pediatric center’s admission and discharge rate parameters are uniformly scaled up from zero to the values
for the adult center, t2 decreases monotonically but t99 is initially prolonged (A, C). If the PTC discharge
rate is set equal to that of the adult center for the pediatric surge patients while the admission and
steady-state discharge rates are scaled up from zero to the values for the adult center, t2 (panel B) behaves
similarly as in A, but t99 decreases uniformly (D). See text for details.
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values of the scale factor. We note that since t2 decreases monotonically with ε (cf.

Figure 5A), the first term in Equation 77 is negative. Despite this, numerical computa-

tion of the values of these three terms reveals that the latter two positive terms are larger

in magnitude than the first for small ε, and dominate the behavior of
∂t99
∂ε

such that t99

initially increases, as shown in Figure 4C.

D. Systematic numerical sensitivity analysis of maximum capacity with PTC model

Because we did not have historical data with which to fit the maximum capacity with

PTC model, we chose to perform the formal sensitivity analysis assuming that the

pediatric rates were equal to those obtained from our fit for the adult center. We set

the variance of each pediatric parameter to 35 percent of its value, and the adult para-

meter variances were set to the previously fitted values. We then performed the sensi-

tivity analysis for the four outputs t1,a, t1,p, t2 and t99 as a function of the six

parameters kpaa, kpap, kpda, kpdp, ka’ and kp’ using the same procedure as described

above. However, for the matrix S, all partial derivatives were evaluated numerically by

incrementing each parameter by ± 0.001, and the average value for positive and nega-

tive increments was used for each matrix element Sij. The resulting variance matrix for

the maximum capacity with PTC model is then

V =

⎛
⎜⎜⎝
0.016 0.200 0.095 0 0 0
0.016 0.200 0.095 0.217 0 0
0.078 0.996 0.003 0.002 0.022 4.645
0.027 0.345 0.888 0.907 0.023 4.690

⎞
⎟⎟⎠ (78)

where the first row gives the magnitudes of the effects upon t1,a of changing kpaa,

kpap, kpda, kpdp, ka’ and kp’, the second the same values for t1,p, the third for t2, and the

fourth for t99.

E. Pediatric disaster-related deaths are reduced by the availability of a PTC

A severe limitation of both the maximum capacity and maximum capacity with PTC

models is a lack of accounting for mortality. As a final modification to the maximum

capacity with PTC model, we included explicit death rates for each of the populations:

the surge, pediatric patients admitted to the adult or pediatric trauma centers, and

patients after discharge. This model is fully developed in Appendix B, and its qualitative

behavior is demonstrated in Figure 6. We chose to use as an outcome measure the pro-

portion of patients deceased at t = 10 days, the time at which the field hospital in Refer-

ence 1 ceased operations. For this calculation, we began by assuming that after

treatment and discharge, the death rate would equal the background age-adjusted death

rate of the United States, which was approximately 8 per thousand per year in 2005 [43],

or 2 × 10-5 day-1. Although we could not find mortality data for admitted patients in the

IDF field hospital described in Reference 1, we chose to use the figure of 8.6% mortality

of admitted patients over 15 days, or 5.7 × 10-3 day-1, from the Japanese experience after

the 1995 Hanshin-Awaji earthquake [44]. Lastly, we based our estimate for the surge

death rate, prior to admission and treatment, on data from the Chi-Chi earthquake in

Taiwan in 1999, where it was reported that of all fatalities, 7% died while hospitalized

[45]. We can therefore approximate the surge death rate by scaling our in-hospital rate

from Reference 47 by 0.93/0.07, yielding a surge death rate of 0.076 day-1. We shall also

assume that the death rate for patients admitted to the adult center is equal to that of
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those in the PTC. With these estimates, we find that with no PTC available, the propor-

tion of the initial surge dead at t = 10 days is 24.0 percent, but with a PTC operating

with the same admission and discharge rates as the adult center, this is decreased to

15.2 percent. This amounts to a reduction of the absolute mortality risk by 8.8 percent,

and a relative mortality risk reduction of 37 percent, when a pediatric trauma center is

available to admit and discharge patients at the same rates as those of the adult center.

Discussion
Summary of main results

A deterministic first-order population kinetics model has been presented to quantita-

tively describe the effect of the availability of a pediatric trauma center upon the time

required to completely triage and definitively treat the pediatric cohort of a disaster

surge. We first derived a simpler model to determine starting parameters from an histor-

ical example. We then proceeded to examine the effect of adding in the availability of a

pediatric trauma center over a range of values for its efficiency as described by admission

and discharge rates relative to the baseline values obtained for the adult center. While

the time needed to triage or admit the entire pediatric surge cohort decreased with the

availability of a PTC regardless of its efficiency, the time to discharge of the surge had a

more complicated behavior: if kpdpis varied proportionally to the other parameters, the

total discharge time t99 actually increases when the PTC is slow (with rates less than

approximately 0.04 times those of the adult center), and only begins to fall below the

baseline value of 10 days obtained from the historical example when the pediatric rate

constants approach 0.4 times those of the adult center. If kpdpis set equal to kpda, how-

ever, the times needed for admission and discharge of the entire pediatric surge cohort

Figure 6 Qualitative behavior of maximum capacity with PTC model with explicit death rates
derived in Appendix B. Blue curve: pediatric surge. Red curve: pediatric patients admitted to adult center.
Orange curve: pediatric patients admitted to PTC. Green curve: living discharged patients. Black curve:
deceased patients.
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are decreased from baseline regardless of how slow the admission or steady-state dis-

charge rate from the PTC. Overall, if the PTC is able to admit and discharge patients at

nearly the same rates as the adult center, the time needed to admit all pediatric patients

is nearly halved (from 8 days to just over 4 days), and the time to complete discharge of

the population is reduced by more than a third (from 10 days to a little more than 6.5

days). We note that in the setting of a disaster of sufficient scale to displace a significant

enough proportion of the population, families may not be able to receive pediatric

patients discharged to home, so the PTC discharge rate could be retarded by this effect,

diminishing the predicted effect on the time to discharge of the entire surge. Despite

this, the total admission time would always be decreased with PTC availability. Lastly,

when death rates from previous disasters reported in the literature are incorporated into

the maximum capacity with PTC model (cf. Appendix B), we find that the overall death

rate would be decreased from 24.0% of the initial pediatric surge population to 15.2%

when a PTC is available to admit and discharge pediatric patients at the same rates as

the adult center, a relative mortality risk reduction of 37%.

The finding that t99 initially increases when the PTC rates are uniformly scaled can be

described as a trapping effect. In other words, when the PTC becomes available to triage

and admit pediatric disaster surge patients, if it cannot treat and discharge them fast

enough, then the time needed for definitive disposition of the pediatric cohort is actually

prolonged. This occurs because overall, when the PTC is much slower than the adult cen-

ter, the population cohort admitted to the PTC stays there much longer on average than

those patients admitted to the faster adult center. In the context of a real disaster, this

would result in a prolonged use of specialized pediatric hospital resources, likely increased

costs, and a decrease in the ability of the PTC to provide routine care to the non-surge

pediatric population. We note, however, that regardless of how slowly the pediatric surge

cohort can be discharged, the time needed to triage and admit the surge is always

decreased in the setting of the availability of the PTC. We therefore speculate that the

clinical result on the surge population would be minimal, but the impairment in ability of

the PTC to provide routine care to the background population during this period of time

would have to be considered in disaster and contingency planning.

Of equal interest to disaster planners are the results of the sensitivity analysis. We

found that in the maximum capacity model (no PTC available), the discharge rate

kdhad the greatest influence on both the time to maximum load t1 and time to dis-

charge of 99 percent of the surge population t99 (variance matrix elements, 0.184 and

0.815, respectively, Equation 72). In the setting where a PTC is available, the behavior

of the total treatment time described in Figures 4B and 4D is consistent with this

result, since the marked peaking of t99 shown in Figure 4B is completely abolished in

Figure 4D when the pediatric center’s pre-maximum load discharge rate kpdpis set

equal to the fitted value of kdfrom the maximum capacity model in the sensitivity ana-

lysis. On the other hand, the effect of both the pre-maximum load admission rate kaas

well as the steady-state discharge rate k’ were found to contribute about equally to the

variance of the time needed to admit the entire cohort t2. These results suggest that to

maximize the efficiency of a given center to definitively treat a given surge cohort, the

most important factor is rapid discharge of inpatients before the maximum surge capa-

city is reached. This observation is consistent with an analysis conducted in a large ter-

tiary center undergoing relocation to a new facility, which found that expedited
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discharge of inpatients was an effective means of increasing hospital capacity over the

short term [46]. On the other hand, if the most critical goal to planners is simply to

triage and admit the surge, with less importance placed upon definitive treatment and

discharge, the pre-maximum load admission rate and the steady-state discharge rate

should be optimized.

For the maximum capacity with PTC model, the interpretation of the numerical sensi-

tivity analysis is somewhat more complicated. For t1,a, the time to achieving maximum

capacity of the faster adult center, Equation 78 suggests that the pediatric admission rate

kpapmakes the most important contribution (matrix element 0.200). This is because in

the numerical sensitivity analysis, pediatric parameters were all varied by 35%, while the

error in the fitted value of the adult rate kpaawas set equal to the much smaller error in

kafrom the maximum capacity model. For the time to reach the maximum capacity of

the slower pediatric trauma center, t1,p, the pediatric discharge rate kpdpdominates

(matrix element 0.217), but the pediatric admission rate kpapcontributes almost as much

(matrix element 0.200). This result is not unreasonable given the explicit and implicit

dependence of t1p upon both these rate constants (cf. Equation 43).

In contrast, t2 is strongly affected by the steady-state PTC discharge rate kp’ (matrix

element 4.645). The dependence of t2 on kp’ can be explained by two factors: first, the

fact that the relative error in this rate assumed for our sensitivity analysis (35%) is lar-

ger than that obtained for ka’ in the fit, and second, due to the functional form of t2.

Equation 48 shows that t2 is a linear function of t1p and B, and therefore depends

implicitly on kpdaand kpdp. It is inversely proportional to the sum of the adult and

pediatric steady-state discharge rates, � = kp’ + ka’. We have observed that invariably,

whenever t1p increases, regardless of whether kpdaor kpdpis changed, B decreases.

Therefore, the effect of changing either kpdaor kpdpupon t2 is limited because of this

antagonistic effect. In contrast, changing � by varying kp’ or ka’ does not produce a

compensatory change in either t1p or B, so the effect of kp’ dominates.

Lastly, t99 depends most strongly on kp’, with the next strongest dependence on kpdpand

kpda(matrix elements 4.690, 0.907, 0.888 respectively). Though we cannot write down an

analytic expression for t99 in the maximum capacity with PTC model, we can make quali-

tative arguments based on the behavior of this parameter in the simpler maximum capa-

city model. Equation 51 reveals that in the simpler model, t99 depends explicitly on t2 and

the discharge rate kd, with implicit dependence upon both kdand kawithin the argument of

the logarithm. It is reasonable to conclude that in the more complicated maximum capa-

city with PTC model, the dependence would be similar on t2 and the two discharge rate

constants kpdpand kpda. Since we have seen that for the maximum capacity with PTC

model, t2 is most sensitive to changes in kp’, it follows by this reasoning that kp’ will also

have a large effect on t99. Moreover, we have already seen that in the simpler model, kdac-

tually has the greatest effect on t99, so taken together, this combined with the qualitative

argument discussed here provide a reasonable explanation for the sensitivity of t99 to

kpdpand kpdain the maximum capacity with PTC model.

Limitations of the model

The potential methodological weaknesses of the model must also be considered. First,

as noted above, no distinction is made in the discharged populations of either the max-

imum capacity model, or the maximum capacity with PTC model, between patients
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discharged home or otherwise dispositioned, including discharge to nursing care cen-

ters, rehabilitation hospitals, and even death. Similarly, the death of patients in the

surge population prior to triage and admission is not accounted for. This concern is

addressed in full detail in Appendix B, where a more complicated version of the model

including death rates is derived, and is implemented in additional files 1 and 2. We

expect that a deterministic population kinetics approach will describe the behavior of

the populations of interest only when they are sufficiently large. However, for very

small populations the continuous mathematics used to derive our model would be

expected to break down, and a discrete stochastic approach [47] might be more

appropriate.

Tradeoffs

An important consideration for disaster planners is the potential cost of various

approaches to preparedness. Though our model provides a mathematical justification

for the inclusion or use of a pediatric trauma center in the response to a disaster, it does

not consider the monetary cost of establishing one, or the resources required to keep it

in operation. The average cost of building a new hospital has been reported in the Uni-

ted States to be approximately 285 dollars per square foot as of 2003 [48], or 342 2011

dollars per square foot [49]. At our own facility, a new 460,000 square foot (42,700 m2)

specialized children’s hospital with 317 beds, a level I pediatric trauma center and sup-

porting facilities cost 636 million dollars in 2011, a cost of nearly 1400 dollars per square

foot [50]. Therefore, prior to committing to building such a facility, a careful accounting

of the likelihood of various types of disaster occurring in the proposed construction area

as well as the availability of rapid transportation to and capacities of already existing

nearby centers would have to be performed. Alternatively, a different approach would be

for planners at an established center to prepare mobile dedicated pediatric trauma cen-

ter facilities similar to the mobile field hospital described in reference 1, available to be

transported to the site of a disaster as needed. However, we speculate that this method,

though much less expensive than building a new PTC, could possibly have detrimental

effects on treatment of affected adult patients. For example, after prolonged operation,

such facility would require resupply, and if a medical resupply shipment had to be par-

celled out to the PTC in addition to competing adult centers in the affected area, the

resulting relative shortage of resources in the adult centers might result in decreased

rates of admission and discharge, and increased death rates, of adults. Such considera-

tions, though beyond the scope of our model directly, would also have to be examined

to allow for its use in disaster planning.

Conclusions
The model presented here provides an analytical, closed-form description of the popu-

lation dynamics of a disaster surge population treated either in the presence or the

absence of a pediatric trauma center, is mathematically elementary and is simple to

implement. Given that the proportion of children in the population is roughly twenty-

five percent,35 the potential influence of the availability of a specialized trauma center

whose resources are devoted to the pediatric surge cohort must be taken into consid-

eration by public health agencies. We have demonstrated how the model can be

applied to an historical example to obtain starting parameters, and the hypothetical
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contribution of an available PTC can then be assessed as a function of how it com-

pares in efficiency to the historical example. If detailed quantitative historical data that

explicitly included a PTC as part of the response to a disaster became available, the

model could be fit to these data and estimates of the model parameters could be

obtained. While the costs of building and maintaining a PTC and the effects of its

resource consumption on other hospitals must be taken into account, this determinis-

tic kinetic model provides a new weapon in the armamentarium of disaster planners.

Our approach can be used to provide a hypothetical estimate of how the response to

an historical event could have been improved, as well as to extrapolate and predict

potential responses to future events.

Appendix A
General case of Eqs. 1-4 with surge delayed from inciting event

For all MCEs, there is a delay between the inciting event or exposure and the develop-

ment of the associated patient surge. The approximation made in the treatment in this

paper is that the delay is much smaller than any of the other timescales in the model (i.

e., admission or discharge). This is an excellent approximation for sudden MCEs such as

bombings, earthquakes or airplane crashes. However, for some classes of MCE, such as

disease pandemics, radiation exposure events, floods, hurricanes, as well as the aftermath

of more sudden types of insults considered above, the delay time between event and

surge is of the same order of magnitude as these other timescales, and must be treated

explicitly in the model.

We now present the general case only for Region I of the simpler model entailed by Eqs.

1-4, because the inclusion of the pediatric trauma center makes the equations significantly

more complicated, with the introduction of an additional parameter (the delay time) and

differential equations, with a limited contribution to any further physical or planning

insight. The procedure for obtaining the solution in the maximum capacity and zero

queue-length regimes (Regions II and III of the maximum capacity model), as well as the

inclusion of a PTC, would be the same as that in the main text. In the general case of the

model, in the absence of the pediatric trauma center, we would have four populations

rather than the three in Eq. 1:

Ne
ks−→ Ns

ka−→ Na
kd−→ Nd (A1)

Here ksis the exposure or delay rate; the remaining rate constants are identical to

those of Eq. 1. Also, instead of N0 instantaneous surge patients, we now have N0

exposed patients at time zero. The governing differential equations are then:

dNe

dt
= −ksNe (A2)

dNs

dt
= ksNe − kaNs (A3)

dNa

dt
= kaNs − kdNa (A4)

dNd

dt
= kdNa (A5)
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The boundary conditions are:

Ne(t = 0) = N0 (A6)

Ns(t = 0) = Na(t = 0) = Nd(t = 0) = 0 (A7)

Ns(t → ∞) = Na(t → ∞) = Nd(t → ∞) = 0 (A8)

The solution to (A2-A5) is then:

Ne(t) = N0e
−kst (A9)

Ns(t) = N0
ks

ka − ks

(
e−kst − e−kat

)
(A10)

Na(t) = N0
kaks

ka − ks

[
1

kd − ks
e−kst

− 1
kd − ka

e−kat −
(

1
kd − ks

− 1
kd − ka

)
e−kdt

] (A11)

Nd(t) = N0
kskakd
ka − ks

[
1

ka(kd − ka)

(
e−kat − 1

)

− 1
ks(kd − ks)

(
e−kst − 1

)

+
1
kd

(
1

kd − ks
− 1

kd − ka

)(
e−kdt − 1

)] (A12)

Similarly to the case of Eqs. 31 and 32, we can compute exactly the time of maxi-

mum expected surge by taking the derivative of A10 and setting it equal to zero,

which gives:

tmax
s =

1
ka − ks

ln
(
ka
ks

)
(A13)

We note that in the context of disaster planning, A13 can either be used to predict

the time of maximum surge, if estimates for kaand ksare known, or to constrain and

relate kato ksif the maximum surge time is known from historical or data or other pre-

dictive methods.

Appendix B
Maximum capacity with PTC model and explicit death rates

In this section we shall derive a version of the maximum capacity with PTC model

where a background death rate of each population is included. For times at which

neither the adult nor the pediatric center has reached maximum capacity (analogous to

region I of Figure 3) the governing differential equations are:

0 ≤ t < t1,a :
dPs
dt

= − (k + ωs) Ps

dPaa
dt

= kpaaPs − (
kpda + ωa

)
Paa

dPap
dt

= kpapPs − (
kpdp + ωp

)
Pap

dPd
dt

= kpdaPaa + kpdpPap − ωdPd

dPD
dt

= ωsPs + ωaPaa + ωpPap + ωdPd

(B1)
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where ωs, ωa, ωp, and ωd are the death rates for the surge, pediatric patients admitted to

the adult center, pediatric patients admitted to the PTC, and discharged patients, respec-

tively, PD(t) is the total number of deaths that have occurred at time t, and all other para-

meters are as defined in the main text. We introduce J, K and L as the boundary

conditions for the deceased population PD(t) at t1, a, t1, p, and t2, respectively. We define

λs = k + ωs

λa = kpda + ωa

λp = kpdp + ωp

(B2)

The solution to (B1) is:

Ps (t) = e−λst

Paa (t) =
kpaa

λa − λs

(
e−λst − e−λat

)
Pap (t) =

kpap
λp − λs

(
e−λst − e−λpt

)
Pd (t) =

1
ωd − λs

(
kpdakpaa
λa − λs

+
kpdpkpap
λp − λs

) (
e−λst − e−ωdt

)
+

kpdakpaa
(ωd − λa) (λs − λa)

(
e−λat − e−ωdt

)
+

kpdpkpap(
ωd − λp

) (
λs − λp

) (
e−λpt − e−ωdt

)

PD (t) =
1
λs

(
1 − e−λst

) [
ωs + ωa

kpaa
λa − λs

+ ωp
kpap

λp − λs

+ωd
1

ωd − λs

(
kpdakpaa
λa − λs

+
kpdpkpap
λp − λs

)]

+
kpaa

λa (λs − λa)

(
1 − e−λat

) (
ωa + ωd

kpda
ωd − λa

)

+
kpap

λp
(
λs − λp

) (
1 − e−λpt

) (
ωp + ωd

kpdp
ωd − λp

)

+
(
1 − e−ωdt

) [
kpdakpaa
λs − λa

(
1

ωd − λs
− 1

ωd − λa

)

+
kpdpkpap
λs − λp

(
1

ωd − λs
− 1

ωd − λp

)]

(B3)

The time at which the adult center’s maximum capacity is reached is

t1,a =
1

λs − λa
ln

(
λs

λa

)
(B4)

For times at which the faster adult center has reached its maximum capacity, but the

PTC has not (analogous to region II of Figure 3), the system’s behavior is governed by

t1,a ≤ t < t1,p :
dPs
dt

= −λIIPs − λa
′

dPaa
dt

= 0

dPap
dt

= kpapPs − λpPap

dPd
dt

= kpdpPap + kpda
′ − ωdPd

dPD
dt

= ωsPs + ωa
′ + ωpPap + ωdPd

(B5)
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where ωa’ is the constant death rate of patients hospitalized in the adult center, and

we have introduced

λII = kpap + ωs

λa
′ = ka

′ + ωa
′ (B6)

The solution to (B4) is

Ps (t) = α′e−λII(t−t1,a) − ρ

Paa (t) = C

Pap (t) = (H + ϕ − θ) e−λp(t−t1,a)

+θe−λII(t−t1,a) − ϕ

Pd (t) = �
(
e−λp(t−t1,a) − e−ωd(t−t1,a)

)
+�

(
e−λII(t−t1,a) − e−ωd(t−t1,a)

)
+�

(
1 − e−ωd(t−t1,a)

)
+ Ee−ωd(t−t1,a)

PD (t) =
(
ωa

′ + �ωd − ρωs − ϕωp
) (
t − t1,a

)
+
1
λp

(
(H + ϕ − θ) ωp + �ωd

) (
1 − e−λp(t−t1,a)

)

+
1
λII

(
α′ωs + θωp + �ωd

) (
1 − e−λII(t−t1,a)

)
+ (� + � + � − E)

(
e−ωd(t−t1,a) − 1

)
+ J

(B7)

Where

A = e−λst1,a

C =
kpaa

λa − λs

(
e−λst1,a − e−λat1,a

)
H =

kpap
λp − λs

(
e−λst1,a − e−λpt1,a

)
E =

1
ωd − λs

(
kpdakpaa
λa − λs

+
kpdpkpap
λp − λs

) (
e−λst1,a − e−ωdt1,a

)
+

kpdakpaa
(ωd − λa) (λs − λa)

(
e−λat1,a − e−ωdt1,a

)
+

kpdpkpap(
ωd − λp

) (
λs − λp

) (
e−λpt1,a − e−ωdt1,a

)

J =
1
λs

(1 − A)

[
ωs + ωa

kpaa
λa − λs

+ ωp
kpap

λp − λs

+ωd
1

ωd − λs

(
kpdakpaa
λa − λs

+
kpdpkpap
λp − λs

)]

+
kpaa

λa (λs − λa)

(
ωa + ωd

kpda
ωd − λa

) (
1 − e−λat1,a

)
+

kpap
λp

(
λs − λp

) (
ωp + ωd

kpdp
ωd − λp

) (
1 − e−λpt1,a

)

+
(
1 − e−ωdt1,a

) [
kpdakpaa
λs − λa

(
1

ωd − λs
− 1

ωd − λa

)

+
kpdpkpap
λs − λp

(
1

ωd − λs
− 1

ωd − λp

)]

(B8)
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and

α′ = A + ρ

ρ =
λa

′

λII

θ =
α′kpap

λp − λII

ϕ =
ρkpap
λp

� =
(H + ϕ − θ) kpdp

ωd − λp

� =
θkpdp

ωd − λII

� =
ka

′ − ϕkpdp
ωd

(B9)

We note that we have introduced a new boundary condition J for the fraction of

patients who are deceased at t1, a. The time at which the pediatric center reaches its

maximum capacity is again obtained by maximizing Pap(t) in B6 and is

t1,p = t1,a

+
1

λp − λII
ln

[
λp

λII
+

(
λII − λp

)
α′kpapλII

(
λa

′kpap
λII

+Hλp

)]
(B10)

After this time, and until the surge is exhausted, both the adult and pediatric centers

are at steady state and can only admit a patient if another is discharged or dies:

t1,p ≤ t < t2 :
dPs
dt

= −μ − ωsPs

dPaa
dt

=
dPap
dt

= 0

dPd
dt

= κ − ωdPd

dPD
dt

= ωsPs + ωdPd + ωa
′ + ωp

′

(B11)

where we have introduced

μ = κ + ωa
′ + ωp

′ (B12)

and ωp’ is the constant death rate of patients hospitalized in the pediatric center dur-

ing this time period. The solution to B9 is

Ps (t) = − μ

ωs
+

(
B +

μ

ωs

)
e−ωs(t−t1,p)

Paa (t) = C

Pap (t) = D

Pd (t) =
κ

ωd
+

(
F − κ

ωd

)
e−ωd(t−t1,p)

PD (t) = K +
(
F − κ

ωd

)(
1 − e−ωd(t−t1,p)

)

+
(
B +

μ

ωs

)(
1 − e−ωs(t−t1,p)

)

(B13)
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where K is the fraction of deceased patients at t1, pand the constants are given by

B = α′e−λII(t1,p−t1,a) − ρ

D = (H + ϕ − θ) e−λp(t1,p−t1,a)

+θe−λII(t1,p−t1,a) − ϕ

F = �
(
e−λp(t1,p−t1,a) − e−ωd(t1,p−t1,a)

)
+�

(
e−λII(t1,p−t1,a) − e−ωd(t1,p−t1,a)

)
+�

(
1 − e−ωd(t1,p−t1,a)

)
+ Ee−ωd(t1,p−t1,a)

K =
(
ωa

′ + �ωd − ρωs − ϕωp
) (
t1,p − t1,a

)
+
1
λp

(
(H + ϕ − θ) ωp + �ωd

) (
1 − e−λp(t1,p−t1,a)

)

+
1
λII

(
α′ωs + θωp + �ωd

) (
1 − e−λII(t1,p−t1,a)

)
+ (� + � + � − E)

(
e−ωd(t1,p−t1,a) − 1

)
+ J

(B14)

The time t2 at which the surge is exhausted is determined by setting the first expres-

sion in B11 equal to zero and is

t2 = t1,p +
1
ωs

ln
(
1 + B

ωs

μ

)
(B15)

For times after t2 the adult and pediatric centers resume discharges at pre-maximum

capacity rates:

t > t2 :
dPs
dt

= Ps (t) = 0

dPaa
dt

= −λaPaa

dPap
dt

= −λpPap

dPd
dt

= kpdaPaa + kpdpPap − ωdPd

dPD
dt

= ωaaPaa + ωpPap + ωdPd

(B16)

The solution to B13 is

Paa (t) = Ce−λa(t−t2)

Pap (t) = De−λp(t−t2)

Pd (t) = C
kpda

ωd − λa

(
e−λa(t−t2) − e−ωd(t−t2)

)
+D

kpdp
ωd − λp

(
e−λp(t−t2) − e−ωd(t−t2)

)
+Ge−ωd(t−t2)

PD (t) = L +
D

λp

(
ωp +

ωdkpdp
ωd − λp

) (
1 − e−λp(t−t2)

)
+
C
λa

(
ωa +

ωdkpda
ωd − λa

) (
1 − e−λa(t−t2)

)
+

(
G − C

kpda
ωd − λa

− D
kpdp

ωd − λp

) (
1 − e−ωd(t−t2)

)

(B17)
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where L is the fraction of deceased patients at t2 and the constants not yet defined

are given by

G =
κ

ωd
+

(
F − κ

ωd

)
e−ωd(t2−t1,p)

L = K +
(
F − κ

ωd

)(
1 − e−ωd(t2−t1,p)

)

+
(
B +

μ

ωs

)(
1 − e−ωs(t2−t1,p)

)
(B18)

Additional material

Additional file 1: We shall briefly describe here the first Microsoft Excel spreadsheet that accompanies
this paper. The spreadsheet, titled MC and MCPTC models.xls [Additional File 1], allows the reader to enter values
for the rates of admission and discharge, both for the maximum capacity model (worksheet tab “Max capacity
model”) and for the maximum capacity with pediatric trauma center model (worksheet tab “Max capacity model
with PTC”). The behavior of each population and resulting timescales in the two models, as well as the boundary
conditions described in the text and illustrated in Figure 3 for the latter model, are calculated and displayed in the
labelled boxes as described by header notes on each worksheet.Regarding the calculations themselves, the usual
Excel worksheet functions EXP and LN are employed, but in order to properly calculate the behavior of the
populations in each regime, conditional logic statements must be constructed. In computer programming
languages, statements of the form if...then; else... must be coded in such cases. In the case of the maximum
capacity model, for example, this involves evaluating different expressions for each population for the time
regimes t <t1, t1 ≤ t <t2, and t ≥ t2. To accomplish this in Excel, the worksheet function IF(logical test, expression 1,
expression 2) can be constructed to contain nested conditions [51]. In other words, since we require a statement
of the formif t <t1 then f1(t);else if t1 ≤ t <t2 then f2(t);else f3(t);end ifwhere f1(t), etc. are the
functions that describe the desired behavior in each region, the corresponding Excel statement isIF(”t <t1“, “f1(t)”, IF
(AND(”t ≥ t1“, “t <t2“), “f2(t)”, “f3(t)”)where the quotation marks reflect the fact that the enclosed statements are just
shorthand for demonstration purposes, and in an Excel worksheet must be properly formatted Excel statements
and functions of worksheet cells. For a demonstration please see the additional files.We also reiterate here that the
derivation for the maximum capacity with PTC model (section III of Methods in the manuscript) assumes that the
pediatric trauma center is, at most, no faster than the adult center. This constrains the values that can be input by
the user for the discharge rate of pediatric patients from the PTC to be less than or equal to that of their
discharge from the adult center, i.e. kpdp ≤ kpda. If the user sets kpdp>kpda, the admitted population of the pediatric
center reaches its maximum capacity before the adult center, and the derivation (which assumed the opposite is
true) is invalid. To explore the behavior of the model when the PTC is faster (not addressed in this paper), the user
could set the pediatric rate constants to the desired or known baseline adult center values, and then vary the
adult rates to be as rapid as desired. This amounts to simply relabeling all the rate constants for the PTC as those
for the adult center and vice versa.

Additional file 2: The second Excel spreadsheet [Additional File 2] incorporates both the maximum
capacity with PTC model and explicit death rates for each pediatric population as derived in Appendix B.
The user interface is similar to that of the first file, with modifiable inputs in bold and boxes color-coded for inputs
(blue), dimensionless constants (green), and outputs and boundary conditions (orange). The lower right hand
corner of the orange box also displays the proportions of discharged and deceased patients. Because of the
greater complexity of this version of the model, we also included worksheet tabs for regions I, II, III, and IV
separately for demonstration purposes, which can be found to the right of the main model tabs labelled “MCPTC
with deaths, PTC unavail” and “MCPTC with deaths.”
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