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Abstract

Texture analysis (TA) of histological images has recently received attention as an
automated method of characterizing liver fibrosis. The colored staining methods
used to identify different tissue components reveal various patterns that contribute
in different ways to the digital texture of the image. A histological digital image can
be represented with various color spaces. The approximation processes of pixel
values that are carried out while converting between different color spaces can
affect image texture and subsequently could influence the performance of TA.
Conventional TA is carried out on grey scale images, which are a luminance
approximation to the original RGB (Red, Green, and Blue) space. Currently, grey scale
is considered sufficient for characterization of fibrosis but this may not be the case
for sophisticated assessment of fibrosis or when resolution conditions vary. This
paper investigates the accuracy of TA results on three color spaces, conventional
grey scale, RGB, and Hue-Saturation-Intensity (HSI), at different resolutions. The results
demonstrate that RGB is the most accurate in texture classification of liver images,
producing better results, most notably at low resolution. Furthermore, the green
channel, which is dominated by collagen fiber deposition, appears to provide most
of the features for characterizing fibrosis images. The HSI space demonstrated a high
percentage error for the majority of texture methods at all resolutions, suggesting
that this space is insufficient for fibrosis characterization. The grey scale space
produced good results at high resolution; however, errors increased as resolution
decreased.

Background
Digital encoding of microscopic images has enhanced the value of histological analysis,

allowing quantitative rather than only qualitative assessment, using image analysis and

measurement methods [1,2]. Image analysis techniques can describe a histological sec-

tion and assign digital patterns to one or more pre-defined categories, allowing histo-

pathologists to refer to a consistent database of features collected from similar cases

rather than relying on subjective human assessments of individual samples. However,

the limitations of image analysis methods must be considered. In addition to the classi-

cal problem concerning artifacts in histological sections, difficulties related to image

quality including noise, resolution, contrast and illumination should be controlled. The

effect of these factors on digital histological images has not been fully investigated but

there is growing interest in this area [3,4]. Automated approaches can be categorized
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as texture, object and structure -based analysis [2]. According to Kayser et al. [2], tex-

ture-based analysis is defined as grey value per pixel measure, and it is independent

from any segmentation procedure. It results in recursive vectors derived from time ser-

ies analysis and image features obtained by spatial dependent and independent trans-

formations [2]. Object-based features are defined as grey value per biological object

measured, and structure-based features rely on identifying structural patterns that

characterize a structure.

This research concerns the elaboration of texture-based features from microscopic

images using a method known in the literature as Texture Analysis (TA). TA is a digi-

tal image analysis method that was successfully applied to medical and histological

images. TA contributes to tissue characterization by detecting pathological modifica-

tions and can be used to characterize the effect of a given treatment. For example, TA

can be used for detecting the progression or regression of a disease [5], and for thera-

peutic follow-up of subjects that respond to treatment and those that do not [1].

Therefore, TA provides a wide range of pharmacological applications. Features

extracted from clinical and experimental digital images are subjected to a classification

process that orders input data into output classes. Usually, these classes are interpreted

in terms of relevance to other histological or biochemical parameters. TA has a parti-

cular diagnostic importance when local heterogeneities are investigated or when the

disease is subtle and hard to detect visually [6]. Owing to successful characterization of

tissues at various levels of progression and protection [1,7], histopathologists became

interested in utilizing TA in problematic diagnostic tasks, such as grade assessment

(grading), which is usually limited by a large number of variables, sample size restric-

tions and sampling variability [8]. TA is a faster quantitative tool than conventional

human-dependent methods that are time consuming and unlikely to be error-free [8].

The time factor is a crucial element in the choice of assessment method, particularly

in clinical applications, where large numbers of patients are scheduled for routine

scanning. Grading and other automated assessment tasks require the accuracy of TA

to be improved to increase its diagnostic value.

Previous work by the author revealed that the microscopic section staining protocol

can play a major role in TA of liver fibrosis, demonstrating that histological texture

can differ according to the staining protocol used and due to chemical interactions

between the dye and the cell/tissue components that cause staining to appear [7]. The

staining protocol confers specific colors to different cell components; the colors vary in

terms of intensity and saturation depending on the underlying chemical interactions. In

conventional TA, the original multi-channel colored sections are transformed into the

corresponding single channel of the grey scale [1]; therefore, the texture specific to a

color channel is lost, and instead, the texture of the approximated single channel

appears. However, the grey scale image has been considered sufficient for fibrosis char-

acterization in previous studies [7], but for more sophisticated assessment tasks (such

as grading), the approximation of colored images to the grey scale could result in the

loss of valuable texture information embedded in the individual color channels. This

information could be crucial for increasing the accuracy of this method.

Color is an intrinsic attribute that provides more visual information than the grey

scale. There have been several attempts to incorporate color information into texture

[9,10] but the choice of which color space is best for performing TA has received little
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attention [3]. Research concerning the human visual system suggested that the overall

perception of color is formed through the interaction of a luminance component, a

chrominance component and the achromatic pattern [11]. The luminance and chromi-

nance components extract color information, while the achromatic pattern component

concerns texture. There are two approaches concerned with incorporating color and

texture: one considers that these are different characteristics and that each characteris-

tic cues independently [9,12,13]; the other approach considers color and texture as a

combined characteristic. These methods predominantly use the multi-channel versions

of grey scale texture descriptors [9,11] and some studies have demonstrated that incor-

porating color into texture improves classification results [3,13,14]. RGB space (repre-

senting red, green and blue, respectively) is the most common format used for digital

image display. Color texture features can be extracted from this space separately or

from cross-correlation between two colors. It has been demonstrated that incorporat-

ing texture features from the RGB space could enhance the accuracy of classification

[3,13]. HSI (representing hue, saturation and intensity, respectively), another color

space, can be produced by applying special filters and can be inspiring for the human

eye [3,14]. Attempts have been made to study image features of histological images in

this space [3]. However, the effect of this space on TA of microscopic images of biolo-

gical tissues remains unknown.

In this paper, the objective was to apply TA to histological images of normal and

fibrotic liver from experimental animals and to investigate the effect of selecting the

color space on the accuracy of texture classification when image resolution changed.

The three color spaces used in this work were the grey scale, RGB and HSI.

Methods
Experimental procedures

The experimental procedures described herein were carried out during previous work

published by our group [7]. In this experiment, 12 male Wister rats were randomly

placed into two groups: Control (C, n = 5) and Fibrosis (F, n = 7). They were fed a

standard pellet diet and tap water ad libitum, placed in polycarbonate cages with wood

chip bedding under a 12 h light/dark cycle, and kept at a temperature of 22-24°C. The

C group received an intra-gastric injection of corn oil (1 ml/kg) twice a week. Liver

fibrosis was induced in the F group by intra-gastric injection of CCl4 (1 ml/kg body

weight, 1:1 in corn oil). This treatment was carried out for eight weeks [7]. Immedi-

ately at the end of experiments, animals were sacrificed and the liver excised. Samples

were collected, frozen in liquid nitrogen and stored at -80°C [7]. This experiment was

conducted following the guidelines of the Animal Research Ethics Committee of Uni-

ted Arab Emirates University [7].

The presence of fibrosis was confirmed using histochemistry and histopathology [7].

Liver damage in the F group was assessed blindly on paraffin waxed sections stained

for cellular and extracellular components using Masson’s trichrome as described in

Amin et al. [7]. In the current work, microscopic images of liver were taken and digi-

tized using a Leica DMRB/E light microscope (Heerbrugg, Switzerland) and an Olym-

pus camera, DP72. One microscopic image, clearly stained with no visible artifacts, was

taken from each animal. Images from sections containing large blood vessels were

avoided. Images were stored in Bitmap format (BMP) of 680 columns × 512 rows, 24
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bit, true color and RGB pictures (Figure 1a, b). The liver sections of the C group had a

normal histological appearance (Figure 1b). The fibrotic changes in sections from

group F were visible by eye and were seen as strands of collagen deposition in the

extracellular matrix (Figure 1b). More details concerning collagen quantification and

other fibrosis related parameters for this experiment can be found in a previously pub-

lished work [7].

Three categories of image resolution were studied for the C and F groups: (i) the

images kept at original resolution indicated as “Full-resolution” images; (ii) resolution

reduced to half of the original value so that the dimensions of the new image became

340 columns × 256 rows and indicated as “Half-resolution” images; (iii) resolution

reduced to quarter of its original values so that the dimensions of the image became

170 columns × 128 rows and indicated as “Quarter-resolution” images. Each image

was sub-divided into four equally sized non-overlapping regions of interest (ROIs),

avoiding boundaries and small vessels, and outlining the hepatic structure with cells

a 

 

 

 

 

 

 

b

Figure 1 Liver microscopic images. Examples of liver microscopic images taken from (A) normal and (B)
fibrotic tissues.
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and the extracellular matrix. The total number of ROIs (sub-divisions) was 28 for the F

group and 20 for the C group for each resolution category.

The illumination conditions or brightness settings under the light microscope can

change from one slide to another for various reasons. This causes the grey scale histo-

gram to shift to a different range; consequently, the comparison between textures from

different images becomes inconsistent. In order to bring all images to the same range

of grey scale a normalization (standardization) process should be carried out, with the

aim of setting a standard mean value to all images and recalculating the grey scale in

each image relative to this value; therefore, all textures become comparable. Accord-

ingly, all ROIs were normalized to μ ± 3s (where μ is the mean value and s is the

standard deviation of grey scale values in the image ROI) [4], the range obtained was

then quantized to 7 bits (between grey values 1 and 128). An example is given in Fig-

ure 2, which presents two identical images of various brightness and the corresponding

histograms. The histograms have similar profiles; however, the mean values are differ-

ent as the histograms occupy different ranges. Normalization, as described above,

solves this problem and removes dependency on pixel intensity mean value [4].

Color spaces

As RGB images are composed of three channels (red, blue and green), each channel

can be viewed individually as a grey scale layer with an intensity range between 0 and

255 in a standard 24 bit bitmap format (BMP). All RGB ROIs were converted into a

a            b 

     

Figure 2 Normalization example. In image (a) the histogram occupies a certain range, giving a mean
grey value of 123.8. The image (b) is the darker version of (a), giving a mean value of 90.9. The image (b)
can be rescaled to (a) using the normalization process.
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single layer grey scale image by calculating the equivalent luminance value at each

pixel using the formula:

Pixel grey scale value = |0.299| × |red| + |0.587| × |green| + |0.114| × |blue (1)

This projects the RGB space into grey scale, representing luminance only. The above

technique is the most commonly used, but there are other techniques discussed in the

literature [11].

Original RGB ROIs were converted to HSI space. The HSI space separates chromati-

city and intensity information, thereby providing chromaticity measures independent of

intensity [11]. This detaches the intensity component from the color information and

reduces the effects of variable lighting. HSI space is closer to the human visual percep-

tion and understanding of color. H represents the visual spectrum of perceived colours,

I represents the brightness of a colour and S refers to the amount of white light mixed

with a hue. HSI can be represented by a cone shape, where H is located on the peri-

meter, S radiates from the centre outwards and I is located on the axis of the cone.

For I and S, the minimum and maximum values are 0 and 1, respectively. Mathemati-

cal details concerning RGB to HSI conversion are detailed elsewhere [15].

Texture analysis

Three TA methods were applied to ROIs for the three color spaces (grey scale, RGB,

and HSI) and for the three resolution categories (Full-Resolution, Half-resolution, and

Quarter -Resolution). These methods were co-occurrence matrix (COM), run-length

matrix (RLM) and wavelet transform (WT).

Co-occurrence Matrix

Co-occurrence matrix (COM) is the most widely used TA method in biomedical ima-

ging [1,6]. It is a statistical method that depends on calculating the probability of find-

ing a joint occurrence of a pixel of grey scale value i with another of value j within a

predefined conditions of distance (d, d = 1, 2, 3, ...etc pixels) and orientation (θ, θ = 0°,

45°, 90°, 135°) [16]. Numerous parameters can be calculated from this matrix including

angular second moment, contrast, correlation, entropy, sum of squares, inverse differ-

ence moment, sum average, sum variance, sum entropy, difference variance and differ-

ence entropy [16]. These quantitative descriptors are capable of elaborating texture

characteristic features for a group of images and discriminating between two groups

based on these features, directly or via mathematical recombination of features. Infor-

mation concerning the performance and limitations of COM can be found in the lit-

erature [6,16]. In this work, the distance and direction were defined so that the

position of i in an image matrix (Im) is Im(x, y) and that of j is Im(x, y+1) where x is

the row value and y is the column value. These positions of i and j are known to pro-

duce COM within a distance d = 1 and angle θ = 0°.

Run-length matrix

Run-length matrix (RLM) is a statistical TA method defined as the matrix Pθ (i, l)

which calculates the number of runs that exist in an image for a pixel of grey scale

value i and length l in a direction θ. The angle θ can be 0° (horizontal), 90° (vertical),

45° or 135°. The statistical parameters derived from this matrix are short run emphasis,
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long run emphasis, run length non-uniformity, grey level non-uniformity and run frac-

tion [6,16]. RLM provides information concerning the coarseness of a texture. If the

image has predominantly long runs then the texture is coarse, while short runs indi-

cate fine texture.

Wavelet transform

Wavelet transform (WT) is a linear transformation that operates on a data vector

whose length is an integer power of two, transforming it into a numerically different

vector of the same length. WT is a tool that separates data into various frequency

components using high-pass and low-pass filters, and then investigates each compo-

nent with resolution matched to its scale. Therefore, a given function can be analyzed

at various frequency levels [6]. In image analysis, the original image is sub-divided into

smaller sub-images at different scales on which low and high pass filters are applied.

The energy En is a parameter calculated on the sub-images at scale n, and can be char-

acteristic for a group of images. The main advantage of WT is the multiscale represen-

tation of the function.

Feature selection using Fisher coefficient

Texture parameters calculated as described above from COM, RLM and WT on the

grey scale ROIs were indicated by “greylevel"- scheme. Those which were calculated on

the RGB space were called “RGB"-scheme. In the RGB-scheme, parameters calculated

from one TA method, whether it was on the R, G or B channel, were pooled together

as one set of texture descriptors. For example, all COM parameters that were calcu-

lated on R, G or B channels were re-grouped together as RGB-scheme on full-resolu-

tion images. Similarly, the “HSI"-scheme represents the pool that contains all the

parameters that came from H, S, and I layers for each TA method at a given

resolution.

Following texture parameters calculation, and prior to each classification test, the

three most discriminating parameters (indicated as features) were selected using the

Fisher (F) coefficient and used as a basis for subsequent class separation. A higher F-

coefficient indicates that the classes are more likely to be separable using this para-

meter [17]. The aim of this step is to reduce the large number of calculated texture

parameters to those which can be taken as features and expected to characterize the

tissue in the classification process. As a general precaution, the number of parameters

chosen for classification should not exceed the number of samples in each group to

avoid over-performance of the classifier.

Raw data classification

Classification was performed in a space composed of three coordinates where each axis

corresponds to a feature. ROIs with similar texture features tend to cluster closer as a

cloud of points within the same neighborhood. Classification using data as described

above is an unsupervised approach, as each point clusters independently of the others

and without pre-knowledge of the sample group or mathematical recombination. In

this work, channel separation, texture analysis, feature selection, data classification and

other image manipulation processes were performed using MaZda-B11 software (ver-

sion 4.5, ©1999-2006) [16,17] and Matlab 7 (© 1984-2004, The MathWork, Inc.).
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Results and discussion
The features selected by F-coefficient and used for classification are presented for the

three resolution categories: Full-Resolution (Table 1), Half-Resolution (Table 2) and

Quarter-resolution (Table 3). The classification results of C against F histological

images based on texture features are presented as percentage error bars (histograms)

for the resolution categories (Figure 3a, b, and 3c, respectively), and for each scheme

using the three TA methods (COM, RLM and WT). The percentage error was calcu-

lated as the percentage ratio of misclassified samples to the total number of samples in

one group.

In Figure 3a, which represents results for full-resolution images, no classification

errors were evident using the greylevel- or RGB-schemes. However, the HSI-scheme

had higher percentage errors with RLM and WT. The greylevel- and RGB-schemes

were adequate to provide reliable texture features that maximized classification accu-

racy at this resolution. The remarkable increase in the percentage error for the RLM

method with the HSI-scheme (8%) highlights the low performance of TA for this

scheme and this method. At this resolution, the size of a pixel in the horizontal direc-

tion is approximately 0.255 μm of the actual histological sample size.

At half-resolution (Figure 3b), loss in classification accuracy was observed for greyle-

vel- and HSI- schemes. The greylevel-scheme had a minor percentage error (approxi-

mately 2%) for COM and RLM. The HSI-scheme demonstrated a remarkable

percentage error for RLM at this resolution (10%) but lower percentage errors for

COM and WT. The RGB-scheme demonstrated zero percentage error for the three

TA methods.

The quarter-resolution images (Figure 3c) represent higher percentage errors for the

three schemes. The three schemes at this resolution had identical percentage errors for

COM (2%). The greylevel- and HSI-schemes demonstrated a further increase in per-

centage error for RLM. However, the RGB-scheme had the lowest error among the

schemes. The RGB-scheme demonstrated zero errors for RLM and WT. Comparing

the three resolutions demonstrated that degradation of classification accuracy takes

place as resolution decreases. Some color spaces were more susceptible to errors than

Table 1 Texture features at full resolution

TA
Method

Greylevel RGB HSI

COM Sum of Squares G_ Sum of Squares H_ Sum Variance

Sum Variance R_ Sum of Squares H_Correlation

Sum Entropy G_ Sum Variance H_Inverse Difference Moment

RLM Horizontal greylevel non-
uniformity

G_ Horizontal greylevel non-
uniformity

I_ Horizontal Run length non-
uniformity

Vertical greylevel non-
uniformity

G_45° greylevel non-uniformity I _Horizontal Fraction

135°greylevel non-uniformity G_135° greylevel non-uniformity I _135° Run length non-
uniformity

WT E4 G_E4 I _E4
E5 G_E5 S_E4
E2 B_E4 I _E4

The texture features (parameters with the highest F-Coefficient) that discriminate between the C and F groups on
greylevel-, RGB-, and HSI- schemes at full-resolution images, using TA methods:COM, RLM, and WT.

R_: Red, G_: Green, and B_: Blue channels. H_: Hue, S_: Saturation, and I _: Intensity. Es Energy calculated from the
wavelets using various scales (s).
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others. The RGB-scheme was the most resistant to incidences of misclassification and

produced more consistent results despite lowering resolution.

Obtaining acceptable results with RGB at low resolution refutes the idea that TA

requires high resolution for good performance. The ability of achieving good classifica-

tion results on low resolution images facilitates and reduces the time required for the

process of TA, saves hardware space and therefore can be less expensive. In this

respect, RGB space and the corresponding TA on the RGB-scheme provides the best

accuracy-to-resolution compromise.

Although the texture parameters from the three RGB channels were pooled together,

it was demonstrated that the majority of the discriminating parameters belong to the

G (green) channel (Tables 1, 2, and 3). Discriminating parameters belonging to the R

(red) or B (blue) channels rarely appeared as features (Table 1). This observation was

consistent for the three TA methods and can be explained in terms of relevance to the

staining protocol. The chemical interactions that occur between the staining substance

Table 2 Texture features at half resolution

TA
Method

Greylevel RGB HSI

COM Sum of Squares G_ Sum of Squares I _ Inverse Difference Moment

Sum Entropy R_ Sum of Squares S_ Sum of Squares

Sum Variance G_ Sum Entropy I _ Correlation

RLM Vertical greylevel non-
uniformity

G_45° greylevel non-uniformity I _Vertical Long Run Emphasis

Horizontal greylevel non-
uniformity

G_ Horizontal greylevel non-
uniformity

I _ Vertical Fraction

45° greylevel non-uniformity G_135°greylevel non-uniformity I _ Vertical Run length non-
uniformity

WT E3 G_E3 I _E3
E1 G_E3 I _E3
E3 G_E4 I _E2

The texture features (parameters with the highest F-Coefficient) that discriminate between the C and F groups on
greylevel-, RGB-, and HSI- schemes at half resolution images, using TA methods:COM, RLM, and WT.

R_: Red, G_: Green, and B_: Blue channels. H_: Hue, S_: Saturation, and I _: Intensity. Es Energy calculated from the
wavelets using various scales (s).

Table 3 Texture features at quarter resolution

TA
Method

Greylevel RGB HSI

COM Sum Entropy G-Sum Entropy I _ Contrast

Sum Variance G-Sum of Squares I _ Correlation

Sum of Squares G-Sum Variance I _ Inverse Difference Moment

RLM Horizontal greylevel non-
uniformity

G_45° greylevel non-uniformity I _ Inverse Difference Moment

Vertical greylevel non-
uniformity

G_ Horizontal greylevel non-
uniformity

I _ Vertical Run length non-
uniformity

45° greylevel non-uniformity G_ Vertical greylevel non-
uniformity

I _ Vertical Long Run Emphasis

WT E3 G_E2 I _E2
E2 G_E1 S_E2
E1 G_E3 I _E1

The texture features (parameters with the highest F-Coefficient) that discriminate between the C and F groups on
greylevel-, RGB-, and HSI- schemes at quarter resolution images, using TA methods:COM, RLM, and WT.

R_: Red, G_: Green, and B_: Blue channels. H_: Hue, S_: Saturation, and I _: Intensity. Es Energy calculated from the
wavelets using various scales (s).
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a

b

c

Figure 3 Classification results. Percentage error of texture classification in the C and F liver groups using
the greylevel-, RGB- and HSI- schemes on: (a) full-resolution, (b) half resolution, and (c) quarter resolution
images, using TA methods (COM, RLM, and WT).
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and the cell or tissue component produce distinctively colored regions including

pathologically dominant alterations (the extracellular collagen depositions in fibrosis).

TA demonstrated an ability to characterize fibrosis on grey scale images and on speci-

fic color channels. The green channel was the most characteristic, revealing the major-

ity of textural features (Tables 1, 2, and 3). Since this channel corresponds to the color

of the extracellular collagen deposition, it can be concluded that collagen is the main

characteristic for liver fibrosis that produces the most dominant texture, and this con-

verges with histopathological findings in the literature [1]. It can be proposed that

RBG space (and particularly the G channel) is more accurate than HSI results because

the former is a true representation of light reflection from the tissue, while the latter is

created by applying different filters, and yet it is a space approximated mathematically.

Therefore, TA appears to be more efficient at characterizing pathological textural fea-

tures from original spaces as demonstrated for RGB.

This research has demonstrated that the accuracy of TA results varies according to

the color space used for the analysis and the resolution used. The RGB-scheme, corre-

sponding to RGB space, produced better results than the greylevel- or HSI-schemes,

particularly at low resolution. These findings are consistent with previous work con-

cerning meningioma, where TA on RGB outperformed other color spaces owing to

better discrimination on individual color channels [3]. Although the human eye can be

more inspired by HSI space, this does not necessarily mean that this space would per-

form better for TA [3]. This study has demonstrated that HSI space was the poorest

performer for TA. The superior results for the RGB space were predominantly because

each color channel provided textural information that corresponded to a particular col-

oring effect of the staining dye specific for the most dominant pathological component.

Therefore, RGB can characterize this component with higher accuracy within its color

channel. When an RGB colored image is converted to grey scale by approximation

methods, this results in individual channel information being undermined and errors

occur. The results of this study emphasize two factors that should be considered when

automated texture analysis and classification of liver microscopic images is targeted:

firstly, texture and color are joint attributes and should be considered for classification

in order to obtain increased accuracy of results, particularly when low resolution

images are used; secondly, TA of individual color channels in an RGB space can high-

light the pathological factor most useful for TA and therefore can be considered as

important for further research concerning automated fibrosis assessment. TA is not

the only automated method for pathology detection and characterization. Other meth-

ods, such as the theory of sampling [18] and newly developed tissue-based diagnosis

methods [19], will increase the ability to obtain integrated information concerning bio-

logical tissues. Collectively, these automated methods can be used to produce a com-

prehensive base of knowledge for a disease, and this would facilitate the diagnosis at

all stages of that disease.

Conclusions
Color space affects the accuracy of classification of liver histological images at various

levels of resolution. The grey scale is the conventionally used space for TA, but in this

study RGB has demonstrated better results at low resolution, the ability to elaborate

the pathological component most characteristic of fibrosis on histological images and
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emphasis on its corresponding channel. The results of this work could enhance the TA

approach and highlights the factors that should be considered in future liver assess-

ment challenging tasks using automated methods.

Acknowledgements
The author would like to thank Prof. Amr Amin from the Biology Department at United Arab Emirates University for
providing the liver microscopic images used in this work. This work was supported by United Arab Emirates University
grant number 01-02-2-12/08 to Dr. Doaa Mahmoud-Ghoneim.

Author details
1Physics Department, Faculty of Science, United Arab Emirates University, Al-Ain, UAE. 2Biophysics Department, Faculty
of Science, Cairo University, Giza, Egypt.

Authors’ contributions
DMG is the single author of this manuscript. The author carried out work procedures that included: acquiring data,
applying methods, analyzing results, interpreting image analysis findings in relevance to biology, and writing the
manuscript.

Declaration of Competing interests
The author declares that they have no competing interests.

Received: 3 March 2011 Accepted: 14 July 2011 Published: 14 July 2011

References
1. Amin A, Mahmoud-Ghoneim D: Zizyphus spina-christi protects against carbon tetrachloride-induced liver fibrosis in

rats. Food and Chemical Toxicology 2009, 47:2111-2119.
2. Kayser K, Hoshang SA, Metze K, Goldmann T, Vollmer E, Radziszowski D, Kosjerina Z, Mireskandari M, Kayser G: Texture-

and object-related automated information analysis in histological still images of various organs. Anal Quant Cytol
Histol 2008, 30(6):323-335.

3. Al-Kadi OS: Texture measures combination for improved meningioma classification of histopathological images.
Pattern Recognition 2010, 43(6):2043-2053.

4. Collewet G, Strzelecki M, Mariette F: Influence of MRI acquisition protocols and image intensity normalization
methods on texture classification. Magnetic Resonance Imaging 2004, 22:81-91.

5. Mahmoud-Ghoneim D, Cherel Y, Lemaire L, de Certaines JD, Maniere A: Texture Analysis of Magnetic Resonance
Images of Rats’ Muscles During Atrophy and Regeneration. Magnetic Resonance Imaging 2006, 24:167-171.

6. Castellano G, Bonilha L, Li LM, Cendes F: Texture analysis of medical images. Clinical Radiology 2004, 59:1061-1069.
7. Amin A, Mahmoud-Ghoneim D: Texture analysis of liver fibrosis microscopic images: A study on the effect of

biomarkers. Acta Biophysica et Biochemica Sinica 2011, 43(3):193-203.
8. Hübscher SG: Histological assessment of the liver. Medicine 2007, 35(1):17-21.
9. Qazi I, Alata O, Burie JC: Choice of pertinent color space for color texture characterization using parametric spectral

analysis. Pattern Recognition 2011, 44:16-31.
10. Setchell C, Campbell N: Using Color Gabor texture features for scene understanding. Proceedings of the 7th

International Conference on Image Processing and Applications 1999, 67(5):372-376.
11. Mäenpää T, Pietikäinen M: Classification with color and texture: jointly or separately? Pattern Recognition 2004,

37(8):1629-1640.
12. Permuter H, Francos J, Jermyn I: A study of Gaussian mixture models of color and texture features for image

classification and segmentation. Pattern Recognition 2006, 39(4):695-706.
13. Drimbarean A, Whelan PF: Experiments in colour texture analysis. Pattern Recogtion Letters 2001, 22(10):1161-1167.
14. Palm C: Color texture classification by integrative Co-occurrence matrices. Pattern Recognition 2004, 37:965-976.
15. Yu CH, Chen SY: Universal colour quantization for different colour spaces. IEEE Proceedings–Vision Image and Signal

Processing 2006, 153(4):445-455.
16. Hajek M, Dezortova M, Materka A, Lerski R, editors: Texture Analysis for Magnetic Resonance Imaging Prague, Czech

Republic: Med4publishing s.r.o.; 2006.
17. Szczypiński PM, Strzelecki M, Materka A, Klepaczko A: MaZda–A software package for image texture analysis.

Computer Methods and Programs in Biomedicine 2009, 94(1):66-76.
18. Kayser K, Schultz H, Goldmann T, Görtler J, Kayser G, Vollmer E: Theory of sampling and its application in tissue

based diagnosis. Diagnostic Pathology 2009, 4:6.
19. Kayser K, Görtler J, Vollmer E, Hufnagl P, Kayser G: Image standards in Tissue-Based Diagnosis (Diagnostic Surgical

Pathology). Diagnostic Pathology 2008, 3:17.

doi:10.1186/1742-4682-8-25
Cite this article as: Mahmoud-Ghoneim: Optimizing automated characterization of liver fibrosis histological
images by investigating color spaces at different resolutions. Theoretical Biology and Medical Modelling 2011 8:25.

Mahmoud-Ghoneim Theoretical Biology and Medical Modelling 2011, 8:25
http://www.tbiomed.com/content/8/1/25

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/19500642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19500642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19160697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19160697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14972397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14972397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16455405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16455405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15556588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18922598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19220904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19220904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18423031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18423031?dopt=Abstract

	Abstract
	Background
	Methods
	Experimental procedures
	Color spaces
	Texture analysis
	Co-occurrence Matrix
	Run-length matrix
	Wavelet transform
	Feature selection using Fisher coefficient
	Raw data classification

	Results and discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

