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Abstract

Background: Because insulin is the main regulator of glucose homeostasis,
quantitative models describing the dynamics of glucose-induced insulin secretion are
of obvious interest. Here, a computational model is introduced that focuses not on
organism-level concentrations, but on the quantitative modeling of local, cellular-
level glucose-insulin dynamics by incorporating the detailed spatial distribution of
the concentrations of interest within isolated avascular pancreatic islets.

Methods: All nutrient consumption and hormone release rates were assumed to
follow Hill-type sigmoid dependences on local concentrations. Insulin secretion rates
depend on both the glucose concentration and its time-gradient, resulting in
second-and first-phase responses, respectively. Since hypoxia may also be an
important limiting factor in avascular islets, oxygen and cell viability considerations
were also built in by incorporating and extending our previous islet cell oxygen
consumption model. A finite element method (FEM) framework is used to combine
reactive rates with mass transport by convection and diffusion as well as fluid-
mechanics.

Results: The model was calibrated using experimental results from dynamic glucose-
stimulated insulin release (GSIR) perifusion studies with isolated islets. Further
optimization is still needed, but calculated insulin responses to stepwise increments
in the incoming glucose concentration are in good agreement with existing
experimental insulin release data characterizing glucose and oxygen dependence.
The model makes possible the detailed description of the intraislet spatial
distributions of insulin, glucose, and oxygen levels. In agreement with recent
observations, modeling also suggests that smaller islets perform better when
transplanted and/or encapsulated.

Conclusions: An insulin secretion model was implemented by coupling local
consumption and release rates to calculations of the spatial distributions of all
species of interest. The resulting glucose-insulin control system fits in the general
framework of a sigmoid proportional-integral-derivative controller, a generalized PID
controller, more suitable for biological systems, which are always nonlinear due to
the maximum response being limited. Because of the general framework of the
implementation, simulations can be carried out for arbitrary geometries including
cultured, perifused, transplanted, and encapsulated islets.
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Background
In healthy humans, blood glucose levels have to be maintained in a relatively narrow

range: typically 4-5 mM and usually within 3.5-7.0 mM (60-125 mg/dL) in fasting sub-

jects [1,2]. This is mainly achieved via the finely-tuned glucose-insulin control system

whereby b-cells located in pancreatic islets act as glucose sensors and adjust their insu-

lin output as a function of the blood glucose level. Pancreatic islets are structurally

well-defined spheroidal cell aggregates of about one to two thousand hormone-secret-

ing endocrine cells (a, b, g, and PP-cells). Human islets have diameters ranging up to

about 500 μm with a size distribution that is well described by a Weibull distribution

function, and islets with diameters of 100-150 μm are the most representative [3].

Because abnormalities in b-cell function are the main culprit behind elevated glucose

levels, quantitative models describing the dynamics of glucose-stimulated insulin

release (GSIR) are of obvious interest [1] for both type 1 (insulin-dependent or juve-

nile-onset) and type 2 (non-insulin dependent or adult-onset) diabetes mellitus. They

could help not only to better understand the process, but also to more accurately

assess b-cell function and insulin resistance. Abnormalities in b-cell function are criti-

cal in defining the risk and development of type 2 diabetes [4], a rapidly increasing

therapeutic burden in industrialized nations due to the increasing prevalence of obesity

[5,6]. A quantitative understanding of how healthy b-cells maintain normal glucose

levels is also of critical importance for the development of ‘artificial pancreas’ systems

[7] including automated closed-loop insulin delivery systems [8-10] as well as for the

development of ‘bioartificial pancreas’ systems such as those using immune-isolated,

encapsulated islets [11-13]. Accordingly, mathematical models have been developed to

describe the glucose-insulin regulatory system using organism-level concentrations,

and they are widely used, for example, to estimate glucose effectiveness and insulin

sensitivity from intravenous glucose tolerance tests (IVGTT). They include curve-fit-

ting models such as the “minimal model” [14] and many others [15-17] as well as para-

digm models such as HOMA [18,19]. There is also considerable interest in models

focusing on insulin release from encapsulated islets [20-26], an approach that is being

explored as a possibility to immunoisolate and protect transplanted islets.

The goal of the present work is to develop a finite element method (FEM)-based

model that (1) focuses not on organism-level concentrations, but on the quantitative

modeling of local, cellular-level glucose-insulin dynamics by incorporating the detailed

spatial distribution of the concentrations of interest and that (2) was calibrated by fit-

ting experimental results from dynamic GSIR perifusion studies with isolated islets.

Such perifusion studies allow the quantitative assessment of insulin release kinetics

under fully controllable experimental conditions of varying external concentrations of

glucose, oxygen, or other compounds of interest [27-30], and are now routinely used

to assess islet quality and function. Microfluidic chip technologies make now possible

even the quantitative monitoring of single islet insulin secretion with high time-resolu-

tion [31]. We focused on the modeling of such data because they are better suited for

a first-step modeling than those of insulin release studies of fully vascularized islets in

live organism, which are difficult to obtain accurately and are also influenced by many

other factors. Lack of vasculature in the isolated islets considered here might cause

some delay in the response compared with normal islets in their natural environment;

however, the diffusion time (L2/D) [32] to (or from) the middle of a ‘standard’ islet (d

Buchwald Theoretical Biology and Medical Modelling 2011, 8:20
http://www.tbiomed.com/content/8/1/20

Page 2 of 25



= 150 μm) is roughly of the order of only 10 s for glucose and 100 s for insulin (with

the diffusion coefficients used here)-relatively small delays. Furthermore, because of

the spherical structure, most of the cell mass is located in the outer regions of the

islets (i.e., about 70% within the outer third of the radius) further diminishing the roles

of these delays.

By using a general approach that couples local (i.e., cellular level) hormone release

and nutrient consumption rates with mass transport by convection and diffusion, the

present approach allows implementation for arbitrary 2D or even 3D geometries

including those with flowing fluid phases. Hence, the detailed spatial distribution of

insulin release, hypoxia, and cell survival can be modeled within a unified framework

for cultured, transplanted, encapsulated, or GSIR-perifused pancreatic islets. While

there has been considerable work on modeling insulin secretion, no models that couple

both convective and diffusive transport with reactive rates for arbitrary geometries have

been published yet. Most published models incorporating mass transport focused on

encapsulated islets for a bioartificial pancreas [20-26]. Only very few [21,24] included

flow, and even those had to assume cylindrical symmetry. Furthermore, the present

model also incorporates a comprehensive approach to account not only for first-and

second-phase insulin response, but also for both the glucose-and the oxygen-depen-

dence of insulin release. Because the lack of oxygen (hypoxia) due to oxygen diffusion

limitations in avascular islets can be an important limiting [33] factor especially in cul-

tured, encapsulated, and freshly transplanted islets [27,28,34,35], it was important to

also incorporate this aspect of the glucose-insulin response in the model.

In response to a stepwise increase of glucose, normal, functioning islets release insu-

lin in a biphasic manner: a relatively quick first phase consisting of a transient spike of

5-10 min is followed by a sustained second phase that is slower and somewhat delayed

[36-39]. The effect of hypoxic conditions on the insulin release of perifused islets has

been studied by a number of groups [27,28,34,35], and they seem to indicate that insu-

lin release decreases nonlinearly with decreasing oxygen availability; however, only rela-

tively few detailed concentration-dependence studies are available. Parametrization of

the insulin release model here has been done to fit experimental insulin release data

mainly from two studies with the most detailed concentration dependence data avail-

able: by Henquin and co-workers for glucose dependence [40] and by Dionne, Colton

and co-workers for oxygen dependence [27].

In the present model, the insulin-secreting b-cells were assumed to act as sensors of

both the local glucose concentration and its change (Figure 1). Insulin is released

within the islets following Hill-type sigmoid response functions of the local (i.e., cellu-

lar level) glucose concentration, cgluc, as well as its time-gradient, ∂cgluc/∂t, resulting in

second-and first-phase insulin responses, respectively. Oxygen and glucose consump-

tion by the islet cells were also incorporated in the model using Michaelis-Menten-

type kinetics (Hill equation with nH = 1). Since lack of oxygen (hypoxia) can be impor-

tant in avascular islets [33], oxygen concentrations were allowed to limit the rate of

insulin secretion using again a Hill-type equation. Finally, all the local (cellular-level)

oxygen, glucose, and insulin concentrations were tied together with solute transfer

equations to calculate observable, external concentrations as a function of time and

incoming glucose and oxygen concentrations.
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Methods
Mass transport model (convective and diffusive)

For a fully comprehensive description, a total of four concentrations were used each

with their corresponding equation (application mode) for ‘local’ and released insulin,

glucose, and oxygen, respectively (cinsL, cins, cgluc, and coxy). Accordingly, for each of

them, diffusion was assumed to be governed by the generic diffusion equation in its

nonconservative formulation (incompressible fluid) [32,41]:

∂c
∂t

+ ∇ · (−D∇c) = R − u · ∇c (1)

where, c denotes the concentration [mol m-3] and D the diffusion coefficient [m2 s-1]

of the species of interest, R the reaction rate [mol m-3 s-1], u the velocity field [m s-1],

and ∇ the standard del (nabla) operator, ∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
[42]. The following diffu-

sion coefficients were used as consensus estimates of values available from the litera-

ture: oxygen, Doxy,w = 3.0 × 10-9 m2 s-1 in aqueous media and Doxy,t = 2.0 × 10-9 m2 s-

1 in islet tissue ([33] and references therein); glucose, Dgluc,w = 0.9 × 10-9 m2 s-1 and

Dgluc,t = 0.3 × 10-9 m2 s-1; insulin, Dins,w = 0.15 × 10-9 m2 s-1 and Dins,t = 0.05 × 10-9

m2 s-1 [23,24]. Published tissue values for glucose vary over a wide range (0.04-0.5 ×

10-9 m2 s-1) [32,43-46]; a value toward the higher end of this range (0.3 × 10-9 m2 s-1)

was used here. Very few tissue values for insulin are available (and the existence of

dimers and hexamers only complicates the situation) [32,47]; the value used here was

lowered compared to water in a manner similar to glucose. For the case of

Figure 1 Schematic concept of the present model of glucose-stimulated insulin release in b-cells. It
is implemented within a general framework of sigmoid proportional-integral-derivative (SPID) controller,
and responds to glucose concentrations, but is also influenced by the local availability of oxygen. A total of
four concentrations are modeled for ‘local’ and released insulin (cinsL, cins), glucose (cgluc), and oxygen (coxy),
respectively.
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encapsulated islets, the following diffusion coefficients were used for the capsule (e.g.,

hydrogel matrices such as alginate): Doxy,c = 2.5 × 10-9 m2 s-1, Dgluc,c = 0.6 × 10-9 m2 s-

1, Dins,c = 0.1 × 10-9 m2 s-1 [23,48].

Consumption and release rates

All consumption and release rates were assumed to follow Hill-type dependence on the

local concentrations (generalized Michaelis-Menten kinetics):

R = fH(c) = Rmax
cn

cn + Cn
Hf

(2)

The three parameters of this function are Rmax, the maximum reaction rate [mol m-3

s-1], CHf, the concentration corresponding to half-maximal response [mol m-3], and n,

the Hill slope characterizing the shape of the response. This function introduced by A.

V. Hill [49,50] provides a convenient mathematical function for biological/pharmacolo-

gical applications [51]: it allows transition from zero to a limited maximum rate via a

smooth, continuously derivable function of adjustable width. Mathematically, the well-

known two-parameter Michaelis-Menten equation [52] represents a special case (n =

1) of the Hill equation, and eq. 2 also shows analogy with the logistic equation, one of

the most widely used sigmoid functional forms, being equivalent with a logarithmic

logistic function, y = f(x) = Rmax/(1 + be-n lnx). Obviously, different parameter values

are used for the different release and consumption functions (i.e., insulin, glucose, oxy-

gen; e.g., CHf,gluc, CHf,oxy, etc.).

Oxygen consumption and cell viability

For oxygen consumption, the basic values used in our previous model [33,53] were

maintained (noxy = 1, Rmax,oxy = -0.034 mol m-3 s-1, CHf,oxy = 1 μM-corresponding to a

partial oxygen pressure of pHf,oxy = 0.7 mmHg) since, by all indications, the assumption

of a regular Michaelis-Menten kinetics (i.e., noxy = 1) gives an adequate fit [54,55].

Accordingly, at very low oxygen concentrations, where cells only try to survive, oxygen

consumption scales with the available concentration coxy and, at sufficiently high con-

centration, it plateaus at a maximum (Rmax). As before [33], to account for the

increased metabolic demand of insulin release and production at higher glucose con-

centrations, a dependence of Roxy on the local glucose concentration was also intro-

duced via a modulating function �o,g(cgluc):

Roxy = Rmax,oxy
coxy

coxy + CHf ,oxy
· ϕo,g(cgluc) · δ(coxy > Ccr,oxy) (3)

A number of experiments have shown increased oxygen consumption rate in islets

when going from low to high glucose concentrations [56-58]. Here, in a slight update

of our previous model [33], we assumed that the oxygen consumption rate contains a

base-rate and an additional component that increases due to the increasing metabolic

demand in parallel with the insulin secretion rate (cf. eq. 6) as a function of the glucose

concentration:

ϕo,g(cgluc) = φsc

(
ϕbase + ϕmetab

c
nins 2,gluc
gluc

c
nins 2,gluc
gluc + C

nins 2,gluc
Hf ,ins2,gluc

)
(4)
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Lacking detailed data, as a first estimate, we assumed the base rate to represent 50%

of the total rate possible (�base = �metab = 0.5). To maintain the previously used con-

sumption rate at low (3 mM) glucose, a scaling factor is used, Fsc = 1.8. The metabolic

component fully parallels that used for insulin secretion (nins2,gluc = 2.5, CHf,ins2,gluc = 7

mM; see eq. 6 later). With this selection, oxygen consumption increases about 70%

when going from low (3 mM) to high glucose (15 mM)-slightly less than used pre-

viously in our preliminary model [33], but in good agreement with the approximately

50%-100% fold increase seen in various experimental settings [35,36,56-60]. As before

[33], a step-down function, δ, was also added to account for necrosis and cut the oxy-

gen consumption of those tissues where the oxygen concentration coxy falls below a

critical value, Ccr,oxy = 0.1 μM (corresponding to pcr,oxy = 0.07 mmHg). To avoid com-

putational problems due to abrupt transitions, COMSOL’s smoothed Heaviside func-

tion with a continuous first derivative and without overshoot flc1hs [61] was used as

step-down function, δ(coxy >Ccr,oxy) = flc1hs(coxy - 1.0x10
-4, 0.5x10-4).

Glucose consumption

Glucose consumption, in a manner very similar to oxygen consumption, was assumed

to also follow simple Michaelis-Menten kinetics (ngluc = 1) with Rmax,gluc = -0.028 mol

m-3 s-1 and CHf,gluc = 10 μM [23,24,46]:

Rgluc = Rmax,gluc
cgluc

cgluc + CHf ,gluc
(5)

These parameter values are draft first estimates only; however, changes in glucose

concentrations due to glucose consumption by islets have only minimal influence on

insulin release or cell survival because oxygen diffusion limitations in tissue or in

media are far more severe than for glucose [55,62]. Even if oxygen is consumed at

approximately the same rate as glucose on a molar basis and has a 3-4-fold higher dif-

fusion coefficient (i.e., Dws used here of 3.0 × 10-9 vs. 0.9 × 10-9 m2 s-1), this is more

than offset by the differences in the concentrations available under physiological condi-

tions. The solubility of oxygen in culture media or in tissue is much lower than that of

glucose; hence, the available oxygen concentrations are much more limited (e.g.,

around 0.05-0.2 mM vs. 3-15 mM assuming physiologically relevant conditions) [62].

Glucose consumption by islet cells alters the glucose levels reaching the glucose-sen-

sing b-cells only minimally.

Insulin release

Obviously, the most crucial part of the present model is the functional form describing

the glucose-(and oxygen) dependence of the insulin secretion rate, Rins. Glucose (or

oxygen) is not a substrate per se for insulin production; hence, there is no direct justifi-

cation for the use of Michaelis-Menten-type enzyme kinetics. Nevertheless, the corre-

sponding generalized form (Hill equation, eq. 2) provides a mathematically convenient

functionality that fits well the experimental results. A Hill function with n > 1 is

needed because glucose-insulin response is clearly more abrupt than the rectangular

hyperbola of the Michaelis-Menten equation corresponding to n = 1 as clearly illu-

strated by the sigmoid-type curve of Figure 2 and by other similar data from various

sources [36,40,63,64]. In fact, such a function has been used as early as 1972 by

Grodsky (n = 3.3, CHf,ins,gluc = 8.3 mM; isolated rat pancreas) and justified as resulting

from insulin release from individual packets with normally distributed sensitivity
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thresholds [63]. However, except for some recent work by Pedersen, Cobelli and co-

workers [65,66], such a sigmoid functional dependence has been mostly neglected

since then, and most models [21,23,24] used flatter (n = 1) response functions com-

bined with exponentially decreasing time-functions. To have a model that can be used

for arbitrary incoming glucose profiles, the use of explicit time dependency was

avoided here; however, use of an additional ‘local’ insulin compartment with first order

release kinetics (see later) achieves a similar effect. A sufficiently abrupt sigmoid

response function on cgluc ensures an upper limit (plateau) at high glucose concentra-

tions as well as essentially no response at low concentrations (Figure 2) eliminating the

need for a specified minimum threshold for effect.

Accordingly, the main function used here to describe the glucose-insulin dynamics of

the second-phase response is:

Rins,ph2 = Rmax,ins2

c
nins 2,gluc
gluc

c
nins 2,gluc
gluc + C

nins 2,gluc
Hf ,ins2,gluc

(6)

with nins2,gluc = 2.5, CHf,ins2,gluc = 7 mM, and Rmax,ins2 = 3.0 × 10-5 mol m-3 s-1. These

values were obtained here by calculating the predicted insulin output in response to a

stepwise increase in incoming glucose and adjusting nins2,gluc and CHf,ins2,gluc to obtain

best fit with the human islet data of Henquin and co-workers (staircase experiment)

[40] (Figure 2). Topp and co-workers used a similar Hill function (n = 2, CHf = 7.8

mM) for insulin secretion based on (rat) data from Malaisse [67]. Compared to

Figure 2 Glucose-dependence of insulin secretion rate in perifused islets. Experimental data are for
perifused human islets (blue diamonds) [40] and isolated rat pancreas (blue circles) [63]. Fit of the human
data with general Hill-type equations (eq. 2) is shown without any restrictions (best fit, n = 2.7, CHf,gluc =
6.6 mM; blue line), with restricting the Hill slope to unity (n = 1, Michaelis-Menten-type function, CHf,gluc =
4.9 mM; dashed blue line), and with the present model used for the local concentration (eq. 6) (n = 2.5,
CHf,gluc = 7 mM; red line).
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rodents, human insulin response is left-shifted, and a half-maximal response for a glu-

cose concentration around 7 mM seems reasonable [40,68]. The activity of glucokinase,

which serves as glucose sensor in b-cells and is also generally considered as rate-limit-

ing for their glucose usage, shows a sigmoid-type dependence on cgluc (i.e., eq. 2 with

CHf,gluc = 8.4 mM, ngluc = 1.7 [69] or CHf,gluc = 7.0 mM, ngluc = 1.7 [70]) in general

agreement with eqs. 5 and 6 and their parameterization (Table 1). Rmax,ins2 corresponds

to a maximum (second phase) secretion rate of ~20 pg/IEQ/min for human islets

[37,40,71].

To incorporate a simple model of the first-phase response, we also added a compo-

nent that depends on the glucose time-gradient (ct = ∂cgluc/∂t). This is non-zero only

when the glucose concentration is increasing, i.e., only when ct > 0. Again, a Hill-type

sigmoid response was assumed to ensure a plateau:

Rins,ph1 = Rmax,ins1

(
∂cgluc
∂t

)nins1,gluc

(
∂cgluc
∂t

)nins1,gluc

+ Ct
nins1,gluc
Hf ,ins1,gluc

· σi1,g(cgluc) (7)

with nins1,gluc = 2, CtHf,ins1,gluc = 0.03 mM s-1, and Rmax,ins1 = 21.0 × 10-5 mol m-3 s-1.

These parameters are more difficult to directly calibrate from existing data on insulin

responses to stepwise glucose increases; hence, they have to be considered as explora-

tory settings. Constant glucose ramps have been explored with perifused rat islets in

an attempt to quantify these responses [72]; however, the gradients used there are too

small (1.5-4.5 μM/s) to allow a clear separation between first-and second-phase

responses for quantitation. The CtHf value used here (0.03 mM/s) was selected so as to

give an approximately linear response for a range that likely covers normal physiologic

conditions (e.g., 5 mM increase in 10-20 min: 0.005-0.01 mM/s) as well as dynamic

perifusion conditions (e.g., 2-6 mM increases in 1 min: 0.03-0.10 mM/s). A completely

linear (i.e., proportional) glucose gradient dependent term has been used in a few pre-

vious models mainly following Jaffrin [20,26,72-74] (one of them [73] also allowing

modulation of the proportionality constant by glucose concentration). Here, one

Table 1 Summary of Hill function (eq. 2) parameters used in the present model (Figure
1, eq. 3-9)

Model Var. CHf n Rmax Comments

Roxy, oxygen
consumption,
base

coxy 1 μM 1 -0.034 mol/m3/s Cut to 0 below critical value, coxy <Ccr,oxy.

Roxy, oxygen
consumption, �o,g
metabolic part

cgluc 7 mM 2.5 N/A Due to increasing metabolic demand;
parallels second-phase insulin secretion
rate.

Rgluc, glucose
consumption

cgluc 10 μM 1 -0.028 mol/m3/s Contrary to oxygen, has no significant
influence on model results.

Rins,ph2, insulin
secretion rate,
second-phase

cgluc 7 mM 2.5 3 × 10-5 mol/m3/s Total secretion rate is modulated by local
oxygen availability (last row).

Rins,ph1, insulin
secretion rate,
first-phase

∂cgluc/∂t 0.03 mM/s 2 21 × 10-5 mol/m3/s Modulated via eq. 8 to have maximum
sensibility around cgluc = 5 mM and be
limited at very large or low cgluc.

Insulin secretion
rate, �o,g oxygen
dependence

coxy 3 μM 3 N/A To abruptly limit insulin secretion if coxy
becomes critically low.
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additional modulating function, si1,g has also been incorporated to reduce this gradi-

ent-dependent response for islets that are already operating at an elevated second-

phase secretion rate and to maximize it around cgluc values where islets are likely to be

most sensitive (Cm = 5 mM) using a derivative of a sigmoid function:

σi1,g(cgluc) =
4c4glucC

4
m(

c4gluc + C4
m

)2 (8)

With all these, total insulin release is obtained as the sum of first-and second-phase

releases and an additional modulating function to account for the limiting effect of

oxygen availability, which can become important in the core region of larger avascular

islets especially under hypoxic conditions:

Rins = (Rins,ph1 + Rins,ph2) · ϕi,o(coxy) (9)

We assumed an abrupt Hill-type (eq. 2) modulating function as �i,o(coxy) with nins,oxy =

3 and CHf,ins,oxy = 3 μM (pHf,ins,oxy = 2 mmHg) so that insulin secretion starts becoming

limited for local oxygen concentrations that are below ~6 μM (corresponding to a partial

pressure of pO2 ≈ 4 mmHg) (Additional file 1, Figure S1). This is a somewhat similar,

but mathematically more convenient function than the bilinear one introduced by

Avgoustiniatos [75] and used by Colton and co-workers [76] to account for insulin

secretion limitations at low oxygen (pO2 < 5.1 mmHg assumed by them) as it is a

smooth sigmoid function with a continuous derivative (Additional file 1, Figure S1).

For a correct time-scale of insulin release, an extra compartment had to be added;

otherwise insulin responses decreased too quickly compared to experimental observa-

tions (~1 min vs. ~5-10 min). Hence, insulin is assumed to be first secreted in a ‘local’

compartment (Figure 1) in response to the current local glucose concentration (Rins,

eq. 9) and then released from here following a first order kinetics [dcinsL/dt = Rins -

kinsL(cinsL - cins); kinsL = 0.003 s-1, corresponding to a half-life t1/2 of approximately 4

min]. ‘Local’ insulin was modeled as an additional concentration with the regular con-

vection model (eq. 1), but having a very low diffusivity (DinsL,t = 1.0 × 10-16 m2 s-1).

Throughout the entire model building process, special care was taken to keep the

number of parameters as low as possible to avoid over-parameterization [77]; however,

inclusion of this compartment was necessary. The model has been parameterized by

fitting experimental insulin release data from two detailed concentration-dependence

perifusion studies: one concentrating on the effect of glucose using isolated human

islets [40] and one concentrating on the effect of hypoxia using isolated rat islets [27].

Fluid dynamics model

To incorporate media flow in the perifusion tube, these convection and diffusion mod-

els need to be coupled to a fluid dynamics model. Accordingly, the incompressible

Navier-Stokes model for Newtonian flow (constant viscosity) was used for fluid

dynamics to calculate the velocity field u that results from convection [32,41]:

ρ
∂u
∂t

− η∇2u + ρ(u · ∇)u + ∇p = F

∇ · u = 0
(10)
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Here, r denotes density [kg m-3], h viscosity [kg m-1 s-1 = Pa s], p pressure [Pa, N m-

2, kg m-1 s-2], and F volume force [N m-3, kg m-2 s-2]. The first equation is the

momentum balance; the second one is simply the equation of continuity for incom-

pressible fluids. The flowing media was assumed to be an essentially aqueous media at

body temperature; i.e., the following values were used: T0 = 310.15 K, r = 993 kg m-3,

h= 0.7 × 10-3 Pa s, cp = 4200 J kg-1K-1, kc = 0.634 J s-1m-1K-1, a = 2.1 × 10-4 K-1. As

previously [33], incoming media was assumed to be in equilibrium with atmospheric

oxygen and, thus, have an oxygen concentration of coxy,in = 0.200 mol m-3 (mM) corre-

sponding to pO2 ≈ 140 mmHg. A number of GSIR perifusion studies including [40]

used solutions gassed with enriched oxygen (e.g., 95% O2 + 5% CO2; pO2 ≈ 720

mmHg); however, with the islet sizes used here, atmospheric oxygen already provides

sufficient oxygenation so that the extra oxygen has no effect on model-calculated insu-

lin secretion (see Results section). Inflow velocity was set to vin = 10-4 m s-1 (corre-

sponding to a flow rate of 0.1 mL/min in a ~4 mm tube), and along the inlet, a

parabolic inflow velocity profile was used: 4vins(1-s), s being the boundary segment

length.

Model implementation

The models were implemented in COMSOL Multiphysics 3.5 (formerly FEMLAB;

COMSOL Inc., Burlington, MA) and solved as time-dependent (transient) problems

allowing intermediate time-steps for the solver. Computations were done with the Par-

diso direct solver as linear system solver with an imposed maximum step of 0.5 s,

which was needed to not miss changes in the incoming glucose concentrations that

could be otherwise overstepped by the solver. With these setting, all computation

times were reasonable being about real time; i.e., about 1 h for each perifusion simula-

tions of 1 h interval.

As a representative case, a 2D cross-section of a cylindrical tube with two spherical

islets of 100 and 150 μm diameter was used allowing for the possibility of either free

or encapsulated islets (capsule thickness l = 150 μm; fluid flowing from left to right)

(Figure 3). Stepwise increments in the incoming glucose concentration were implemen-

ted using again the smoothed Heaviside step function at predefined time points ti, cgluc
= clow + Σcstep,i flc1hs(t - ti, τ). For FEM, COMSOL’s predefined ‘Extra fine’ mesh size

was used (5,000-10,000 mesh elements; Figure 3). In the convection and diffusion

models, the following boundary conditions were used: insulation/symmetry, n (-D∇c
+cu) = 0, for walls, continuity for islets. For the outflow, convective flux was used for

insulin, glucose, and oxygen, n (-D∇c) = 0. For the inflow, inward flux was used for all

components with zero for insulin (N0 = 0), cgluc vin for glucose, and coxy,in vin for oxy-

gen. In the incompressible Navier-Stokes model, no slip (u = 0) was used along all sur-

faces corresponding to liquid-solid interfaces. For the outlet, pressure, no viscous stress

with p0 = 0 was imposed.

For visualization of the results, surface plots were used for cins, coxy, and Rins. For 3D

plots, cins was also used as height data. A contour plot (vector with isolevels) was used

for cgluc to highlight the changes in glucose. To characterize fluid flow, arrows and

streamlines for the velocity field were also used. Animations were generated with the

same settings used for the corresponding graphs. Total insulin secretion as a function
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of time was visualized using boundary integration for the total flux along the outflow

boundary.

Results and Discussion
First-and second-phase insulin responses

Following implementation of the model, the values of the adjustable parameters of eqs.

4-9 were selected (Table 1) so as to fit insulin secretion data from islet perifusion

experiments with detailed dose responses for glucose-[40,78] and oxygen-dependence

[27]. For this purpose, model-predicted insulin responses to stepwise increments in the

incoming glucose content were calculated as boundary integrals on the exiting surface

of the out-flowing fluid, and these were then fitted to the experimental insulin

responses measured as a function of time. First, the parameters of the second-phase

response (eq. 6) were fitted to the results of the staircase experiment [40], then those

of the first-phase response (eq. 7 and 8). Fine-tuning of the values has been done in a

few iterative rounds to also fit the oxygen dependence [27]. As Figure 4 shows, accep-

table quantitative agreement can be obtained for both phase 1 and phase 2 responses

of the insulin secretion of human islets as measured recently in detailed experiments

[40]. The amplitude of the insulin response, which depends on the mass of functional

islets present, was adjusted for best fit, but it is within the expected range if calculated

for the corresponding number of islet equivalents (IEQ). During the modeling [79], it

became apparent that in order to have a correct time-scale and not a very short-term

first-phase release, some delay mechanism has to be introduced. After exploring several

possibilities, the delay was modeled by incorporation of a ‘localized’ insulin compart-

ment (e.g., intracellular) from which insulin is then released to the surroundings via

Figure 3 Geometry and a representative mesh used for the present FEM model. Two representative
spherical islets, which can be either free or encapsulated, are included in a tube with fluid flowing from
left to right.
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first order kinetics (kinsL) (Figure 1). A main reason for this choice was that concep-

tually, to a good extent, this insulin secreted and stored ‘locally’ can be considered as

the insulin in the readily releasable pool (RRP) of granules in current dynamic cellu-

lar models of biphasic insulin secretion [37,65]. It is being filled in response to glu-

cose stimulation (Rins, eq. 9) and then gradually emptied (kinsL). Our goal at this

point, is not to model the detailed cellular and subcellular mechanisms responsible

for the biphasic secretion and the staircase response [37,65,66], but to identify func-

tional forms for local responses (Rins) that when integrated with the descriptions of

spatial distribution of the relevant concentrations can give an adequate quantitative

description (cgluc, coxy ® Rins ® cins). Most perifusion experiments intended to assess

islet quality are performed as single step low-high-low glucose perifusion experi-

ments; a fit for one such data is shown in Figure 5. Again, except for an underesti-

mate of the first-phase peak, acceptable agreement is obtained. First-phase insulin

secretion has been shown to be greater following a larger step-up in glucose to the

same final value (e.g., both in human [40] and in mouse [80] islets). The present

model should account for this as its first-phase insulin secretion rate is determined

by the glucose gradient, which increases directly with the size of the step-up; how-

ever, some fine-tuning of the parameters is still needed. The predicted first-phase

decay (resulting from kinsL) may be a bit too slow (t1/2 ≈ 4 min); however, the predic-

tion of the second-phase decay is more adequate, and to keep the model as simple as

possible, we chose to use only one single ‘local’ insulin ‘compartment’, hence, a single

first-order release rate kinsL.

Figure 4 Glucose-induced insulin secretion in perifused human islets in response to stepwise
glucose increments. Glucose concentration in the perifusing solution increases from 1 mM (G1) to 30
mM (G30) as indicated. Values calculated with the present model (red line, — ) are shown superimposed
on the same time-scale over data determined experimentally (blue disks, ●; redrawn from [40]).
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Oxygen dependence

Because oxygen diffusion is a limiting factor in avascular islets, hypoxia can limit insu-

lin secretion. The oxygen dependence of local insulin release has been parameterized

so as to fit the only detailed data available, which, however, are for rat islets [27]. Insu-

lin secretion profiles calculated here for different incoming oxygen concentrations in

response to a single glucose step are shown in Figure 5 for a few representative cases.

As Figure 6 shows, they give a good quantitative fit of the experimental data of refer-

ence [27]. The problem, however, is complicated by the fact that due to the larger dif-

fusion distance, hypoxia is much more severe in the core regions of larger islets [33];

hence, hypoxia will have different effects on the insulin response of differently sized

islets. This can be seen in Figure 7 and Figure 8, which show the calculated spatial dis-

tributions of insulin, oxygen, and glucose concentrations under normoxic and slightly

hypoxic conditions as surface plots. Figure 9 provides further illustration by comparing

oxygen concentrations and insulin secretion rates along a vertical cross section of the

two islets.

Accordingly, the overall experimental response to hypoxic conditions will depend on

the size-distribution of the islet sample. Human islets seem to follow a Weibull distri-

bution with the expected value of islet diameter being around 95 μm and the expected

Figure 5 Oxygen dependence of the calculated GSIR in perifused human islets. Calculated insulin
outflow in response to a stepwise glucose increment from 1 mM (G1) to 15 mM (G15) and back for
different incoming oxygen concentrations as indicated by the pO2 values shown at right. For the normoxic
values (red line, —), corresponding values determined experimentally (blue circles, ○; redrawn from [40])
are also shown for comparison.
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value of islet volume being 1.2 × 106 μm (corresponding to an islet with d = 133 μm)

[3]. In other words, most (human) islets are expected to have a diameter around 100

μm, but most of the islet mass (volume) is coming from islets with a diameter around

150 μm, which has been traditionally used as the standard islet (islet equivalent, IEQ)

[81,82]. Consequently, we chose two islets with d = 100 and 150 μm as representative

for our simplified modeling.

It is important to note that even though local insulin release is becoming limited

only for oxygen concentrations below 4 mmHg (≈6 μM; eq. 9), the total insulin secre-

tion of the islets starts decreasing rapidly if surrounding oxygen levels drop below ~50

mmHg and is already half-maximal around 25 mmHg (Figure 6). The reason, of

course, is that oxygen concentrations in the core of larger islets are considerable less

than in the surrounding media due to diffusion limitations (see Figure 8 and 9). It is

also worth noting that overall insulin response remains essentially unchanged until

oxygen pressures decrease down to ~50 mmHg (Figure 6), values that are present in

well vascularized tissues, and then decreases rapidly. This agrees well even with results

of in vivo experiments in dogs suggesting that moderate hypoxia (pO2 ≈ 40 mmHg)

does not affect insulin response, whereas more severe hypoxia (pO2 ≈ 25 mmHg) mark-

edly inhibits it [83]. A number of GSIR perifusion studies including [40] used solutions

gassed with enriched oxygen (e.g., 95% O2 + 5% CO2; pO2 ≈ 720 mmHg). Compared to

atmospheric oxygen (pO2 ≈ 140 mmHg), this does not produces any changes in the

insulin profile calculated with the present model (e.g., Figure 4) since with the islet

sizes used here atmospheric oxygen already provides sufficient oxygenation so that

insulin secretion is not limited (Figure 8A, Figure 9A). On the other hand, transplanted

Figure 6 Influence of oxygen concentration on the insulin secretion rate of perifused islets. Data
represent the fraction of normoxic (second-phase) rate at various oxygen levels in the perifusing media;
experimental data (blue triangles) are from [27] and values calculated here are shown as red disks for free
islets and orange circles for encapsulated islets. The size-distribution of the islet sample influences these
results as larger islets are more severely affected by hypoxia.
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islets are likely to be subject to oxygen levels below 50 mmHg [84] depending on the

seeding density and the vascularization of the surrounding tissue, which can further

limit their insulin secreting ability. Availability of oxygen is the main limiting factor

because, under physiological conditions, oxygen concentrations are considerably lower

than glucose concentrations (e.g., around 0.05-0.2 mM vs. 3-15 mM) [62], and this is

well illustrated by the present calculation in Figure 8 that compares oxygen and

Figure 7 Comparison of the calculated insulin distribution and secretion rate under various
conditions. Model calculated concentrations during an increase of incoming glucose to 10 mM
(corresponding to t = 120.5 min in Figure 4) in two perifused islets (d = 100 and 150 μm; flow from left to
right) under normoxic conditions (A), slightly hypoxic conditions (45 mmHg) (B), and slightly hypoxic
conditions and encapsulation (C). Data shown as surface plot are insulin concentration (1; shown color-
coded from blue for low to red for high-note different scales) and total insulin secretion rate (eq. 9) (2;
color-coded from green for 0 to red for high and shown on same scale). Gray streamlines and arrows
illustrate the velocity field of the flowing perifusion fluid, and colored contour lines show isolevels for the
perifusing glucose.
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glucose concentrations across the islets. Whereas glucose concentrations in the center

of larger islets are only a few percent lower than at the periphery, oxygen concentra-

tions in the center are considerably lower than at the periphery. R. T. Kennedy and

co-workers measured somewhat larger glucose concentration decreases in the center of

cultured islets (10-20%) [45], but even those are much less severe than the correspond-

ing oxygen decreases.

With the calibrated model, detailed simulations for arbitrary inflow conditions and

for arbitrary islet arrangements can be performed, and corresponding detailed graphics

Figure 8 Comparison of the calculated oxygen and glucose concentrations under various
conditions. Model calculated concentrations in two perifused islets under the same conditions as in
Figure 7: normoxic (A), slightly hypoxic (45 mmHg) (B), and slightly hypoxic and encapsulation (C). Data
shown as surface plot are oxygen concentration (3; shown color-coded from red for low to blue for high
with white indicating levels below the critical value Ccr,oxy) and glucose concentration (4; shown color-
coded from blue for low to red for high). Oxygen concentrations are shown during an increase of
incoming glucose to 10 mM (same as in Figure 7); glucose concentrations are shown at a slightly later
time point at a constant incoming glucose of 10 mM to avoid the masking effect of the incoming glucose
gradient. Note differences in scale between oxygen and glucose, glucose concentrations decreasing by a
much smaller percentage than oxygen.
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Figure 9 Comparison of oxygen levels and insulin secretion rates along a vertical cross section.
Calculated values along the vertical mid-section of Figure 3 (or Figure 7) through the two perifused islets
under normoxic conditions (atmospheric oxygen, 140 mmHg) (A), hypoxic conditions (resembling tissue
oxygen concentrations, 45 mmHg) (B), and hypoxic conditions and encapsulation (C). The two sets of
color-coded curves in each figure indicate calculated oxygen concentrations and insulin secretion rates,
respectively at various time-points corresponding to glucose concentrations of 3, 5, 7, and 10 mM. At
oxygen concentrations that transplanted islets are likely to encounter in their surrounding tissue (~40
mmHg), the insulin secretion of the core region of larger islets is severely compromised.
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and animations can easily be generated. For example, calculated insulin, oxygen, and

glucose concentrations along the perifusion chamber with two islets during a glucose

gradient are shown in Figure 7 together with the insulin secretion rates. A set of simi-

lar results is shown in Figure 9 along a vertical cross-section through the middle of

these figures. To illustrate the easy generalizability of the present approach, Additional

file 1, Figure S2 shows the results of calculations obtained for a case where a support-

ing filter was included in the tube. While this perturbs the flow, it has essentially no

effect on the overall insulin output justifying the simplifying assumptions made for the

present geometry (Figure 3). Increases in the perifusion rate (e.g., up to ten-fold) also

have no significant effect on calculated insulin output.

Figure 10 shows 3D graphs with insulin as height data and color-coded for the oxy-

gen concentrations to further highlight the results of decreasing oxygen concentration

in the core region of larger islets. A corresponding set of animations are included as

Supporting Information to illustrate the time-course of the first-and second-phase

responses following a glucose step (Additional file 2, Video S1; Additional file 3, Video

S2). At normoxic conditions (pO2 = 140 mmHg in the incoming media), the core

region of even large islets is still sufficiently oxygenized due to the flowing media;

hence, their insulin secretion is not limited. However, this is no longer true for hypoxic

Figure 10 Calculated insulin concentrations shown as height data. Surfaces are color-coded for
oxygen concentration (blue high, red low) for the same configuration and time-point shown in Figure 7
for free islets in normoxic (pO2 = 140 mmHg) (A) and hypoxic conditions (pO2 = 25 mmHg) (B) as well as
for encapsulated islets in normoxic conditions (C). The insulin secreting ability of the large islet is more
severely affected by hypoxia as clearly indicated by the changes in relative height between A and B (note
different scales).
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conditions as illustrated by Figure 9B or by Figure 10B showing the corresponding

results for pO2 of 45 and 25 mmHg, respectively in the incoming media. Contrary to

the previous case, the two islets are predicted to secret about similar insulin amounts

despite their different sizes due to the more severe oxygen limitations in the core

region of the larger islet, which restricts insulin secretion to an outside shell only in

large islets. These results are in good agreement with observations suggesting that

smaller islets tend to perform better in islet transplantation (with or without encapsu-

lation) [85-88].

Encapsulated islets

In patients with type 1 diabetes mellitus, the transplantation of pancreatic islet cells

can normalize metabolic control in a way that has been virtually impossible to

achieve with exogenous insulin, and is being explored, in a selected cohort of patients

with brittle diabetes, as an experimental therapy [89,90]. To avoid the need for life-

long immunosuppression, islet encapsulation using semi-permeable membranes and

various techniques has long been explored as a possible approach to develop a bioar-

tificial pancreas-an organ capable of releasing insulin in a biomimetic manner in

response to plasma glucose changes [11-13]. Many failed attempts [91] made it clear

that minimizing the extra volume of encapsulating material (as well as cellular over-

growth) and the corresponding diffusional limitations are crucial for graft success.

Hence, there is a considerable interest in modeling the insulin responses of such

devices [20-26].

Encapsulated islets remain avascular; hence, the present software can be easily

extended to model their behavior under perifusion or tissue transplant conditions. For

example, as Figure 11 shows, simulations with the present model for microencapsu-

lated islets (assuming hydrogel-like encapsulating material of a relatively modest width,

l = 150 μm) predicts that perifusion results in somewhat delayed and dampened insu-

lin response, but insulin response kinetics is maintained to a good degree. This is in

good agreement with some experimental results obtained, for example, with alginate

microencapsulated islets (using oxygen-enriched perifusion media to minimize the

effects of oxygen limitation) [92,93]. However, at lower perifusing oxygen concentra-

tions, such as those mimicking tissue oxygen concentrations that transplanted islets

are likely to encounter even in well-vascularized tissue (pO2 = 35-45 mmHg; coxy =

0.05-0.065 mM), the loss in insulin secreting ability is much more significant as the

encapsulated islets here suffer much more heavily from hypoxia (Figure 7, Figure 9,

and Figure 10). Whereas, under these conditions, free islets can still secrete insulin at

around 70-75% of their normal rate (and, for transplanted islets, will improve with

time as their vasculature is restored), encapsulated islets can only operate at around

50% of the full rate and their response is especially hampered at larger glucose levels

(Figure 6, Figure 11). As nicely illustrated by Figure 7 and Figure 9, only a relatively

small percentage of the encapsulated islets cells is able to secrete insulin at full capa-

city; oxygen diffusion limitations severely restrict the hormone secreting ability of the

core regions even at this relatively thin microcapsule size-further emphasizing the need

for conformal/nano-coating or other alternative approaches [13,94,95]. These results

reconfirm the finding of some previous modeling work with cultured or encapsulated

islets [75,76], which focused on the limiting effect of hypoxia but without incorporating
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details of the glucose-insulin response, that also suggested that the use of smaller islets

(or islet cell aggregates) could reduce the impact of oxygen diffusion limitation.

Modeling considerations

Obviously, this is still a much simplified, exploratory model; the actual mechanism of

glucose-induced insulin secretion in b-cells is complex and involves various molecular-

level events [1,2,36,37,39,70,96,97]. The present model gives an adequate quantitative

description of the main distinctive features of insulin release, but, at this stage, does

not account for interspecies differences and does not incorporate a number of effects

known to affect glucose-induced insulin release including, e.g., amplifiers such as glu-

cagon-like peptide-1 (GLP-1) as well as time-dependent effects (i.e., both time-depen-

dent inhibition and potentiation; e.g., the “glucose priming” effect) [98].

One of the most complex technical control systems that is widely used in industrial

control systems and has been suggested as a possibility for the glucose-insulin control

system is the proportional-integral-derivative controller (PID controller) [1,8-10]. PID

controllers are also particularly promising for closed-loop insulin delivery systems with

continuous glucose sensors [8-10,99]. This control loop feedback mechanism uses a

combination of proportional, integral, and differential (PID) terms so that the control

signal has elements that are functions of the error signal itself (ε = ξ - ξo, the difference

Figure 11 Calculated GSIR in perifused free vs. encapsulated islets. Insulin outflow calculated in
response to stepwise glucose increments from 1 mM (G1) to 30 mM (G30) under normoxic (continuous
line, pO2 = 140 mmHg) and slightly hypoxic (dashed line; pO2 = 45 mmHg) conditions for free (red) vs.
encapsulated islets (orange). The response of normoxic free islets is the same as given in Figure 4.

Buchwald Theoretical Biology and Medical Modelling 2011, 8:20
http://www.tbiomed.com/content/8/1/20

Page 20 of 25



between the existing output ξ and its desired value ξo), its integral (∫εdt), and its differ-

ential (dε/dt). In other words, the controller output signal ψ can be written as a func-

tion of time as:

ψPID(t) = αpε(t) + αi

t∫
0

ε(τ )dτ + αd
dε(t)
dt

(11)

PID control works great in linear systems; however, biological systems are never fully

linear: proportional responses are only possible over some limited range as biological

responses (e.g., hormone secretion rates, enzymatic degradation rates, nerve firing

rates, etc.) are always limited between zero and some maximum value. Biologic systems

are always nonlinear, never stationary, but robust, which often comes from coupling of

different, overlapping systems [1]. Accordingly, responses in biologic systems are much

better described by sigmoid functions; hence, the present suggestion for sigmoid pro-

portional-integral-derivative controllers (SPID controllers) for biologic responses. Use

of the Hill function fH (eq. 2) allows sigmoid responses with limited maximum rates

(Rmax) and flexible shapes (n):

ψSPID(t) = αpfH[ε(t)] + αifH

⎡
⎣ t∫
t−θ

ε(τ )dτ

⎤
⎦ + αdfH

[
dε(t)
dt

]
(12)

Here, we used the sigmoid direct (proportional) term to model the oxygen and glu-

cose consumptions as well as the second phase insulin release, and the sigmoid differ-

ential term to model the first-phase insulin release (with cgluc itself as the “error” signal

ε; Figure 1). As always, the role of the differential term is to speed up the system; i.e.,

to give a large correction signal as soon as possible when the monitored value changes

suddenly-exactly the role played by the first-phase insulin secretion. In the present

model, we could not yet implement an integral term despite a clear need for such a

term over a specified time interval to account, for example, for some inertia and/or

delay in insulin secretion (integral control is part of several models, i.e.,

[8-10,73,99,100]). However, addition of the extra compartment for delayed insulin

release actually incorporates some elements usually accounted for by such an integral

term.

Conclusion
In conclusion, a comprehensive insulin secretion model for avascular pancreatic islets

has been implemented using Hill-type sigmoid response functions to describe both glu-

cose and oxygen dependence. Detailed spatial distributions of all concentrations of

interest are incorporated and coupled via local consumption and release functions. Fol-

lowing parameterization, good fit could be obtained with experimental perifusion data

of human islets. Further optimization of the model is required; however, the present

approach makes it relatively straightforward to couple arbitrarily complex hormone

secretion and nutrient consumption kinetics with diffusive and even convective trans-

port and run simulations with realistic geometries without symmetry or other restric-

tions-problems that seriously limited previous glucose-insulin modeling attempts.

Because of the general framework of the implementation, the model not only helps in

the elucidation of the quantitative aspects of the insulin secretion dynamics, but also
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allows the in silico exploration of various conformations involving cultured, perifused,

transplanted, or encapsulated islets including the simulation of GSIR perifusion experi-

ments or the study of the performance of bioartificial pancreas type devices.

Additional material

Additional file 1: Supporting Information, Figures S1 and S2. Two supporting figures with Figure S1 showing
the local oxygen-dependent modulating function and Figure S2 showing model calculations with a supporting
filter included in the perifusion tube.

Additional file 2: Supporting Information, Video S1. Movie file showing the time-course of the insulin response
of two islets to a glucose step (3 mM ® 11 mM ® 3 mM) under normoxic conditions (pO2 140 mmHg) in a 3D
representation with insulin concentration as height data and a surface color-coded for oxygen concentration
(similar to Figure 10).

Additional file 3: Supporting Information, Video S2. Movie file showing the time-course of the insulin response
of two islets to a glucose step (3 mM ® 11 mM ® 3 mM) under hypoxic conditions (pO2 25 mmHg) in a 3D
representation with insulin concentration as height data and a surface color-coded for oxygen concentration
(similar to Figure 10).
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