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Abstract

Background: The function and viability of cultured, transplanted, or encapsulated pancreatic islets
is often limited by hypoxia because these islets have lost their vasculature during the isolation
process and have to rely on gradient-driven passive diffusion, which cannot provide adequate
oxygen transport. Pancreatic islets (islets of Langerhans) are particularly susceptible due to their
relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite
element method (FEM) based multiphysics models are explored to describe oxygen transport and
cell viability in avascular islets both in static and in moving culture media.

Methods: Two- and three-dimensional models were built in COMSOL Multiphysics using the
convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application
modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease
when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed
to increase with increasing glucose concentration.

Results: Partial differential equation (PDE) based exploratory cellular-level oxygen consumption
and cell viability models incorporating physiologically realistic assumptions have been implemented
for fully scaled cell culture geometries with 100, 150, and 200 im diameter islets as representative.
Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related
necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane
bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels
are presented in detail illustrated with corresponding colour-coded figures and animations.

Conclusion: Results of the computational models are, as a first estimate, in good quantitative
agreement with existing experimental evidence, and they confirm that during culture, hypoxia is
often a problem for non-vascularised islet and can lead to considerable cell death (necrosis),
especially in the core region of larger islets. Such models are of considerable interest to improve
the function and viability of cultured, transplanted, or encapsulated islets. The present
implementation allows convenient extension to true multiphysics applications that solve coupled
physics phenomena such as diffusion and consumption with convection due to flowing or moving
media.
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Background

Type 1 (insulin-dependent or juvenile-onset) diabetes
mellitus (T1D) is an autoimmune disease resulting in the
destruction of the insulin-producing pancreatic S-cells
and requiring continuous glucose monitoring and insulin
treatment. Chronic and degenerative complications still
occur in a considerable fraction of patients. Since trans-
plantation of pancreatic islet cells can normalize meta-
bolic control in a way that has been virtually impossible
to achieve with exogenous insulin, it is being explored, in
a selected cohort of patients, as an experimental T1D ther-
apy [1,2]. Because of the life-long immunosuppression
required, it is currently limited to the most severe forms of
diabetes, and, in the US, is currently conducted at several
centres under an IND (Investigational New Drug) applica-
tion. Due to improved islet preparation techniques and
the availability of more effective immunosuppressive reg-
imens [3] such as those of the so-called Edmonton proto-
col [4], results are improving continuously [1,2].
Nevertheless, despite all the progress in islet transplanta-
tion and in the development of bioartificial pancreas-type
devices [5], the three main critical issues that need to be
solved still remain those related to biocompatibility, oxy-
gen supply limitations, and prevention of long-term
immune rejection [6].

As a standard practice, islets are usually cultured for up to
two days before being transplanted [7,8] because this
allows the islets to recover from the isolation-induced
damage and also makes possible the recipient's travel to
the transplantation site, the start of the immunosuppres-
sion before transplantation, and the assessment of the
quality and safety of the islets. Short-term culture may
also reduce the immunogenicity of islets [7]. However, the
survival and functionality of these islets that lost their vas-
culature during the isolation process and have to rely on
gradient-driven passive diffusion is often seriously
affected by hypoxia during culture or immediately follow-
ing transplantation. Hence, the spatio-temporal model-
ling of oxygen consumption of pancreatic islets (and of
other tissues) is an important general goal in itself, but it
is of particular interest for the development of improved
islet culture and bioartificial pancreas-type devices (with
encapsulated or non-encapsulated islets).

Pancreatic islets are structurally well-defined spheroid-like
cell aggregates of about 1500-2000 cells and diameters of
about 150 g#m (range: 50-500 x#m) [9,10] that contain the
endocrine cells of the pancreas (¢, 5 y and PP-cells) whose
main role is to secrete hormones that regulate blood glucose
levels. An islet with a diameter of 150 um is considered as
standard to convert islet mass into islet equivalents (IEQ)
[9]. A healthy human pancreas contains, on average, around
one million islets. Islets possess an extensive intra-islet vascu-
lature, which is needed to supply oxygen and nutrients and
to remove metabolic waste products - especially in their
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inner core [11-13]. Islets have a high blood perfusion: they
receive around 10-20% of the total blood flow of the pan-
creas despite representing only about 1-2% of its weight [14-
16]. During islet isolation and culture, this vasculature gets
disrupted so that islets are avascular and perfusion of the core
is compromised. Hence, cultured or encapsulated (immune-
isolated) islets, as well as transplanted islets during the initial
few days of transplantation have to depend on the passive
diffusion of oxygen and nutrients from the periphery, which
limits the oxygen and nutrient supply in the inner core of
islets, especially larger islets, and can ultimately lead to
hypoxia and cell death [15,17]. Because of these hypoxia-
related problems, current islet culture techniques require low
surface coverage, and, hence, the use of up to thirty or more
flasks per human pancreas (i.e., ~20,000-30,000 IEQ in 30
mL of medium per flask corresponding to 100-200 IEQ/cm?
and a flask surface utilization of only 2-3%) [7,18-20]. This
is a considerable hindrance both for research settings and for
clinical applications. Consequently, various attempts are
being made to enhance oxygenation, for example, by use of
silicone rubber membranes [20-23] due to their high oxy-
gen-permeability [24] or by use of bioreactors with rocking
plates and wave-induced agitation [25,26]. Exploratory com-
putational models for some of these will be presented here.

Oxygen diffusion limitations in tissue or in culture media
are usually far more severe than for glucose [27,28]
because even if oxygen is typically consumed at approxi-
mately the same rate as glucose (on molar basis) and has
a three-four-fold higher diffusion coefficient, this is more
than offset by the differences in solubility since oxygen
solubility in aqueous media is much lower than that of
glucose: around 0.2 mM vs. 5-10 mM (assuming physio-
logically relevant conditions) [28]. Compared to many
other cell cultures or cell transplants, pancreatic islets are
particularly susceptible due to their relatively large size,
large metabolic demand, and increased sensitivity to
hypoxia. Hence, there is a keen interest to model oxygen
consumption in non-vascularised islets and to use the
acquired information to improve viability (i) in culture,
(ii) immediately following transplantation, or (iii) under
immune-insulating encapsulation. In the islet field, vari-
ous models have already been explored, mainly for
immunoisolated (encapsulated) islets [27,29-31], and
they can also be extended to model tissue oxygenation in
other cases of interest such as, for example, during pan-
creas preservation [32] or in cell devices with oxygen-per-
meable silicone membranes [20-23]. Similar models for
other, e.g., cardiac tissue have also been explored [33],
and oxygenation models based on various approaches for
certain micro-vascularised tissues have also been pub-
lished [34,35]. However, essentially all of them incorpo-
rated only models of diffusive transport. The approach
described here has the advantage that it allows the rela-
tively easy coupling of diffusion and convection models
to computational fluid dynamics and other application
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modes making possible true multiphysics models for
more complex cases such as, for example, those with mov-
ing media of varying glucose concentrations; perifusion
devices with pump-driven flow will be discussed here as
one possible application. To the author's knowledge, this
is the first time that cellular-level calculations are done for
both 2D and 3D geometries in a true multiphysics FEM-
based implementation, that the corresponding anima-
tions of hypoxia-related cell death are generated and sub-
mitted for Web-based publication, and that the glucose-
dependence of the oxygen consumption of pancreatic
islets is incorporated in a model.

Methods

Computational model

A finite element method (FEM) based approach was used
as implemented in COMSOL Multiphysics 3.4 (formerly
FEMLAB) (COMSOL Inc., Burlington, MA). FEMs repre-
sent a numerical technique designed to find approximate
solutions of general partial differential equations (PDE)
based problems and are well-suited for complex
geometries or varying domains since they rely on 'discre-
tization' of the problem, i.e., the geometry is partitioned
into small units of a simple shape (e.g., triangles for 2D
and tetrahedrons for 3D subdomains) [36].

Oxygen diffusion and consumption

Diffusion was assumed to be governed by the generic dif-
fusion equation in its nonconservative formulation
(incompressible fluid) [37]:

%+V~(—DVC)=R—U-VC (1)

where, ¢ denotes the concentration [mol-m-3] and D the
diffusion coefficient [m2-s-!] of the species of interest
(here, oxygen), R the reaction rate [mol-m=3-s1], u the
velocity field [m-s1], and V the standard del (nabla) oper-

ator, V = i% + j;% + kaa—Z [38]. For oxygen consumption,

a Michaelis-Menten-type consumption rate (R < 0) was
assumed as customary in current literature [27,39]:

C02

RO =R o, T~
' €0y tCMM,0,

o~ T'max,

8(co, >Cy)  (2)

Here, R, is the maximum oxygen consumption rate,
Cum,0, the Michaelis-Menten constant corresponding to
the oxygen concentration where consumption drops to
50% of its maximum, C is the critical oxygen concentra-
tion below which necrosis is assumed to occur after a suffi-

ciently long exposure, and & a step-down function to
account for the ceasing of consumption in those parts of
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the tissue where the oxygen concentration fell below a C,,
critical concentration. Consensus estimates of various
parameters available from the literature were used. Oxygen
in aqueous solutions obeys Henry's law rather well; i.e., its
(mole fraction) solubility (x, ) is essentially proportional

to the partial pressure of oxygen (po, ) in the surrounding
media, xo, =po, /Ky [40]. For the present exploratory

calculations, c,,,;, = 0.200 mol- m3 (mM) was assumed for
surfaces in contact with atmospheric oxygen. With an oxy-
gen solubility coefficient of &= 1.45 x 103 mol - m3mmHg-
1(35°C) [41], this roughly corresponds to a partial pressure

o, of 140 mmHg. A maximum oxygen consumption rate
R, (per unit islet volume) of 0.034 mol - s! - m-3 was used

in all calculations. With a standard islet of 150 zm diameter
(and islet equivalent IEQ volume Vi of 1.77 x 1012 m3),
this corresponds to a consumption rate (per islet) of R, =
0.06 x 10-12mol - s!/islet; both values being in the range of
those measured and wused in various works
[20,23,29,30,32,42-46]. As Michaelis-Menten constant,
Cumo, = 1.0 x 103 mol-m=3 (1 M) was assumed, corre-

sponding t0 Py, = 0.7 mmHg - similar to the fre-

quently used 0.44 mmHg value [23,27,29,32] or even to
that determined originally for mitochondria [39]. A step-
down function, &, was also added to account for necrosis
and cut the oxygen consumption when the concentration
fells below a critical value, C..= 1.0 x 104 mol - m-3 (corre-

sponding to p. o, = 0.07 mmHg; comparable with the

commonly used 0.10 mmHg [23,27,32]). COMSOL's
smoothed Heaviside function with a continuous first deriv-
ative and without overshoot flclhs [47] was used as step-
down function, §(c) =flclhs(c-1.0 x 104, 0.5 x 104). In the
dynamic model (perifusion chamber), oxygen consump-
tion was allowed to also vary as a function of the local glu-
cose concentration, Cg,, to account for the increased
metabolic demand of insulin production at higher glucose
concentrations. As a first modelling attempt, this was done
by introduction of an additional Michaelis-Menten-type
dependency on ¢
0 Cgluc ] €Oy
CgluctCMM,gluc €05 +CMM,0,

RO : 5(602 > Ccr)

, = Rmax,Oz :

3)

The corresponding constants were selected so as to allow
an approximate doubling when going from low (3 mM)
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to high (11 mM) glucose concentration (Cyy 1, = 8
mol-m3, ¢=3.67). For the diffusion coefficient of oxygen
in aqueous media, Dg ,, = 3.0 x 109 m?-s! was

assumed; a reasonable approximation for O, diffusion in

water at 37°C considering the commonly accepted value
of 2.4 x 10°m2-s1at 25°C [41] and a measured value of
3.1 x 10° m2-s! at 45°C or fitted diffusivity equations
such as the Wilke-Chang or Othmer-Thakar estimates for
diffusion coefficient in aqueous solutions [48]. For the
diffusion coefficient of oxygen in tissue, Dy ( = 2.0 x 10°

9m2-s'1, was assumed; slightly less than in water and the
same value that was used by Radisic, Vunjak-Novakovic
and co-workers [33]. Avgoustiniatos and co-workers have
recently determined a somewhat lower value for the effec-
tive diffusion coefficient of oxygen in rat pancreatic islets
(1.3 x 102 m2-s1) [44]. The same value was used for the
diffusion coefficient in silicone since it was within the
range of measured values [24,49].

Fluid dynamics

In the more complex cases where true multiphysics mod-
els were needed, the convection and diffusion model of
eq. 1 was coupled to a fluid dynamics model. For fluid
dynamics, the incompressible Navier-Stokes model for
Newtonian flow (constant viscosity) was used to calculate
the velocity field u that results from convection [37,50]:

du

5 —nV?u+p(u-Vyu+Vp=F

P (4)

V-u=0

Here, p denotes density [kg-m3], 7 viscosity [kg-m-s!
= Pa-s], p pressure [Pa, N-m2, kg- m!-s2], and F volume
force [N-m3, kg-m2-s2|. The first equation is the
momentum balance; the second one is simply the equa-
tion of continuity for incompressible fluids. For cases
where convective flow was also allowed in the model, an
essentially aqueous media at body temperature was
assumed as a first estimate: Ty = 310.15 K, p = 993 kg-m-
3,11=0.7x103Pa"s, c,=4200] - kg 'K, k.=0.634]-s''m-
KL, =21 x 104K

Geometry and boundary conditions

For the present exploratory models, fully scaled realistic 2D
and 3D geometries have been used with spherical islets of
100, 150, and 200 um diameters placed in millimeter-sized
device models. COMSOL's predefined 'Extra fine' and 'Fine'
mesh size was used for meshing of 2D and 3D geometries,
respectively resulting in meshes with 5-10,000 elements in
2D and 150,000 elements in 3D. In the convection and dif-
fusion models, the following conditions were assumed:
insulation/symmetry, n- (-DV c+cu) = 0, for side walls, con-
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tinuity for islets, and fixed concentration (¢ = ¢, ,,;,) for liquid
surfaces in contact with exterior media (top). For the case of
diffusion through a membrane, a membrane/media parti-
tion coefficient K, = ¢emp,y/¢ Was built into the model for
oxygen through a special boundary condition using the stiff-
spring method [51]. An additional, separate concentration
variable ¢, was added for the membrane (with a correspond-
ing application mode), and to maintain continuous flux at
the interface, an inward flux boundary condition was
imposed along the membrane-fluid boundary with v (c, -
K,c) and v = 10,000 m-s!. In the incompressible Navier-
Stokes models, no slip (u = 0) was assumed along all surfaces
corresponding to liquid-solid interfaces. For the perifusion
chamber, a parabolic inflow velocity profile, 4v, s(1-s), was
used on the inlet (s being the boundary segment length) and
pressure, no viscous stress with p, = 0 on the outlet.

Implementation

All models were implemented in COMSOL Multiphysics
3.4 and solved as time-dependent problems up to suffi-
ciently long final times to reach steady state allowing free
or intermediate time-steps for the solver. Computations
were done with the UMFPACK direct solver as linear sys-
tem solver on a Dell Precision 690 PC with a 3.2 GHz CPU
running Linux.

Results

Standard culture model

The oxygen distribution obtained for a two-dimensional
cross section of three differently sized islets in a traditional
culture model, after steady state conditions are reached, is
shown in Figure 1 with a corresponding animation (time-
scale in seconds) shown in additional file 1. Since these
are 2D cross-sections, the 'islets' here in fact correspond to
strings and not spheres; hence, Figure 1 roughly corre-
sponds to a 3D culture density of about 1,600 IEQ/cm?
(i.e., a surface utilization of ~20%). Under these condi-
tions, larger islets are predicted to have necrotic cores, a
problem that is not present in smaller islets. The percent
of cross-sectional areas predicted in this example to be
below the critical oxygen threshold were around 25%,
5%, and 0% for the islets with diameters of 200, 150, and
100 pm, respectively. Overall, calculations are in good
agreement with various experimental observations of cul-
tured islets (see Discussion). Obviously, oxygenation can
be improved by lowering the density of the consuming tis-
sue, by reducing the diffusion path in the media, or by
increasing the outside oxygen concentration. For example,
the same three islets are predicted to have larger necrotic
portions if the media height is larger (2 mm), and, hence,
the diffusion path of the oxygen from the top is also larger
(percent areas predicted to be below the critical oxygen
threshold were around 50%, 30%, and 0% for the islets
with diameters of 200, 150, and 100 pm, respectively)
(Figure 2, additional file 2). Actual standard cultures use
lower densities (100-200 IEQ/cm?2) [18-20], and indeed a
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Calculated oxygen concentration for three islets (with diameters of = 100, 150, and 200 #m) in standard cul-
ture conditions after steady state conditions have been reached (h = | mm assumed) presented as a colour-
coded surface with red corresponding to higher and blue to lower concentrations. Green arrows represent oxygen

flux. Areas with oxygen concentrations below a critical value (¢, < 10-4mol-m-3), where hypoxia is predicted to result in

necrosis after a sufficiently long exposure, are coloured in white.

single standard islet ( = 150 gm) in the same 2D culture
model, which would correspond to a lower cell density of
~500 [EQ/cm?2, can survive without any necrosis of its core
even in this deeper media (Figure 3, additional file 3).

A true three-dimensional simulation of such a culture was
also run; however, such calculations are more difficult to
implement and are considerably more time consuming to
run as they contain many more mesh elements. Results
obtained for a representative case with randomly distrib-
uted islets at a density of approximately 600 IEQ/cm2 and
covered by 2 mm of media are shown in Figure 4 with a
corresponding animation shown in additional file 4. In
these conditions, islets up to about standard islet size ( =
150 um) show essentially no necrosis, but the larger ones
show some central necrosis. For example, the larger islets
here ( = 200 um) were predicted to have ~ 10% of their
volume as necrotic.

Oxygen-permeable membrane bottom culture
A model of a similar islet culture, but having oxygen-per-
meable bottom membranes was also explored as such

devices are one of the possibilities being investigated to
increase the oxygenation of cell cultures in general and
islet cultures in particular. Calculations were performed
assuming a 0.275 mm thick membrane with ten-fold
higher oxygen solubility than water. As Figure 5 and addi-
tional file 5 show, much better oxygenations can indeed
be achieved with such membranes even at high islet den-
sities in agreement with experimental observations
[20,22,23]. All regions of the islets considered were pre-
dicted to have oxygen concentrations well above critical
levels.

Perifusion chamber with flowing media

Finally, a true multiphysics model incorporating both dif-
fusion and convection due to flow was implemented to
simulate oxygen consumption in a perifusion chamber
model with two islets and moving media; such devices are
now frequently used for the dynamic assessment of islet
quality and function. As a more realistic model of the
dynamics of oxygen consumption, the oxygen consump-
tion of islets was assumed to increase with increasing glu-
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Calculated oxygen concentration for three islets in conditions similar to Figure I, but covered with a deeper
media (h = 2 mm assumed) resulting in decreased oxygenation.

cose concentration due to the increased metabolic
demand [46,52-55]. As a first, exploratory model, an
approximate doubling of the consumption rate was
assumed when going from low (3 mM) to high (11 mM)

glucose concentration (eq. 3, which at high ¢, would

correspond to R, ,, increasing from 0.034 to 0.074 mol - s

1.m-3). Figure 6 shows the velocity field of the flowing
(incompressible) media; obviously, flow velocity has to
increase were the cross section is constrained by the pres-
ence of islets to maintain a constant flux. Calculated oxy-
gen concentrations are shown in Figure 7 at various
incoming glucose concentrations (with a corresponding
animation in additional file 6). At low glucose concentra-
tion (3 mM), the islets considered show no necrosis
despite the relatively large seeding density because the
flowing media can provide better oxygenation (Figure 7a).
After the glucose concentration is increased (Figure 7b),
the higher metabolic demand is predicted to result in fall-
ing of the oxygen concentrations below the critical thresh-
old in certain regions, especially in larger islets (Figure
7¢), which might result in necrosis if sufficiently pro-
longed. If the increased demand lasts for only a relatively

limited time, part of the damage might be reversible as the
glucose concentration is decreased (Figure 7d).

Discussion

Oxygen consumption model

All models implemented here assumed that oxygen con-
sumption takes place only within islet tissues and follows
a Michaelis-Menten-type kinetics (eq. 2) that, at non-ele-
vated glucose concentrations, plateaus at a maximum
consumption rate R .. (per unit islet volume) of 0.034
mol-s!-m-3. This per volume value is similar to that used
by Avgoustiniatos and co-workers (0.034 mol/s/m3 [44];
0.050 mol/s/m3 [23]) and Tilakaratne and co-workers
(0.046 mol/s/m3) [29]. As a per islet value (0.06 x 10-12
mol-s-!/islet), it is similar to that assumed by Dulong and
Legallais (0.063 x 10-12 mol-s/islet) [30,42]; somewhat
less than that assumed by Papas, Avgoustiniatos, and co-
workers (0.127 x 10-12mol - s'!/islet [20,32]; 0.074 x 1012
mol-s/islet [43]); and slightly larger than those meas-
ured recently in various settings by Sweet and co-workers
(e.g., 0.025-0.048 x 10-12mol-s'!/islet at 3 mM basal- or
20 mM high glucose [45,46]). Converted to a per cell
value (3.0 x 10-17mol-s!/cell), it is also in general agree-
ment with values observed with other high-demand cells
[21]. This consumption rate (0.034 mol-s!-m3) means
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Calculated oxygen concentration for a single (= 150 xm) islet for the same conditions of Figure 2.

that each volume unit of islet needs about 70 times its vol-
ume daily in oxygen as gas (0.034 mol/s/m3 x 24 -3600 s/
day x 0.02478 m3/mol). For comparison, the average res-
piration rate of a human (16 respiration/min each of ~0.5
L, 4% of which is oxygen consumed) gives an approxi-
mate oxygen consumption of 0.3 L/min [56], which
means about 500 L/day, i.e., about 6-7 times its volume
as living organism. Hence, considering that islets are met-
abolically high-demand cells receiving about 10 times
higher blood flow than their surrounding tissue in the
pancreas, this oxygen consumption rate is a realistic first
estimate.

The Michaelis-Menten-type consumption rate assures that
at very low O, concentrations, where cells only try to sur-

vive, oxygen consumption decreases with the available
concentration, cq_ . Furthermore, a step-down function &
was also incorporated into the model to account for
necrosis (cell death) and eliminate the oxygen consump-

tion of those tissues where Co, fell below a critical value,

C

ficiently prolonged exposure. In general, islets seem to
show a size-distribution well described by a Weibull dis-

- and could cause cell death due to hypoxia after a suf-

tribution (often used as Rosin-Rammler distribution for

particle size),

o A8
Njg) :%(%) e ‘) with most islets

having smaller diameters (~50 gm), but the bulk of the
volume being contributed by larger ( = 2r = 100-200 xm)
islets [10,57-59]; hence, islets with diameters of 100, 150,
and 200 pm were selected as representative here (espe-
cially since larger islets are of more interest as hypoxia is
more likely to be a problem for them).

Standard culture model

Results obtained here (Figure 1, 2, 3, 4) are in good overall
agreement with various experimental observations indi-
cating that when isolated islets are cultured for 24-48 h in
normoxic culture conditions, large islets show central
necrosis, which becomes much more severe after exposure
to hypoxic culture conditions [15]. As a first estimate,
even the size of the necrotic core as measured for rat islets
by Vasir and co-workers [15] or by MacGregor and co-
workers [60] is well predicted suggesting that these explor-
atory models provide reasonable quantitative estimates
and not just qualitative fit. Results also confirm that in tra-
ditional cultures, very low culture densities are needed to
ensure viability of the core of larger islets justifying the
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Figure 4

Calculated oxygen concentrations (bottom) in a three-dimensional islet culture model (top) with differently
sized islets (= 100, 150, and 200 zm) randomly distributed at a density of approximately 600 IEQ/cm?2. A corre-
sponding time-dependent animation is shown in additional file 4.
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Calculated oxygen concentration for the three islets of Figure | for the same conditions, but with a device with
an oxygen-permeable bottom membrane. Actual oxygen concentrations in the membrane are higher than in the media

but are shown here after rescaling with the corresponding the partition coefficient (K, = ¢

/c).

membr

current standard practice (100-200 IEQ/cm? correspond-
ing to a surface utilization of only 2-3% [7,18-20]). 3D
models are considerably more difficult to implement and
time-consuming to run than 2D models; nevertheless,
one 3D simulation was performed (Figure 4, additional
file 4) to validate the 2D simulations. Similar results were
obtained - compare, for example, Figure 3 and Figure 4;
in both cases, standard islets ( = 150 x#m) showed only
very minimal central necrosis (<1%) at densities of 5-600
IEQ/cm? and a media height of 2 mm. Figure 4 also con-
firms that agglomeration resulting from non-uniform dis-
tribution can be a problem as necrotic regions are larger in
islets that have close neighbours.

It should be noted that in all these models, instantaneous

death for tissues was assumed as soon as the local ¢, val-

ues fell below the critical threshold. Hence, while these
models are ultimately realistic at steady state, the time-
scales, which are shown in seconds in all animations, are
probably not, since, under critical conditions, real islets
and cells can probably shut down their metabolism more
effectively and can survive for some time before irreversi-

ble death occurs; more realistic models that can also
account for the hypoxia exposure time will be developed
in the future. Mammalian cells have developed various
mechanisms to survive acute and even prolonged hypoxia
[61]. For example, a brief (10 min) ischemic precondi-
tioning might even improve islet cell recovery after cold
preservation [62]. On the other hand, there are certainly
additional inter-cellular danger- or death-related signals
that are not taken into account by the present simplified,
oxygen diffusion only models.

Oxygen-permeable membrane bottom culture

As illustrated by Figure 1, 2, 3, 4, devices with enhanced
oxygenations are needed for more efficient islet culture.
Use of cell culture devices with oxygen-permeable mem-
brane bottoms is one of the most promising alternatives
that are being explored toward this goal [20,22]. Silicone
rubber-based membranes are a preferred choice due to
their high oxygen-permeability [24]. The solubility of oxy-
gen in such silicone-based materials is also much higher
than in water being, for example, around 0.3
cm3(STP) - cm-3 - atm! in silicone rubber [24] compared to
0.024 cm3(STP)-cm3-atm'! in water (the latter corre-
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Velocity field of the fluid flow in a perifusion chamber model with two islets at steady state conditions shown as
a colour-coded surface (darker colors corresponding to higher velocities). The direction of the velocity field for the
flow of the perifusion media is also shown by gray arrows and streamlines.

sponding to 0.0048 mL/L at normal air). Models as imple-
mented here required the use of a special boundary
condition using the stiff-spring method to account for the
different solubilities of oxygen in the membrane and in
the media; results are presented after recalibrating concen-
tration in the membrane with the partition coefficient K,
= Cmembr/C (Figure 5). They confirm that, indeed, much
better oxygenation can be achieved and that the 'oxygen
sandwich' designation [22] is justified as O, can reach the
islets from both sides; in fact, under most conditions, a
much larger flux is coming from the bottom through the
membrane than from the top through the aqueous media.
It should be noted that because in such membranes car-
bon dioxide tends to have an even higher permeability
than oxygen [24], in certain cases, it might reach undesir-
ably elevated or undesirably low levels (depending on the
outside concentrations).

Perifusion chamber with flowing media

A model of a perifusion chamber was implemented because
perifusion studies are now routinely used to assess islet quality
and function as they allow the dynamic measurement of the
glucose-stimulated insulin release (GSIR) [54,63-65] through
the continuous monitoring of the insulin (and/or other meta-

bolic products) released by islets placed in a perifusion col-
umn and exposed to varying levels of incoming glucose
solutions. Because of the flowing media, this requires a true
multiphysics approach to account for oxygen transport due to
both diffusive and advective transfer. Furthermore, additional
dynamics was also introduced by allowing the oxygen con-
sumption to increase with the increasing metabolic demand
imposed by the presence of higher glucose concentration,
when islets are attempting to increase their insulin output.
Here, an approximate doubling of the consumption rate was
assumed in islets when going from low (3 mM) to high (11
mM) glucose concentrations (eq. 3) - a value in acceptable
agreement with the average increase observed in rat islets by
Longo and co-workers [53] or, more recently, in human islets
by Sweet and co-workers [46] and also showing some corre-
spondence to the increased proinsulin and total protein syn-
thesis in islets in response to increasing glucose levels [66]. As
Figure 7 and additional file 6 show, the additional stress of
increased metabolic demand might cause increased cell death,
if sufficiently prolonged, due to the limited availability of oxy-
gen; hence, straining of avascular islets by exposing them to
high glucose levels for long periods of time might expose them
to additional risks. Whereas the optimal glucose concentra-
tion for islet culture seems to be around 10 mM for rodent
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Figure 7
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Calculated oxygen concentrations in a perifusion chamber model with two islets with media flowing from left
to right. Graphics shown correspond to cases of low (3 mM) incoming glucose (a), increasing glucose concentration (b; note
contour lines of the glucose gradient), high (I 1 mM) incoming glucose (c), and decreasing glucose concentration (d). See addi-

tional file 6 for a corresponding animation.

islets, it seems to be around 5 mM (90 mg/dL) for human
islets [7]. The relative ease of extending the present model not
only to arbitrary geometries, but also to complex, multiphysics
problems is an important advantage.

Conclusion

In conclusion, various exploratory cellular-level models
for the oxygen consumption of avascular pancreatic islets
with physiologically relevant geometries have been imple-
mented and used for simulations; they allow the genera-
tion of intuitive, easy to interpret colour-coded figures
and animations. Results of the computational models are,
as a first estimate, in good quantitative agreement with
existing experimental evidence, and they confirm that
during culture, hypoxia is often a problem for non-vascu-
larised islets leading to necrosis, especially in the core
region of larger islets. The present exploratory calculations
can be relatively easily extended to wvarious other
geometries or to more complex physical problems. Such
in silico models should be particularly useful not only to
improve the design of cell culture and even cell transplant
(i.e., bioartificial pancreas-type) devices, but also to

increase the viability and functionality of isolated pancre-
atic islets, which is of crucial clinical relevance for islet
transplantation, and to clarify the mechanism of hypoxia-
induced necrosis in avascular tissues in general.
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