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Abstract
Background: Mathematical models and simulations of disease spread often assume a constant
per-contact transmission probability. This assumption ignores the heterogeneity in transmission
probabilities, e.g. due to the varying intensity and duration of potentially contagious contacts.
Ignoring such heterogeneities might lead to erroneous conclusions from simulation results. In this
paper, we show how a mechanistic model of disease transmission differs from this commonly used
assumption of a constant per-contact transmission probability.

Methods: We present an exposure-based, mechanistic model of disease transmission that reflects
heterogeneities in contact duration and intensity. Based on empirical contact data, we calculate the
expected number of secondary cases induced by an infector (i) for the mechanistic model and (ii)
under the classical assumption of a constant per-contact transmission probability. The results of
both approaches are compared for different basic reproduction numbers R0.

Results: The outcomes of the mechanistic model differ significantly from those of the assumption
of a constant per-contact transmission probability. In particular, cases with many different contacts
have much lower expected numbers of secondary cases when using the mechanistic model instead
of the common assumption. This is due to the fact that the proportion of long, intensive contacts
decreases in the contact dataset with an increasing total number of contacts.

Conclusion: The importance of highly connected individuals, so-called super-spreaders, for
disease spread seems to be overestimated when a constant per-contact transmission probability is
assumed. This holds particularly for diseases with low basic reproduction numbers. Simulations of
disease spread should weight contacts by duration and intensity.

Background
Research has shown that the arrangement of potentially
contagious contacts among the individuals of a society is
a determining factor of disease spread: Both the repetition
and the clustering of contacts diminish the size of an out-
break compared to a random mixing model [1-3]. Further,
the epidemic threshold is low if the degree distribution
shows a high dispersion [4,5]. In contrast to the vast body

of literature that exists on the importance of network
structure, only little emphasis has been put on the quality
of such potentially contagious contacts, i.e. how long they
last and how intensive they are. In fact, mathematical
models and computer simulations of disease propagation
often assume a constant per-contact transmission proba-
bility [cf. [4], [6], e.g.: [7-10]]. This approach ignores that,
for instance, a short random encounter of two persons on
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a public bus is less likely to transmit a certain communi-
cable disease than a rendezvous that lasted several hours.

Treating all contacts equally may lead to an overestima-
tion of the individual transmission probability in cases of
short, non-intense contacts and an underestimation in
cases of intense, prolonged contacts. Allowing for hetero-
geneous transmission probabilities may then affect the
model behaviour in various ways (e.g., altering the shape
of the epidemic curves or changing the predictions of the
effectiveness of intervention measures). In particular, the
valuation of certain "risk groups," such as so-called super-
spreaders defined as highly connected individuals [6],
may change.

Several authors have already introduced heterogeneous
transmission probabilities in their models. To do so, field
data was typically analysed statistically to extract differ-
ences due to age, the susceptible individuals' immune
responses, the levels of infectiousness of the infectors, and
different contact situations [11-14]. For instance, in their
model for Ebola epidemics, Legrand et al. differentiated
the infection potential of hospital, funeral, and commu-
nity settings [15], while Ferguson et al. distinguished
household and non-household contacts in their model
for an influenza pandemic [14]. The disadvantage of such
a posteriori statistical models is that they become invalid
when their underlying determinants (e.g., how individu-
als interact with other individuals) change.

Only few epidemic simulations model infection processes
mechanistically (i.e., based on an a priori model instead of
purely statistical analysis) to determine the transmission
probability of differing contact situations: Alexandersen et
al. [16] and Sørensen et al. [17], for example, show that
basing large scale simulation models on quantities, such
as intensity and duration of an exposure to infectious
material, is possible and expedient. Existing mechanistic
transmission models applied in simulations of disease
propagation focus almost exclusively on aerosol transmis-
sion, but do not cover transmission by droplets and phys-
ical contact ("close contact"). Hence, simple mechanistic
models of close contact contagion that can be used in sim-
ulations of disease spread are needed.

This paper is intended to highlight why mechanistic mod-
els of disease transmission are needed, to provide an
example of how they can be built, and to show how they
differ from the often-used transmission model that
assumes a constant per-contact transmission probability.
The proposed mechanistic approach for including the het-
erogeneity of transmission probabilities into disease
spread simulations concentrates exclusively on diseases
that are transmitted via close contact between an infector
and a susceptible individual. We build on the fundamen-

tal knowledge that the risk of disease transmission is not
only a function of the infectivity of the infectious agent
and the quality of the immune response but also of the
host's exposure to a specific infectious agent [18,19]. Par-
ticularly, we present evidence suggesting that the common
assumption that highly connected individuals act as
super-spreaders [6,20,21] might be misleading.

Methods and Material
In this section, we first describe a formula that models
transmission probabilities based on mechanistic consid-
erations. Then, we introduce and describe an empirical
data set of self-reported contacts qualified to transmit
infectious disease. This data set was used to test the impact
of the proposed transmission model. Finally, we intro-
duce the scheme that describes how the outcome of both
transmission models, i.e., the proposed mechanistic
model assuming exposure dependency and the classical
model assuming equally weighted contacts, were com-
pared. Subsequently, we will refer to the first transmission
model as the "mechanistic model" and the second model
as the "classical model."

A mechanistic transmission model
The probability of contracting a disease is closely linked to
exposure to infectious organisms. A susceptible individual
can only become infected if she/he is exposed to infec-
tious organisms. Thereby, the transmission probability
increases with an increase in the number of infectious
organisms to which a susceptible individual is exposed.
Subsequently, we refer to exposure as the cumulative,
average amount of infectious medium ingested by a sus-
ceptible individual within a time period of interest due to
close contact with an infectious person.

We base our proposed transmission model on the expo-
nential relationship between the ingested dose and the
infection risk as derived in Haas et al. [18] and used in sev-
eral other publications [22-24]. Details describing how
the following assumptions 1, 3, and 5 translate into an
exponential dose-response model can be found in Haas et
al. [18]. As an extension to this general formulation of an
exponential relation between exposure and the risk of
infection, we extrapolate the actual exposure from infor-
mation about the duration and intensity of a contact
between an infector and a susceptible individual. The pro-
posed mechanistic model is based on the following
underlying assumptions:

1. In principle, one infectious organism is sufficient to
cause infectious disease. This hypothesis has been repeat-
edly supported by various studies against the alternative
hypothesis assuming a threshold dose of infectious organ-
isms must be passed to cause infection [19,25,26].
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2. Every ingested infectious organism has a certain proba-
bility to survive until it reaches its target tissue and can ini-
tiate infection [18,27].

3. We assume that this survival probability is a constant,
i.e., factors like the susceptible hosts' immune responses
are assumed to be equally effective for all individuals. This
assumption is a simplification of reality since susceptibil-
ity is known to differ between individual hosts [28]. How-
ever, for the purpose of this paper, such a simplification
that keeps the model and the interpretation of its results
manageable is justified.

4. The average dose of infectious material that is ingested
by an individual is a linear function of the duration and
intensity of the contact with an infectious individual.
Research has shown that these measures are good predic-
tors for individual attack rates of SARS [29]. In theory, we
recognize that contact can be any kind of interaction
between two individuals that is sufficient to exchange
body fluids that can carry infectious particles. However,
for reasons of manageability and measurability, we con-
centrate on conversational and physical contacts.

5. The actual amount of infectious organisms ingested by
an individual follows a Poisson probability distribution
with the average dose (defined in assumption 4) as
parameter [18,19]. Thereby, we model the total (i.e.,
cumulative) average dose ingested during an entire simu-
lation time step. This can lead to biased results in extreme
cases [30], but given the fact that this assumption has
proven to work well in the past and considering other
uncertainties, utilizing this simplification is justified.

Based on this, the probability  that individual n

becomes infected during simulation time step tx can be

derived as

where I is the total number of infectors;  [s-1] is the

shedding rate (~microbial load) of infector m at simula-

tion time step tx;  [1] is the contact intensity between

the infector and the susceptible individual, which corre-
sponds with the proportion of infectious material spread

by infector m that is actually ingested by n; and  [s]

is the time individuals n and m actually interact during

time step tx. Finally, Θ is a calibration parameter that

accounts for all relevant factors that are not explicitly rep-

resented, such as survival probability of the infectious
agent. Simulation models can be fitted to measured epide-
miological data, such as epidemic curves, or to targeted

reproduction rates by means of Θ. We used Θ to achieve
predefined reproduction rates for the contact structure
introduced in the following section.

Empirical contact structure
In the subsequently described test setting, empirical con-
tact data is needed to compare the mechanistic transmis-
sion model with the classical one. We rely on contact data
reported in a contact diary study that was conducted in
Switzerland. A convenience sample of 54 participants was
asked to report their potentially contagious contacts (as
defined below) for 14 different days. Although a conven-
ience sample is not representative for the whole popula-
tion, the sample used here represents a very diverse cross-
section of the population as can be seen in Table 1.

The design of the diary is similar to that used by Mikolajc-
zyk et al. [31]. A potentially contagious contact is defined
as (1) a mutual conversation of more than 10 words
within a short distance (<2m), (2) physical contact in gen-
eral, or (3) contact involving kisses. The participants were
asked to categorize their contacts according to these three
categories and to estimate how long they interacted with
each reported contact person during an entire day based
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Table 1: Basic information about the sample and the contact 
structure

Gender of participants
Female 27 (50.9%)
Male 26 (49.1%)

Age distribution of participants
Mean and standard deviation 37.48 (SD = 16.71)
Min 20
25% percentile 24
50% percentile 29
75% percentile 52.25
Max 76

Occupational status of participants1

Student 21 (39.6%)
Employed 35 (66.0%)
Neither student nor employed 11 (20.8%)

Distribution of contact partners per day
Mean and standard deviation 9.92 (SD = 7.64)
Min 0
25% percentile 4
50% percentile 8
75% percentile 13
Max 51

1 This does not sum up to 100% because multiple answers were 
possible
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on six provided categories. However, for the analysis, we
need concrete values instead of categories to calculate
transmission probabilities as defined in Equation 1.
Therefore, we assume a concrete duration, the arithmetic
mean of the upper and lower bounds, for each category as
given in Table 2.

One diary had to be revoked due to deficient data quality;
three of the remaining 53 participants provided only
information for 5, 7, or 8 days, resulting in a total of 720
different person days with 7145 reported contact partners.
In 36 of 7145 records, the information about contact
duration was missing. These missing values were imputed
based on probability distributions observed for the com-
plete records. The processed data is provided in Addi-
tional File 1.

Test setting for transmission models
In the results section, we compare how the proposed
mechanistic transmission model differs from the classical
model assuming an equal transmission probability for all
contacts. Thereby, both the contact structure and the basic
reproduction number R0 are fixed for both transmission
models. We use the classical definition of R0 as the average
number of secondary cases generated by an infected indi-
vidual being introduced into a fully susceptible popula-
tion [4].

We first analyse the effect of the observed patterns of con-

tact duration and assume the intensities  to be equal

and constant for all contacts. Then, we analyse the impact
of contact intensity in a qualitative way. Information on
shedding rates and inter-individual differences is availa-
ble for many diseases (e.g., influenza cf. [14]). However,
as we are more interested in exposure differences due to
contact structure than in the impact of shedding rate dif-

ferences, we also assume  to be equal for all infectors

m. We further concentrate on hypothetical diseases with
an infectious period of one day and basic reproduction
numbers R0 = 1.5, 3.0, 4.5, and 6.0. With these assump-

tions, the contact intensity and the shedding rate can be

included in a new calibration parameter , and

Equation 1 can be simplified to

The expected number of secondary cases SC generated by
a specific infector m if introduced into a completely sus-
ceptible population can then be calculated as follows:

with S represents the total number of susceptible individ-
uals infector m has contact with during the day m is infec-
tious. Finally, the equation

reveals the basic reproduction number as defined previ-
ously when X includes the total population of interest.

The following two analyses are used to contrast the effect
of the mechanistic model (Equation 2) against the classi-
cal model:

1) We illustrate the relationship between the expected
number of secondary cases SC and the number of contacts
S by calculating SC for the 720 person days as separate
units of observation. SC is calculated according to Equa-
tions 2 and 3 and based on the contact durations meas-
ured with the contact diaries. We group the SC-values by
S and show the so grouped SC-values in box plots. We do
this for different values of Θ'; Θ' is determined such that
R0 = 1.5, 3.0, 4.5, and 6.0 for the given test population
according to Equation 4. The contact intensity i and the
shedding rate q are assumed to be constants. We then
compare the number of secondary cases SC of the simpli-
fied mechanistic model with the analogue SC value when
the assumption of a constant per-contact transmission
probability is used (also grouped by S).

2) In the second analysis, we calculate how the contact
intensity is related to the duration of a contact in the
empirical data set of potentially contagious contacts. This
allows a qualitative discussion related to how the inclu-
sion of variable contact intensities instead of a constant
might affect the results found in analysis 1.

Results
Figures 1a-d show how the expected number of secondary
cases of an infector introduced into a fully susceptible
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Table 2: Time categories and translation into concrete values

Category in diary Time value used for calculations

less than 5 min 2.5 min
5-15 min 10.0 min
15-60 min 37.5 min
1-2 h 90.0 min
2-4 h 180.0 min
more than 4 h 360.0 min
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Expected number of secondary cases versus number of contactsFigure 1
Expected number of secondary cases versus number of contacts. The boxplots show the distribution of the expected 
number of secondary cases that are induced by one infector that is introduced into a fully susceptible population. The values 
are grouped by the number of contact partners of the infectors. The boxes represent the interquartile range (IQR) with the 
median values marked as horizontal line. The whiskers are defined as max. ± 1.5·IQR. Circles are outliers and asterisks are 
extreme outliers. The subfigures represent the following basic reproduction numbers: a) R0 = 1.5; b) R0 = 3.0; c) R0 = 4.5; d) R0 
= 6.0. Subfigures a-c are cropped such that one outlier lies outside the displayed range. The corresponding person day had 28 
reported contacts and amounts SC = 14.15 for subfigure a, SC = 24.00 for b, and SC = 27.76 for c. The rationale for this outlier 
is presumably a reporting bias from the participant; i.e., the participant stated that she or he had close contact lasting for hours 
with a large number of persons at a festivity. Interacting closely with a large number of persons at a festivity over long time is 
almost impossible when the rigid contact definition in the diary is used.
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neighbourhood is related to the number of contacts (fol-
lowing Equation 3). Each subfigure represents another
level of infectivity of the hypothetical infectious agent.
Despite all of the random fluctuations, the following
trends are quite clear:

1) Unsurprisingly, the expected number of secondary
cases SC tends to be higher for highly connected individ-
uals than for those with only few contacts.

2) For low contact numbers, the median expected number

of secondary cases  and the number of susceptible
contact partners S appear to be linearly related. For high

contact numbers, the gradient /S is less steep than for
low contact numbers.

3) As a disease becomes more infectious, the relationship

between  and S seems to come closer to linearity. In

Figure 1a (R0 = 1.5),  seems to reach a more or less sta-

ble plateau for S > 10, while in Figure 1d (R0 = 6.0), 

appears to be an almost linear function of S. This impres-
sion is supported by regression analysis: If S is used as
independent variable in a linear regression model to

explain SC, the variance explained by this linear model
equals 0.249 for R0 = 1.5, 0.339 for R0 = 3.0, 0.493 for R0

= 4.5 and 0.696 for R0 = 6.0 (all four linear regression

analyses refuse the null hypothesis R2 = 0 on a significance
level of p < 0.01 using a F-test).

Figure 2 shows how the proposed mechanistic model
deviates from the classical transmission model if both are
fitted to the same basic reproduction number and have
the same underlying contact structure. Average deviations
are shown for the whole range of S and R0. The average
deviations were normalized by the basic reproduction
number R0. Figure 2 reveals that individuals with less than
11 contacts have a slightly higher number of expected sec-
ondary cases when the transmission model depends on
contact duration as compared to the case of a constant
per-contact transmission probability. At the same time the
classical model exceeds the mechanistic one in reference
to highly connected individuals. The slight differences in
case of individuals with less than 11 contacts can compen-
sate for the rather pronounced differences of highly con-
nected individuals as the majority of the person days
reported eight or less contacts while highly connected
individuals are rather seldom.

SC

SC

SC

SC

SC

Mechanistic versus classical modelFigure 2
Mechanistic versus classical model. The bars show the average difference between the expected number of secondary 
cases of the mechanistic model SCmech and that of the classical model SCclas when normalized by the basic reproduction number 
R0 and grouped by the number of contact partners S. The sequence of reproduction numbers R0 within each category S goes 
from R0 = 1.5 on the left (light grey bars) to R0 = 6.0 on the right (black bars) in steps of 1.5. The line shows how many person 
days with exactly S contact partners exist in the sample.
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Figures 1a-d and Figure 2 are based on Equation 2, which
accounts for contact duration but ignores the influence of
contact intensity. Figure 3 reveals how contact duration
and contact intensity are interrelated, thereby allowing an
interpretation of how the consideration of the contact
intensity might alter the findings presented in Figures 1a-
d and 2. Figure 3 shows separately for the three different
levels of contact intensity how the reported numbers for
the six duration categories deviate from the expected
numbers (i.e., assuming no relation): Far more contacts of
less then 5 minutes were observed than expected within
the purely conversational contacts, while contacts of more
than 4 hours are overrepresented in the most intensive
contact category. This finding is also reflected in a positive
correlation coefficient between these two ordinal varia-
bles: The non-parametric Kendall rank correlation results
in τ = 0.388, which is significantly different from zero at
the 0.01 level.

Discussion
Implications of the results presented

The presented results elucidate the implications of
accounting for contact duration and intensity in simula-
tions of disease spread. Figure 2 suggests that the impor-
tance of highly connected individuals, so-called super-
spreaders, is strongly overestimated when all contacts are

assumed to be equally likely to transmit infectious dis-
ease. This finding is particularly important because some
well cited publications have concluded that highly con-
nected individuals are major drivers of disease spread
without accounting for the heterogeneity of the inter-indi-
vidual transmission probabilities [20,21]. The results sug-
gest that in the case of a disease with a low reproduction
number, the expected secondary cases induced by individ-
uals with many contacts are in the same range as those
induced by individuals with medium numbers of con-
tacts. Only when R0 is close to the mean number of con-

tacts  is the expected number of secondary cases
approximately linearly related to the number of contacts
(see Figure 1 and the linear regressions shown in the
results section).

This finding can be easily explained by the fact that the
marginal total contact time decreases with every further
contact person. In other words, most people have only a
small set of persons (usually at home or at work) with
whom they meet and interact for long periods during a
day. Those individuals who meet with far more people
than the average spend on average less time with every sin-
gle contact person than those persons who have some or
only a few contact partners per day. This can be illustrated
with the example of train conductors, flight attendants, or
supermarket cashiers; indeed, all of them have contact
with hundreds of people a day, but they interact with each
single contact only for a very short time.

As a consequence, highly connected individuals have
more potentially contagious contacts than others, but
these contacts are simultaneously on average less likely to
transmit disease. Highly connected persons can reach
their full "super-spreading" potential only if a disease is so
contagious that almost every contact with a susceptible
person leads to infection. Similar findings have been
reported for sexually transmitted diseases: Research has
shown that individuals with many different sexual part-
ners per year are less important for disease propagation
than often assumed because they have less sex acts per
partner and in total than individuals with a smaller
number of partners [32,33].

The conclusion that highly connected individuals are
overestimated in their importance if a constant per-con-
tact transmission probability is assumed is further sup-
ported by the analysis of the contact intensity as reported
in the contact study. Theoretically, a short interaction
between a susceptible and an infectious person could lead
to a comparable amount of ingested infectious material as
that of a long interaction assuming that the short interac-
tion is more intensive than the long one. However, pro-

S

Relationship between contact duration and intensityFigure 3
Relationship between contact duration and intensity. 
This figure shows the relationship between contact intensity 
(I, II, III) and duration (six categories). The bar charts result 
from subtracting the expected values (assuming no relation 
between intensity and duration of contacts) from the num-
bers of observations for each possible combination of dura-
tion and intensity. Hence, a positive value means that there 
were more observations of a certain duration-intensity-com-
bination than would be expected if duration and intensity are 
independent. A negative value means that there were less 
observations than expected. The value zero means that the 
expected and observed numbers are the same. Every bar is 
normalized by the total number of observations for every 
time category.
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longed contacts tend to be more intensive than short
contacts because they more often involve closer interac-
tion, such as physical contact and kisses. This finding is
plausible because those persons with whom the individu-
als spend much time are in most cases their loved ones,
thereby indicating the higher likelihood of more intimate
interactions than with casual acquaintances. As a result,
the conclusions from the analysis of the pure contact
durations are even further pronounced by taking contact
intensities into account.

Therefore, our results suggest that sole concentration on
the connectedness of individuals to explain super-spread-
ing events is not valid. The explanation for super-spread-
ing events might lie in a combination of many contacts
and high shedding rates (cf. the notion of "super-shedder"
[6]). Extreme numbers of secondary cases can only be

achieved when the shedding rate  of an infector m is

much higher than the average shedding rate and only if
this infector m has many susceptible contacts S.

Limitations
We see three limitations in our study. First, the empirical
data set used to test the proposed exposure-based trans-
mission model is rather small and not representative of
the population. Furthermore, the person days used to cal-
culate secondary cases are not statistically independent
from each other as every person participating in the study
contributed diary entries for several days. Finally, contact
patterns are dependent on the cultural background and
may look differently in Italy, Germany, Thailand, or
Sudan [34]. Thus, the generalizability of our results may
be questioned. Although this limitation exists, it is not
likely to bias the presented results in a relevant manner.
The observed contact patterns are plausible and theoreti-
cally grounded. An increasing number of contact partners
per time unit naturally results in a decrease in the time
spent with each single contact partner. Additionally, most
people plausibly have only a very limited set of persons
with whom they interact very closely. Additionally, the
attributes of our contact structure are in complete agree-
ment with other empirical studies on potentially conta-
gious contacts that have also addressed similar attributes
[34].

Secondly, the six time categories of the diary study offer
rather imprecise information on the actual time that two
persons interacted, and the three intensity categories are

too vague to be translatable into concrete  values for

use in Equation 1. Hence, the results presented have to be
qualified in a quantitative rather than qualitative sense.
For every time category, we defined a precise value (the

arithmetic mean of the upper and lower boundaries) that
was used for all calculations. However, a sensitivity analy-
sis that alters the actual duration defined for every cate-
gory within the given boundaries does not lead to
qualitatively different results (see Additional File 2).
Although the measured intensity indicator is not suffi-
ciently precise to allow inclusion in a mathematical sense,
the analysis clearly indicated that inclusion of contact
intensity would amplify the observed phenomena rather
than falsify our conclusions.

Finally, this paper makes statements about the expected
number of secondary cases of infected individuals in a
fully susceptible population. In a simulation model of
disease spread, the importance of an individual also
depends on her/his position within the contact network
structure; i.e., the network position of every individual
determines the likelihood of becoming infected as well as
the susceptibility status of the surrounding individuals.
Due to the complex nature of simulation models of dis-
ease spread, complete simulation models must be
designed and tested for sensitivity to the changed trans-
mission model proposed in order to allow precise state-
ments on the impact of exposure-based transmission
models on simulation outcomes.

Conclusion
The goal of this paper was to provide evidence for the
need of exposure-dependent transmission models and to
suggest a mechanistic transmission model that can be
used in simulations of disease spread. One remarkable
result is that individuals with many contact partners seem
to be less important for the transmission of diseases that
are transmitted by droplets or physical contact than sug-
gested by the classical assumption that all contacts are
equally infectious. Particularly with only slightly infec-
tious diseases, contacts should be differentiated by their
potential to transmit infection when simulating disease
spread.

This paper proposes an approach that enables the replace-
ment of the problematic assumption of equally weighted
contacts or purely statistical approaches to differentiate
potentially contagious contacts with a mechanistic model.
The proposed transmission model is based on well-estab-
lished dose-response models that were developed in
microbiology and builds upon assumptions that are
closer to reality and better justifiable than the assumption
that all contacts have the same transmission potential.

The spread of infectious disease is governed by a complex
interplay of social and biological factors and to fully grasp
its dynamics, processes on both the individual and the
population level have to be understood [35,36]. Therefore

qm t x,

inm t x,
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we suggest including a priory, mechanistic models in sim-
ulations of disease spread and combining them with an a
posteriori, statistical approach: Often data is available that
allows fitting a simulation model that includes such
mechanistic elements to empirical data, thereby making
use of the advantages of both approaches.
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