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Abstract

Background: Herpes Simplex virus types | and 2 are enveloped viruses with a linear dsDNA
genome of ~120-200 kb. Genital infection with HSV-2 has been denoted as a major risk factor for
acquisition and transmission of HIV-I. Developing biomedical strategies for HSV-2 prevention is
thus a central strategy in reducing global HIV-I prevalence. This paper details the protocol for the
isolation of restriction endunucleases (REases) with potent activity against the HSV-2 genome and
models two biomedical interventions for preventing HSV-2.

Methods and results: Using the whole genome of HSV-2, 289 REases and the bioinformatics
software Webcutter2; we searched for potential recognition sites by way of genome wide
palindromics. REase application in HSV-2 biomedical therapy was modeled concomitantly. Of the
289 enzymes analyzed; 77(26.6%) had potential to cleave the HSV-2 genome in > 100 but < 400
sites; 69(23.9%) in > 400 but < 700 sites; and the 9(3.1%) enzymes: Bmyl, Bsp1286l, Bst2UI, BstNlI,
BstOl, EcoRIl, Hgal, Mval, and Sdul cleaved in more than 700 sites. But for the 4: Pacl, Pmel, Smil,
Swal that had no sign of activity on HSV-2 genomic DNA, all 130(45%) other enzymes cleaved <
100 times. In silico palindromics has a PPV of 99.5% for in situ REase activity (2) Two models
detailing how the REase EcoRIl may be applied in developing interventions against HSV-2 are
presented: a nanoparticle for microbicide development and a "recombinant lactobacillus"
expressing cell wall anchored receptor (truncated nectin-1) for HSV-2 plus EcoRII.

Conclusion: Viral genome slicing by way of these bacterially- derived R-M enzymatic peptides may
have therapeutic potential in HSV-2 infection; a cofactor for HIV-I acquisition and transmission.

Background at particularly increased risk of acquiring HIV through het-
About 38.6 million people worldwide are now living with ~ erosexual contact. Despite this gender disparity, there are
the Human Immunodeficiency Virus (HIV), which causes  to date only limited options by which women may
AIDS [1]. Heterosexual contact is the predominant mode  actively protect themselves against HIV. [2]. Recent stud-
of transmission of HIV infections worldwide. Women are  ies have defined factors that are associated with increased
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susceptibility to HIV-1 [3,4]. Among these, genital infec-
tion with herpes simplex virus type 2 (HSV-2) is consid-
ered a major cofactor for both sexual transmission and
acquisition of HIV-1 [5]. HSV-2 is a member of the genus
of double-stranded DNA viruses called simplexvirus.
HSV-2 together with its generic relative HSV-1 causes blis-
tering lesions of the cervico-vaginal and oral mucosa,
respectively. Fleming and Wasserheit recently provided
biological, epidemiological and interventional evidence
to support the view that infection with HSV-2 may signif-
icantly promote HIV transmission and acquisition [6].
Biologically, they show that HSV-2 does this by disrupting
mucosal integrity [6], increasing the genital viral loads
and numbers of activated immune cells that are suscepti-
ble to HIV-1 tropism [7,8]. Specifically, it increases the
infectiousness of HIV-infected subjects through increased
genital HIV load during a genital HSV-2 recurrence [7,8]
by the transactivation of HIV-1 LTR through interaction
with HSV proteins (ICPO, ICP4) or the production of pro-
inflammatory chemokines known to enhance HIV-1 rep-
lication [9,10]. Similarly, HSV-2 may mediate the recruit-
ment of activated CD4+ cells [11] that markedly up-
regulate HIV replication in HSV-infected lesions [12]. It
has recently been shown that HIV-1 interacts at the cellu-
lar level to form HIV-1 hybrid virions that are pseudo-
typed with HSV-1 envelope glycoproteins gD and gB, thus
expanding HIV-1 cell tropism to include mucosal epithe-
lial cells [13,14]. This has led to the hypothesis that HSV-
2 may similarly interact with HIV-1 to form such "pseudo-
types" with potential to infect other cells, although a
recent study failed to provide evidence for such interac-
tion [15].

In the light of the above evidence, developing biomedical
strategies for the prevention of sexual transmission of
HSV-2 has become recognized as a critical strategy in the
control of sexual transmission of HIV-1 [16]. We recently
described  pre-integration viral genome slicing
[PRINT_GSX] as a novel model for devising antiviral gene-
based therapies using a retrovirus replication model (HIV
c¢DNA) [17]. This approach explores the natural antiviral
defense model inherent in bacteria through a nucleic-acid
enzymatic system called the restriction modification (R-
M) system [18]. Bacteria endowed with R-M systems have
been shown to be remarkably resistant to tropism by bac-
teriophages. Four taxonomic classes of R-M systems are
recognized to day, with type Il being the most widespread
[18]. Type II R-M systems comprise two distinct peptides
functioning respectively as restriction endonuclease
(REase) and cognate methyltransferase (MTase). As a
model illustration of function, class I RMS systems, the
evolutionary ancestors of R-M systems, are employed
here. The class I RMS of Escherichia coli strain K-12 com-
prises 6 enzymes, of which the respective genes are located
on the bacterial chromosome in a region called an immi-
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gration island: the hsdS gene, hsdR gene, hsdM gene,
mcrB/C genes and mirr gene. Products of the first two
genes play the central antiviral defense function (by recog-
nizing and splicing the exogenous DNA through recogniz-
ing 4-12 base pair palindromes; that is nucleotide
sequences that read the same in both directions). The site
specific subunit hsdS product serves to recognize the spe-
cific 4-12 " palindromic" base pair sequence in the
genome of the invading phage, while the hsdR restriction
subunit product cleaves the DNA if this site is unmethyl-
ated. The other 4 gene products serve to protect the host
genome as follows: the hsdM gene product is a methyl-
transferase that transfers a methyl group from S-adenosyl-
methionine (SAM) to the DNA at the indicated A residues;
the mcrBC system restricts DNA containing methylcyto-
sine residues; while the mrr system restricts DNA with m6-
methyladenine or m6-methylcytosine [19,20].

The aim of this study is to extend our previous work on
viral genome slicing (GSX) to HSV-2 by identifying REases
(DNases) with potent ability to cleave the HSV-2 genome.
Although the replicative cycles of some eukaryotic viruses
such as HSV-2 do not necessary involve viral genome inte-
gration into the host nuclear DNA as occurs for retrovi-
ruses, we propose that these REases are equally worth
exploring for the development of novel HSV-2 microbi-
cides. Two models are proposed for using the REase
EcoRII to target HSV-2: first, by cross-linking the enzyme
through the formation of C31G (Savvy) and EcoRIl PLGA-
loaded nanoparticles (nano-C31G-EcoRII); second, by
expressing EcoRII in Lactobacillus that also expresses a
truncated recombinant form of the receptor nectin-1
(XREPLAB-tN1). The former are nanoparticles that may be
explored to develop a model combinational microbicide,
while the latter is a model "live" microbicide strategy for
diverting and disrupting infectious HSV-2 particles.

Results

A. HSV-2 genome-wide in silico palindromics: REases with
HSV-2 genome cleaving potential

Of the 289 enzymes from the REBASE database analyzed;
77 (26.6%) demonstrated potential to cleave the HSV-
genome in > 100 but < 400 sites (see table 1 for details)
and 69 (23.9%) enzymes cleaved in > 400 but < 700 sites
(see table 2). Nine (3.1%) enzymes had more than 700
potential cleavage sites: Bmyl, Bsp12861, Bst2UI, BstNI,
BstOlI, EcoRII, Hgal, Mval, and Sdul, all of which are Type
II restriction enzyme subtype P, derived respectively from
the bacteria Bacillus mycoides [21], Bacillus sphaericus [22],
Bacillus stearothermophilus 2U, Bacillus stearothermophilus
[23], Bacillus stearothermophilus O22, Escherichia coli R245
[24], Haemophilus gallinarum [25]Micrococcus varians
RFL19 [26] and Streptococcus durans RFL3 [27] (see table
3). However, for the 4 that had no sign of activity on HSV-
2 genomic DNA (Pacl, Pmel, Smil, Swal - [for details see

Page 2 of 12

(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2008, 5:18

Table I: REase (DNase) enzymes cutting HSV-2 genome in >

100, but < 400 sites

Enzyme name

genomic splices (palindrome)

AccBSI
Accl
AclWI
Afllll
Alw211
Alw26l
Alwl
Apal
AspHI
Bbel
Bbvi2l
BsaWI
Bsell
BseNI
BsePI
BseRl
BsiHKAI
Bsil
BsmAl
BsmBlI
Bsp 120l
BspMI
Bpml
BsaAl
BsrBI
Bsrl
BsrSI
BssHII
BssSI
BstZI
BssTII
BstD 102l
BstDEI
BstF5I
BstX2l
BstYI
Cfr9l
Ddel
Eagl
EcIXI
Ecol30I
EcoT 14l
Ehel
Erhl
Esp3l
Fokl
Hincll
Hindll
Hinfl
Hphl
Kasl
Maelll
Mboll
Mfll
MroNI
Msel
Msll
Nael

164(gagegg)

111 (gt/mkac)
225(ggatc)

127 (a/crygt)
203(gwgcwlc)
308 (gtctc)
225 (ggatc)
267 (gggceclc)
203 (gwgcwic)
261 (ggcgel/c)
203 (gwgcw/c)
131 (w/ccggw)
155 (actgg)
155 (actgg)
349 (g/cgcge)
213 (gaggag)
203 (gwgcw/c)
111 (ctcgtg)
308 (gtctc)
149 (cgtctc)
267 (g/ggcec)
123 (acctge)
170 (ctggag)
155 (yac/gtr)
164 (gagcgg)
155 (actgg
155 (actgg)
349 (g/cgcge)
111 (ctcgtg)
338 (c/ggcceg)
124 (c/cwwgg)
164 (gagcgg)
139 (c/tnag)
292 (ggatg)
108 (r/gatcy)
108 (r/gatcy)
286 (c/ccggg)
139 (c/tnag)
338 (c/ggceg)
338 (c/ggccg)
124(c/cwwgg)
124 (c/cwwgg)
261 (ggc/gec)
124 (c/cwwgg)
149 (cgtctc)
292 (ggatg)
105 (gty/rac)
105 (gty/rac)
318 (g/antc)
280 (ggtga)
261 (g/gcgec)
244 (/gtnac)
261 (gaaga)
108 (r/gatcy)
250 (g/ccgge)
116 (t/taa)
124(caynn/nnrtg)
250 (gcc/gge)
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Table I: REase (DNase) enzymes cutting HSV-2 genome in >
100, but < 400 sites (Continued)

Narl 261 (gg/cgec)
NgoAlV 250 (g/ccgge)
NgoMI 250 (g/ccgge)
Nspl 104 (rcatgly)
Plel 212 (gagtc)
PpuMI 169 (rg/gwcecy)
Psp5li 169 (rg/gwecy)
PspAl 286 (c/ccggg)
PspALI 286 (ccc/ggg)
PspOMI 267 (gl/ggccc)
SfaNI 279 (gcatc)
Smal 286 (ccc/ggg)
TAil 106 (g/awtc)
Trull 116 (t/taa)
Tru9l 116 (t/taa)
Tsp45I 184 (/gtsac)
TspRI 109 (cagtg)
Xholl 108 (r/gatcy)
Xmal 286 (c/ccggg)
Xmalll 338 (c/ggcceg)

77 total enzymes

additional file 1]), all 130 (45%) other enzymes cleaved <
100 times. We have previously demonstrated that in silico
palindromics, a novel downstream science of genomics
for analysis of restriction enzyme activity using Webcutter
software version 2, has a PPV of 99.5% for in situ REase
activity [18].

B. Modeling nano-N-9-EcoRlIl; a nanoparticle that may be
explored to develop microbicides against HSV-2

A model of a nanoparticle that may be explored in micro-
bicide development was conceptualized. We based that
conception on the hypothesis that "for viral genome to be
rendered susceptible to a REase with potent activity
against the HSV-2 genome, the naked HSV-2 genome
must be brought into proximity with the REase". For pur-
poses of this modeling, we have theoretically employed
chemical two surfactants, Nonoxynol-9 and Savvy
(C31G); although several other synthetic detergents with
demonstrated safe profiles following repeated application
in vaginal mucosa of both humans and animals such as
1.0% Savvy (C31G) [28]; and plant derivative like Pra-
neem polyherbal suppository and gossypol may serve the
purpose. Note that meta-analysis of randomized control-
led trials including more than 5000 women for N-9 safety
have indicated some evidence of harm through genital
lesions; with N-9 not being recommended for HIV and STI
prevention|[29]; while no serious adverse event was attrib-
utable to SAVVY(C31G) use by a Phase 3, double-blind,
randomized, placebo-controlled trial [30]. To this regard,
for purposes of in-vivo viral envelope-disruption, Savvy
and other surfactants with safe profiles in humans may be
a better and safer option. The chemical structure and
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Table 2: REase (DNase) enzymesHSV-2 genome cutting in > 400
but less 700 sites
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Table 3: REase enzymes cutting HSV-2 genome in 700 or more
times

Enzyme name genomic splices (palindrome)

AccBlI 403 (g/gyrcc)
Acyl 671 (grl/cgyc)
Afal 426 (gt/ac)
Alul 456 (ag/ct)
Ama87I 613 (c/ycgrg)
Aval 613 (clycgrg)
Avall 613 (g/gwcec)
Banl 403 (g/gyrcc)
Banll 520 (grgey/c)
Bbill 671 (gr/cgyc)
Bbvl 613 (gcage)
Bcol 613 (clycgrg)
Bgll 316 (gccnnnn/ngge)
Bmel 8l 613 (g/gwec)
BsaHI 671 (gr/cgyc)
BsaOl 634 (cgrylcg)
Bsel 18I 428 (r/ccggy)
Bsh 1285l 634 (cgryl/cg)
BshNI 403 (g/gyrcc)
BsiEl 634 (cgrylcg)
BsmFl 668 (gggac)
BsoBI 613 (c/ycgrg)
Bspl43l 449 (/gatc)
Bsp 143l 562 (rgegcly)
BsrFl 428 (r/ccggy)
BssAl 428 (r/ccggy)
Bst711 613 (gcage)
BstDSI 699 (c/crygg)
BstH2I 562 (rgcgcly)
BstMCl 634 (cgrylcg)
Cfrl0l 428 (r/ccggy)
Cfr42l 400 (ccge/gg)
Cfrl 698 (y/ggccr)
Cspél 426 (g/tac)
Dpnl 449 (galtc)
Dpnll 449 (/gatc)
Drall 450 (rg/gnccy)
Dsal 699 (c/crygg)
Eael 698 (y/ggccr)
Eco24l 520 (grgey/c)
Eco47I 613 (g/gwcc)
Eco52I 338 (c/ggecg)
Ecoé4l 403 (g/gyrcc)
Eco88I 613 (clycgrg)
EcoO1091 450 (rg/gnccy)
FriOl 520 (grgeyl/c)
Gsul 170 (ctggag)
Haell 562 (rgegcly)
HgiEl 613 (g/gwec)
Hinll 671 (gr/cgyc)
Hsp92I 671 (gr/cgyc)
Hsp92Il 434 (catg/)
Kspl 400 (ccgc/gg)
Kzo9I 449 (/gatc)
Maell 581 (alcgt)
Mbol 449 (/gatc)
Mspl71 671 (gri/cgyc)
MspAll 633 (cmg/ckg)
Ndell 449 (/gatc)
Nlalll 434 (3168 catg/)
NspBll 633 (cmg/ckg)
Rsal 426 (gt/ac)
Sacll 400 (ccgc/gg)
Sau3Al 449 (/gatc)
Sfr303I 400 (ccgc/gg)
Sinl 613 (g/gwec)
Sstll 400 (ccge/gg)
Taql 503 (t/cga)
TthHBS8I 503 (t/cga)

69 total enzymes

Enzyme name genomic splices (palindrome)

Bmyl* 773 (gdgch/c)
2Bsp1286/*+# 773 (gdgch/c)
3Bst2UI*++ 824 (cclwgg)
4BstNI*+# 824 (cclwgg)
5BstOI*+ 824 (cc/wgg)
6EcoRIPF+# 824 (/ccwgg)
THgal*+# 831 (gacge)

8Mval*+# 824 (cclwgg)
9Sdulk+# 773 (gdgch/c)

*Type Il restriction enzyme subtype: P; *commercially available;
#Enzyme gene cloned =% Source of REase: Bacillus mycoides [21],
Bacillus sphaericus [22], Bacillus stearothermophilus 2U, Bacillus
stearothermophilus [23], Bacillus stearothermophilus O22,
Escherichia coli R245 [24], Haemophilus gallinarum [25] Micrococcus
varians RFL19 [26] and Streptococcus durans RFL3[27]

molecular weight of both N-9 and Savvy are shown in
figure 1.

We obtained the chemical formula and molecular weights
of the enzyme EcoRII by using its complete gene and pro-
tein sequences [[31,32], and [33]]. Protparam software
(Expasy, Swissprot) tool was used for this modeling, as
described elsewhere [34]. For details of results of the phys-
icochemical parameters of EcoRIl, see table 4 and [see
additional file 2]. From these results, specifically the val-
ues of the anionic and cationic amino acid composition,
it may be noticed that EcoRII is overall negatively charged
(-52, +43; overall molecule charge is -9), providing anions
that could bind free H* in the lactic acid of "PLGA". The
other measured EcoRII variables included number of
atoms, amino acid composition, instability index,
aliphatic index, theoretical PI, in vivo half life and grand
average hydropathy (GRAVY) and are shown in table 4.
The 3-dimensional structure of EcoRIl was modeled from
that previously reported [35]; and is available as PDB
entry 1nas6 in the EMBL protein database (see figure 2).

For the purposes of achieving conjugation and chemical
binding between either Savvy or Nonoxynol-9) and
EcoRIl, we further hypothesized that the aliphatic polyes-
ter poly(lactic-co-glycolic acid) (PLGA) may suffice [35].
PLGA is a copolymer that is synthesized by random ring-
opening co-polymerization of two different monomers,
the cyclic dimers (1,4-dioxane-2,5-diones) of glycolic acid
and lactic acid on either tin (II) 2-ethylhexanoate, tin(II)
alkoxides, or aluminum isopropoxide as catalysts. Owing
to its wide solubility, bio-degradability and compatibility,
PLGA is used in drug delivery by the formation of nano-
particles [36]. A simplified chemical structure of PLGA is
shown in Figure 3. We finally derived a likely chemical
structure of a single molecule of the nanoparticles: 1)
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[C14H29 N(CHz).0]a- + [C16H33 N (CH3)2CH»COO]s’

Figure |

This figure shows the chemical structures of nonoxynol-9 and C31G. A. Note the hydrophilic end with the hydroxyl
ion at the extreme left; and the hydrophobic hydrocarbon-benzene complex. This property confers on this molecule the ability
to complex with both hydrophilic (ionized) and hydrophobic molecules. The chemical formula and molecular mass of a single

nonoxynol-9 molecule are respectively C33H,;,0,oand 616.823 g/mol. B. C31G is a I:] mixed Micelle of Alkyl dimethyl amine

oxide and Alkyl dimethylglycine (betaine).

nano-N-9-EcoRIl and Nano-C31G-EcoRII. Both Theses
model nanoparticle structures are shown in Figure 4. We
believe that such nanoparticles may be synthesized practi-
cally using a two-step emulsion of EcoRII in PLGA fol-
lowed by addition of N-9 or C31G rather than polyacrylic
acid (PAA) as described elsewhere [35]. Note that it has
been assumed that only a single molecule of EcoRII, C31G
or N-9 and PLGA will form the nanoparticle, although
practically speaking, the relative proportions of the con-
stituent molecules may vary.

C. Modeling a "recombinant lactobacillus" able to attract
and destroy HSV-2

Additionally, we propose that a recombinant Lactobacil-
lus expressing "truncated nectin-1 and EcoRII" may
achieve a "divert and destroy" strategy against HSV-2. That
strategy is based on two hypotheses.

First, surface anchoring of the HSV-2 cellular receptor on
the cell walls of native vaginal bacteria (and not merely
secretory expression) is possible, and may realise a
"divert" strategy for HSV-2 genital infection. This hypoth-
esis is based on the following observations and conceptu-
alizations: (i) Lactobacilli exist as a biofilm that acts as a
first line of defence over the genital mucosa. This biofilm
forms a potential antimicrobial barrier over the epithelia
lining. (ii) Enhancing the antiviral properties of Lactoba-
cilli has recently become a strategy for protecting underly-

ing susceptible mucosal cells from viral tropism [36-40].
Specifically, we believe that making these cells mimic
"susceptible cells" may divert primary HSV-2 infection.
Liu et al. [38] have recently engineered Human vaginal
Lactobacilli for surface expression of two domain CD 4
using native sequences of a defined length upstream of the
unique C-terminal LPQTG cell wall sorting signal and the
positively charged C-terminus in a Lactobacillus-based
expression system. The modified L. jensenii displayed 2D
CD4 molecules that were uniformly distributed on the
bacterial surfaces, and recognized by a conformation
dependent anti-CD4 antibody, suggesting that the
expressed proteins adopted a native conformation. Such
Lactobacillus-based surface expression systems, with
potential broad applicability, represent a major step
toward developing an inexpensive, yet durable approach
to topical microbicides for mitigation of heterosexual
transmission of HIV and other mucosally transmitted
viral pathogens [38]. Heterologous proteins have been
expressed on the surfaces of other Gram-positive bacteria
via the sortase23-catalyzed cell wall anchoring mecha-
nism [41], including 5 Streptococcus gordonii, Lactobacillus
paracasei and Staphylococcus carnosus [41-45]. Assuming
that this approach can be used to anchor the HSV-2 sur-
face receptor on their cell walls, these bacteria may
"mimic" susceptible underlying cells and become infected
with HSV-2. This is what we refer to as the "divert strat-
egy". Although HSV-2 attachment and entry into epithe-
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Table 4: Physiochemical parameters of EcoRlIl as predicted from the amino acid sequence alignments

Physicochemical parameter Value
Number of amino acids: 404
Molecular Weight 45611
Theoretical Pl 6.10
Total number of negatively charged residues (Asp+Glu) 52
Total number of positive residues (Arg+Lys) 43
Atomic composition:

* Carbon(C) 2053

* Hydrogen(H) 3205

* Nitroge(N) 565

* Oxygen(O) 393

* Sulfur 10
Total number of atoms: 6426

Formula:
Extinction coefficients:
Estimated half-life(hours)
* (mammalian reticulocytes, in vitro)
* (yeast, in vivo)
* (Escherichia coli, in vivo)
Instability index:

Aliphatic index:

Grand average of hydropathicity (GRAVY)

Cr053H3205N5¢505938 10
47120(46870)

30 hour

> 20 hours

> 10 hours

45.04

97.05

-0.183

lial cells is mediated through a chain of events, a member
of the immunoglobulin (Ig) superfamily closely related to
the poliovirus receptor (Pvr), PRR1 (also known as HveC,
CD111, CLPED1, ED4, HIgR, HVEC, MGC142031,
MGC16207, OFC7, PRR, PRR1, PVRR, PVRR1, SK-12, nec-
tin-1), has been found to be the most effective mediator
of HSV-2 attachment and viral entry. HveC also mediates
the entry of other alphaherpesviruses [46-52]. Krummen-
acher et al. [52] have cloned and expressed a "truncated”
form of HveC (HveCt) in non-permissive insect cell lines
(Spodoptera frugiperda or Sf9) using plasmid pCK285
[46,52] to purify soluble proteins. Given that both CD4
and HveCt are members of the immunoglobulin (Ig)
superfamily, we predict that cell wall anchored truncated
nectin-1 (HveCt) can be expressed in Lactobacillus using a
modified form of plasmid pCK285 and the approach
recently devised by Liu et al. [38]. Such additional modi-
fications are necessary because the promoter previously
used (polyhedrin) to express HveCt in insect cells is spe-
cific for baculovirus [46,52]; a construct using a bacterial
promoter active in Lactobacillus is needed. For instance,
the P23 promoter from Lactococcus lactis created by PCR
amplification with the primers 5'-GTGGAGCTC-
CCCGAAAAGCCCTGACAACCC-3' and 5'-
GGAAACACGCTAGCACTAACTTCATT-3', as described by
Liu et al., may suffice [38].

Second, we have hypothesized that by further modifying
these truncated nectin-1(or HveC)-expressing lactobacilli
to express restriction enzymes with potent genome slicing
potential such as the EcoRII shown here, integration of
the HSV-2 genome into them can be halted (through the
disruption or destruction of its genome). This further
modification would allow for a "divert and destroy" strat-
egy similar to that being explored in HIV [38-40]. It is
likely that EcoRII can be expressed in Lactobacilli because
a previous genome-wide analysis of the Lac. Plantinuum
protein database revealed the presence of Mtase and REase
activities derived from Staphylococcus aureus [37]. Plasmid-
mediated transfer of R-M activity is common in bacteria
[19,20], and because EcoRII is originally encoded on a
plasmid rather than the E. coli chromosome [24], recom-
binant transfer of plasmid R245 to Lactobacilli is likely
achievable. The additional "destroy" conception is sug-
gested by the approach that bacteria use to resist tropism
bacteriophages [17,18]. The resultant model recombinant
Lactobacillus  has been dubbed "xREPLAB-tN1".

Discussion

This work extends the concept of viral genome slicing
(GSX), previously described for human retroviruses as a
module for research and development of novel antivirals
at the genome level [17], to HSV-2. Because HSV-2 has
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Figure 2

This figure shows the deposited crystal structure of
restriction endonuclease EcoRIl mutant R88A in the
European Molecular Biology Laboratory (EMBL)
Protein database (entry Inasé). A detailed structure of
the N-domain, which contains the effector-binding cleft of
EcoRlIl with putative DNA-binding residues H36, Y41, K92,
R94, E96, K97 and R98, can be found from work by Zhou et
al. [34].

been noted as a major cofactor in the sexual acquisition
and transmission of HIV-1 [5-15], preventing HSV-2
infection in this way may be a potential strategy for reduc-
ing the sexual transmission and acquisition of HIV-1.

http://www.tbiomed.com/content/5/1/18

Here, we detail the first focused effort to identify REases
with potential splicing activity against the HSV-2 genome
(more than 700 sites) - Bmyl, Bsp1286I, Bst2UI, BstNI,
BstOI, EcoRIl, Hgal, Mval and Sdul - which may be
applied to research and the development of HSV-2 bio-
medical prevention strategies. All 9 of these REase are
Type Il restriction enzyme subtype P, derived respectively
from the bacteria Bacillus mycoides [21], Bacillus sphaericus
[22], Bacillus stearothermophilus 2U, Bacillus stearother-
mophilus [23], Bacillus stearothermophilus O22, Escherichia
coli R245 [24], Haemophilus gallinarum [25]Micrococcus
varians RFL19 [26] and Streptococcus durans RFL3 [27] (see
table 3; details of other cutting enzymes and frequency of
splices are shown in tables 1, 2 and [additional file 1]).
However, it should be noted that some of these enzymes
are isoschizomers that are not significantly active under
human physiological conditions. For instance, the three
REases derived from Bacillus stearothermophilus have opti-
mal activity at 60°C [21-23]. Such characteristics make
them impractical for use in the design of microbicides.
Therefore, not all these suggested restriction enzymes may
actually be successfully applied in both approaches mod-
eled. The enzyme EcoRII was selected because: (1) it is
metabolically stable at temperature ranges inclusive of
normal human body temperature(see table 4 and addi-
tional file 2) [24]; (2) its source, the bacterium Escherichia
coli, is similarly a Gram positive bacteria of which the cell
wall anchoring system can be modified to express heterol-
ogous proteins as in Lactobacillus strains; (3) it exhibits
one of the highest slicing potentials against the HSV-2
genome (a strategy that may be beneficial in avoiding
spontaneous ligation-see tables 1, 2 and 3); (4) The REase
is encoded on plasmids rather than the bacterial chromo-
some, making its transfer to other bacterial strains possi-
ble.

HO-[CH (CH3;) OCO] x-[CH20C)] y -H

Figure 3

The figure shows a simplified chemical structure of PGLA. X represents lactic acid while y represents glycolic acid.
Notice the availability of the hydroxyl (-OH) and free hydrogen (+H) ions at lactic and glycolic extremities of the PLGA mole-
cule respectively. This possibly accounts for diversity of PLGA solvent solubility. PLGA may thus effectively be used to complex
both EcoRlIl and nonoxynol-9 by a two step emulsion of EcoRll first in PLGA; followed by a final emersion in nonoxynol-9.
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R, O CHN .H3205 C2053N565O593Sm

B.

C31G...... X-Y-..... .H3205 C2053N5650593Sm

Figure 4

This figure attempts to model the molecular binding of EcoRIl to nonoxynol-9 or C31G (savvy) through the
polyester PLGA. A. N-9 and EcoRIl PLGA loaded nanoparticles: Note the orientation of the hydrogen and hydroxyl ions in
the glycolic and lactic acids monomers of PLGA towards the hydroxyl and hydrogen ions in the N-9 and the REase nanoparti-
cles model. The underlined dots signify that it is unknown which, covalent or hydrogen, bonds are involved. B. C31G and
EcoRIl PLGA loaded nanoparticles. Note that the chemical structure of Savvy is has been abbreviated to C31G, but is [C14H29

N(CH,),0]," + [C16H33 N (CH;),CH,COO0];-.

Several questions remain to be answered about the two
proposed models. However, many of them can be
addressed fully through in situ experimentation rather
than modeling approaches. In both proposed models, it is
possible to question whether the additional modifica-
tions - (i) cross linking EcoRIl to N-9 or C31G (ii)
expressing EcoRII in HveCt-expressing Lactobacilli - are
relevant. For instance, while it is reasonable to propose
that the EcoRII and N-9 or C31G PLGA-loaded nanopar-
ticles may disrupt the viral envelope and possibly the viral
capsid, bringing the naked genome into contact with the
REase, one could nevertheless argue that the virus is no
longer infectious by the time the genome is released from
the virion, which would make the REase redundant. A
similar argument could be made for the Lactobacillus
approach. Once the virus has infected Lactobacillus, it can-
not infect the vaginal epithelium, so destruction of the
genome by REase appears unnecessary. Moreover, the N-
9 comprised nanoparticles are used here for theoretical
purposes, as their use in humans is bound to raise safety
concerns emanating from the previous evidence of
mucosal irritation and enhancement of both HIV and STI
transmission [28]. Never the less, in the absence of exper-
imental evidence based on such nanoparticles, one could
still argue their case from the fact that chemotherapeutic
agents with noted in-vivo toxicity have been observed to
exhibit extensively reduced such adverse effects when
complexed into nanoparticles. For instance, DiJoseph et al
have recently shown that conjugation of calicheamicin to
rituximab with an acid-labile or acid stable linker vastly
enhances its growth inhibitory activity against BCL in

vitro, has no deleterious effect on the effector functional
activity of rituximab, and exhibited greater anti-tumor
activity against B cell lymphoma(BCL) xenografts and
improved survival of mice with disseminated BCL over
that of unconjugated rituximab. Such demonstrated
reduced adverse effects of a calicheamicin immunoconju-
gate of rituximab demonstrate the safety advantage nano-
particles confer to initially unsafe bioactive agents [53].

In the case of the proposed nanoparticle model, it is not
fully known by which bonds the REase will combine with
the polymer (whether convalent or hydrogen bonds, as
shown in figure 4). Such bonds would presumably influ-
ence or affect the pattern of release of the components
(covalent bonds are stronger and harder to break than
hydrogen bonds). Moreover, the chemical models of "N-
9 or C13G and EcoRII" PLGA-loaded nanoparticles
shown in figure 4 propose a single nonoxynol-9 or C31G
molecule per REase. However, that may not be the case in
the resultant nanoparticles (in situ evaluation of the com-
position of the nanoparticles is required). In addition,
whether the molar concentrations of the respective active
ingredients (N-9 or C31G and EcoRII) are sufficient to
destabilize the viral envelope and genome, respectively,
can only be decided by in situ experiments. Because of its
previously demonstrated unsafe profiles in humans [29],
any attempts to employ N-9 in such nanoparticles strate-
gies are likely to exploit much lesser concentrations so as
to achieve safety. In so doing, that may compromise effi-
cacy for viral envelope disruption. Further still, it is not
known whether such polymerization may affect enzyme
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or surfactant activity. Enzyme activities depend on active
site conformations, and any changes in the 3D structure
will probably influence activity. We have assumed that,
since REases are stored in the simple ester construct glyc-
erol, and PLGA is in essence a poly-ester, ECORIl may
remain active despite copolymerization. Also, in the pro-
posed nanoparticle model, the involvement of the
hydrophilic hydroxyl group of N-9 or C31G or any other
detergents in the interaction with PLGA could possibly
affect the amphiphatic properties required to disrupt the
viral envelope and capsid.

Irrespective of the answers to these questions, such nano-
particles would have advantages of their own. For
instance: (i) they help to increase the stability of drugs and
possess useful release-control properties; (ii) they offer an
increased surface area of action for the drug iii) and
enhance efficacy considerably; thereby involve use of
lower concentrations of the bioactive agent relative to
when used alone[53-55]. Nano-properties i-iii may avail
one reason for experimental re-trial of agents like N-9
which has been previously found unsafe for use to prevent
HIV or other STI [29]. For such nanoparticles to be appli-
cable in human conditions, it is imperative that we not
only determine their size and Zeta potential but safety. In
the past, dynamic laser light scattering from the Malvern
Zetasizer 3000HAs system (Malvern Instruments, Worces-
tershire, UK) at 25°C at a 90° angle using PCS 1.61 soft-
ware has been used to determine both nanoparticle size
and Zeta potential [54,55].

The "live microbicide" model also raises unique questions
that can only be answered experimentally. First, there is
still a need for in situ experiments to evaluate the efficacy
of surface anchored HveCt expression by xREPLAB-tN1 in
the same way that Liu et al have for 2D CD4[38]. Previous
expression of HveCt in insect line lines does not guarantee
that it will be successfully expressed in Lactobacillus. There-
fore, the efficiency of xREPLAB-tN1 engineering in respec-
tive to HveCt surface expression needs be determined by
either (i) Partial purification of HveCt(tN1), (ii) Western
analysis of HveCt expression in xREPLAB-N1, (iii) growth
phase evaluation of HveCt productivity, or (iv) HSV-2 gD
binding assays using whole-cell Lactobacillus extracts and
affinity-purified anti-nectin1 antibodies (R7), as has been
done elsewhere [38,52]. In situ experiments are also
required to evaluate potential EcoRII expression, say by
Phage (1) DNA digestion assays following REase elution
from L. jensenni whole cell extracts using electrophoresis,
as described elsewhere [56]. Lastly, testing the in vitro
safety and efficacy of "xREPLAB-tN1" is mandatory prior
to clinical application in humans. We have found no
example of a eukaryotic virus infecting a bacterium, so it
cannot be guaranteed outright that surface anchoring of
HveCt would enable HSV-2 to be diverted into Lactobacilli.

http://www.tbiomed.com/content/5/1/18

Finally, many genomes of bacteriophages contain unu-
sual nucleic acids bases [19,20]. For example, the T-even
coliphage DNA contains not cytosine but 5-hydroxymeth-
ylcytosine, and most of the hydroxymethylcytosine resi-
dues in these DNAs are glycosylated as well [20]. The
genome of the B. subtilis phage contains a diversity of thy-
midine replacements, including uracil, 5-hydroxymethyl-
cytosine, glycosylated or phosphorylated 5 uracil and
alpha-glutamyl thymine. These unusual bases serve to
render the phage genome resistant to degradation by host
restriction enzymes [19,20]. It is likely that HSV-2 may
become resistant to REase cleavage through similar varia-
tions in the viral genomes. This is a likely mechanism for
the evolution of resistance to REase-based microbicides.
Moreover, R-M systems do not operate with 100% effi-
ciency, and a small number of phages have been noted to
survive and produce progeny in bacteria [19,20]. This too
may be a shortcoming of REase-based microbicides. We
believe that such resistance may be overcome in future by
altering the specificity of EcoRII. This concept is based on
the fact that among R-M systems of the same class, transfer
of the hsdS specificity gene (or protein) occurs naturally
and serves to alter the specificity of the "R-M progeny"
[19,20]. Similar alterations may be achieved through
recombinant engineering, which implies application of
the other 8 REases with potent cleavage potential against
the HSV-2 genome, but with characteristics that make
them less than ideal for use in either proposed model.
Again, whether the transfer of specificity subunits from
REase such as those derived from the Bacillus spp. would
entail the persistence of unfavorable characteristics, such
as functioning best at temperature ranges outside the nor-
mal human physiological range, can only be answered by
experiments in situ.

Conclusion

We identify the REase EcoRII as a potential ingredient of
HSV-2 microbicides. Modeled for the first time ever are (i)
a nanoparticle for use in research and development of
microbicides against HSV-2, and (ii) a "live microbicide"
for diverting primary HSV-2 infection from genital
mucosal cells coupled to genome disruption. Surfactants
with safer profiles may form better candidates for conju-
gating to EcoRIIL.

Methods

A. Identification of REase with potential activity against
HSV-2 genome

Design

In silco genome-wide palindromics

Materials and software

the whole genome of HSV-2 (PAN = NCBI| NC_001798|);
289 REases and the bioinformatics software Webcutter2
http://rna.lundberg.gu.se/cutter2
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Interventions

we searched for genome splicing sites in a linear pattern in
order to recognize 6 or more base-pair palindromes com-
patible with recognition sites of the 289 REase.

Measured Variables
cutting enzymes; frequency of splices and specificity pal-
indrome

B. Modeling of the chemical bonding of the nanoparticle
nano-N-9-EcoRlI

B1. Chemical structure of nonoxynol-9: Was modeled
from that available literature on surfactant groups of
microbicides [29]. The Chemical structure of Savvy C31G
was also modeled from that available in literature [28,30]

B2. Physicochemical properties of EcoRII

Design
In silco Proteomics

Material and Software

Protparam Software http://www.expasy.ch/tools/prot
param.html; and the EcoRII enzyme accession number =
SWISS PROT |P14633|

Interventions
Direct feeding of amino acid sequences of EcoRII into the
protparam interface

Measured variables

chemical formula of EcoRII and its possible molecular
structure Other measured variables included number of
atoms, amino acid composition, instability index,
aliphatic index, theoretical PI, in-vivo half life and grand
average hydropathy (GRAVY).

B3. The likely 3-D structure of EcoRII was obtained from
the EMBL protein database using the entry number 1nas6
http://www.ebi.ac.uk/pdbsum/1NAG6

C. Modeling of a recombinant lactobacillus for diverting primary
mucosal HSV infection

C1. Primary accession of CD258 antigen; also known as
tumor necrosis factor ligand superfamily member 14,
which acts as herpesvirus entry mediator-ligand and nec-
tin-1 (also CD111 antigen; herpes virus entry mediator C)
were obtained to show that proteins are readily recog-
nized.

C2. A review of the strategies for modifying the plasmid
vectors (i) pLEM7, (ii) pOSEL144 pOSEL651, (iii) pVT-
Bac, (iv) PBG38 and (v) pCK285 to generate super plas-
mids for expression of heterologous proteins in Lactoba-
cillus was done as described elsewhere [38,52].

http://www.tbiomed.com/content/5/1/18
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