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Abstract
Background: The diauxic shift in yeast requires cells to coordinate a complicated response that
involves numerous genes and metabolic processes. It is unknown whether responses of this type
are mediated in vivo through changes in a few "key" genes and enzymes, which are mathematically
characterized by high sensitivities, or whether they are based on many small changes in genes and
enzymes that are not particularly sensitive. In contrast to global assessments of changes in gene or
protein interaction networks, we study here control aspects of the diauxic shift by performing a
detailed analysis of one specific pathway–sphingolipid metabolism–which is known to have signaling
functions and is associated with a wide variety of stress responses.

Results: The approach uses two components: publicly available sets of expression data of
sphingolipid genes and a recently developed Generalized Mass Action (GMA) mathematical model
of the sphingolipid pathway. In one line of exploration, we analyze the sensitivity of the model with
respect to enzyme activities, and thus gene expression. Complementary to this approach, we
convert the gene expression data into changes in enzyme activities and then predict metabolic
consequences by means of the mathematical model. It was found that most of the sensitivities in
the model are low in magnitude, but that some stand out as relatively high. This information was
then deployed to test whether the cell uses a few of the very sensitive pathway steps to mount a
response or whether the control is distributed throughout the pathway. Pilot experiments confirm
qualitatively and in part quantitatively the predictions of a group of metabolite simulations.

Conclusion: The results indicate that yeast coordinates sphingolipid mediated changes during the
diauxic shift through an array of small changes in many genes and enzymes, rather than relying on
a strategy involving a few select genes with high sensitivity. This study also highlights a novel
approach in coupling data mining with mathematical modeling in order to evaluate specific
metabolic pathways.

Published: 31 October 2007

Theoretical Biology and Medical Modelling 2007, 4:42 doi:10.1186/1742-4682-4-42

Received: 6 June 2007
Accepted: 31 October 2007

This article is available from: http://www.tbiomed.com/content/4/1/42

© 2007 Alvarez-Vasquez et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 20
(page number not for citation purposes)

http://www.tbiomed.com/content/4/1/42
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17974024
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Theoretical Biology and Medical Modelling 2007, 4:42 http://www.tbiomed.com/content/4/1/42
1. Introduction
Yeast cells challenged by depletion of their preferred car-
bon sources in the surrounding medium begin using
other available carbons for energy production. This
switch, usually from glucose to ethanol and acetate, is
known as the diauxic shift. It is not surprising that the
diauxic shift constitutes a very complicated dynamic proc-
ess that requires fine tuned coordination at the genomic
and biochemical levels. At the genomic level, the switch to
secondary non-fermentable carbon sources necessitates
sweeping changes in gene regulation, which have been
assessed with microarrays measured at a series of time
points [1,2]

Specifically about the time of diauxic shift, the cells begin
up-regulating hundreds of genes, which are associated
with respiration, fatty acid metabolism and the launch of
an environmental stress response, while down-regulating
other genes whose products are no longer needed in prior
amounts (e.g., [3]). In turn, at the biochemical level, these
changes in gene expression lead to altered metabolic,
enzymatic, and flux profiles. Connecting the two levels are
mechanisms of signal transduction that respond to the
depletion of primary substrate and ultimately effect
genomic adjustments.

As such, published microarray data contain a hidden
wealth of information, and often specific aspects of cell
regulation are of interest to particular investigators. There-
fore, there are increasing needs to develop approaches
that allow extraction of relevant data and then applying
specific analytical methods on these data in order to pre-
dict functional consequences. In this study, we focus on
sphingolipid metabolism and changes that occur during
the diauxic shift. The choice of this pathway system was
based on the fact that sphingolipids have been recognized
in yeast and other eukaryotes as important signaling mol-
ecules that respond to a variety of stresses and are crucially
involved in the coordination of stress responses [4]. The
overall strategy of this work is to translate published infor-
mation on changes in gene expression during the diauxic
shift into alterations in enzyme activities and to deduce,
by means of a mathematical model, subsequent changes
in metabolic profiles within the sphingolipid pathway.

In a pilot study using a similar strategy, we previously
translated global mRNA microarray results into a mathe-
matical pathway model, which was then employed to
study the coordination of the glycolytic pathway in Sac-
charomyces cerevisiae following the initiation of heat stress
[5]. Using similar mathematical arguments, we investi-
gated the coordination of regulation in the trehalose cycle
[6]. Analyzing heat shock in a slightly different fashion,
Vilaprinyo [7] used microarray data for testing evolution-
ary implications of changes in gene expression. Adapting

the methodologies of these earlier studies, we are here
importing results from microarray time series during the
diauxic shift [1,2] into a mathematical model with the
goal of characterizing dynamic changes in the sphingoli-
pid pathway at the metabolic and physiologic levels.

The two published microarray data on the diauxic shift
consist of global mRNA measurements at seven time
points, spanning a period of about 12 hours [1] and 11
hours [2], respectively, during which the yeast culture
switched from glucose fermentation to respiration of eth-
anol and acetate and the production of large amounts of
ATP.

Specifically, we are interested in changes within the
(sphingo)lipidomic profile between a baseline fermenta-
tive state during exponential growth (at 11 hours of batch
culturing) and a later time point at 21 hours, which corre-
sponds to respiration after the diauxic shift [1]. At this
time, glucose is depleted, but the cell density is still
increasing, though with decreased growth rate, and the
cell culture has not reached stationary state. During this
phase, cell growth and division continue to require lipid
production for inclusion in the membrane of internal
organelles and the plasma membrane.

Complementing the microarray data [1,2], our analysis
makes use of a variety of biochemical, regulatory and
genetic pieces of information on the sphingolipid path-
way. This information was recently collated and inte-
grated into a comprehensive kinetic-dynamic
mathematical model [8] and is represented in Fig. 1. The
model was thoroughly diagnosed and subsequently sub-
jected to experimental validation [9].

An important component of a typical model assessment is
the analysis of its sensitivity to changes in parameters and
independent variables. The former may be KM values in
Michaelis-Menten models or rate constants and kinetic
orders in power-law models, while the latter typically refer
to enzyme activities and input variables, such as substrates
and other precursors or modulators. Relative changes in
model output that are caused by small perturbations in
independent variables are called logarithmic gains (Log
Gains; LG; [10]). These LG can serve both as diagnostic
and predictive tools accompanying the model. If the gains
are small in magnitude, perturbations are rather inconse-
quential. By contrast, large gains indicate that the system
responds strongly to changes in a given independent vari-
able. A strong response may be advantageous or not. On
one hand, the system should be robust to naturally occur-
ring random fluctuations in conditions, which would
mandate gains of small size. On the other hand, signal
transduction systems must react strongly to relevant
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Sphingolipid-glycerolipid model for yeastFigure 1
Sphingolipid-glycerolipid model for yeast. Solid boxes represent time dependent variables, italics represent variables assumed 
to be constant (time independent), dashed boxes represent variables with inhibitory or activating effects. Blue boxes represent 
metabolite log gains analyzed in this work. The color scale corresponds to the summed absolute values of metabolite log gains 
for the enzymes of the sphingolipid block listed in Table 2 (see text for details).
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inputs and amplify them multifold to evoke an appropri-
ate response.

Sphingolipid metabolism constitutes an interesting sys-
tem, as it is biochemical in nature and should therefore be
robust, exhibiting small gains. At the same time, some of
the sphingolipids and their relative amounts serve as sig-
naling molecules, which therefore have to respond force-
fully to the sensing of specific, and often adverse,
environmental conditions such as heat shock or oxidative
stress. For these reasons of contrasting demands, it is
interesting to study log gain profiles of the sphingolipid
pathway in detail. We execute this analysis here, focusing
on functional clusters of variables and fluxes of primary
significance, and compare our findings to results charac-
terizing diauxic shift conditions. Given the complexity of
the pathway one should expect that there are multiple
ways of genomic and metabolic switching from the pre-
diauxic metabolic profile to one that is suited for post-
diauxic conditions. To gain insight into this switch, we
will study the specific question of whether yeast employs
a few independent variables (enzymes) with high log
gains that are able to effect appropriate changes in meta-
bolic profile during diauxic shift, or whether larger num-
bers of enzymes are adjusted only slightly. We will also
explore whether there is a preference for exerting control
through changes in precursors or in enzyme activities.

Finally, we discuss the utility of this approach as a proto-
type that can be employed towards 'mining' pathway-spe-
cific data from the ever-increasing numbers of published
microarrays, and then using these data to predict func-
tional metabolic consequences.

2. Methods
The analysis is overall divided in three parts, which are all
executed with a recent mathematical model of sphingoli-
pid metabolism (Fig. 1; [8,9]). The model, along with
slight modifications accounting for new experimental
findings, is discussed in Section 2.1 and the Appendix.
Section 2.2 describes the computation of sphingolipid
related logarithmic gains, and Section 2.3 discusses our
implementation of processes associated with the diauxic
shift characterized in the published microarray expression
data. Most of the analyses were executed with PLAS [11]
and MAPLE [12].

2.1. – Specific modifications to the model
The model was taken essentially as described in our earlier
work [8,9]. One exception is internal serine, which we
considered constant in the present model. This change
appeared reasonable because new experiments have
shown that its measured internal value is maintained at a
very stable concentration during the diauxic shift (Cowart
A., personal communication). Furthermore, serine is not

only a starting metabolite for the glycerolipid and sphin-
golipid pathways but also participates in other metabolic
routes that are not represented in the model, such as the
folate cycle, as well as protein synthesis (e.g., [13,14]).
Since these paths of serine utilization are not modeled,
perturbations would lead to undue accumulation in the
model. A few other minor modifications to the model are
described in the Appendix.

2.2. – Logarithmic Gains: Measurements of the Sensitivity 
of the Model
One of the most widely used quantitative criteria of model
quality and robustness is parameter sensitivity.

In a comprehensive sensitivity analysis, each parameter is
modulated by a small amount, and the effects of this
modulation on steady-state concentrations and fluxes
(e.g., [10,15]), or on transients (e.g., [16,17]) are ana-
lyzed. The analysis is typically executed through partial
differentiation at a chosen operating point.

Among various types of sensitivities, analyses of so-called
logarithmic gains (LG), which have been successfully
applied to moderately large biological systems (e.g., [18-
20]), are of particular importance here. An LG quantifies
the effect that a small (strictly speaking, infinitesimal) per-
turbation in a given independent variable has on the
steady-state values of metabolite concentrations or fluxes
in the system. Mathematical details are presented in the
Appendix.

An LG with magnitude greater than 1 implies amplifica-
tion of the perturbation; thus, a 1% change in the inde-
pendent variable evokes more than 1% in the steady-state
output quantity. A magnitude less than 1 indicates atten-
uation. A positive sign for the LG indicates that the
changes are in the same direction, so that both increase in
value or both decrease. A negative sign indicates that the
changes are in opposite directions.

In typical, robust models of metabolic pathways, the
majority of LGs are in a range between -1 and 1, which
indicates that perturbations in most independent varia-
bles are attenuated by the system. LGs with a magnitude
between 1 and 5 characterize the effect of moderate
amplification. LGs of much higher magnitude typically
have one of three causes. The particular independent var-
iable may truly have a high gain, which is, for instance, the
case in signaling systems whose role it is to amplify weak
incoming signals. Second, the independent or the
dependent variable associated with the LG is at the fringes
of the model, and the high gain is an artifact due to proc-
esses that in reality contribute to the dynamics (e.g., fur-
ther metabolism) of this variable but are not included in
the model. These additional processes tend to buffer the
Page 4 of 20
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variable against perturbations. Third, a variable associated
with a high LG is not modeled with sufficient accuracy. It
could be that a very inaccurate value is assigned to a
parameter or that some production or degradation proc-
esses are missing. True high gains are interesting because
they allow the cell to effect a desired change or adaptation
to a new situation with relatively modest effort. At the
same time, high gains are obviously difficult to control.
We will analyze in a later section to what degree yeast may
employ high-gain variables to organize the diauxic shift
from fermentation to respiration.

One should note that each LG addresses the perturbation
in one independent variable and its impact on one
dependent variable at a time. The effects of multiple
simultaneous perturbations can in principle be assessed
with a "synergism analysis" [21,22], which however is
mathematically very involved even in the simplest cases of
two combined changes, where tensor analysis replaces the
simple matrix computations of LG analysis. An alternative
is a comprehensive computational analysis, where multi-
ple, finite, perturbations are introduced in the model and
the effects are studied. In the system under consideration
here, 34 enzymes would need to be considered, leading to
more than 1,000 pair-wise analyses for each of the twenty-
five dependent variables, if positive and negative pertur-
bations were to be tested. For triplet perturbations, the
number per dependent variable would jump to about
12,000. Because we use LG primarily as indicators of rela-
tive importance, we do not pursue synergism analyses
here.

In the current model there are twenty-five dependent and
forty independent variables, so that the complete analysis
just with respect to metabolite LG involves more than
2,000 quantities, most of which are close to 0 and not par-
ticularly interesting.

For the current analysis, we focused on LGs for metabo-
lites and fluxes of the sphingolipid core, i.e., 3-keto-
dihydrosphingosine (KDHS, X1), dihydrosphingosine
(DHS, X2), dihydroceramide (Dihydro-C, X3),
dihydrosphingosine-1P (DHS-P, X4), phytosphingosine
(PHS, X5), phytosphingosine-1P (PHS-P, X6), phytocera-
mide (Phyto-C, X7), inositol phosphorylceramide (IPC-g,
X8), palmitoyl-CoA (Pal-CoA, X12), and serine (Serine Int.,
X13). They are represented in the diagram of Fig. 1 as boxes
shaded in blue and listed in Table 1. Furthermore, in a
new variation on this type of analysis, we studied the
effects on functional blocks of output quantities instead
of individual outputs. Specifically, we dissected the path-
way in three blocks: metabolic pathways precursors,
sphingolipids, and glycerolipids.

2.3. – Strategy for Implementing Dynamic Changes during 
Diauxic Shift
The LG analysis described above characterizes the robust-
ness of the model with respect to a given, small perturba-
tion. In contrast to such small alterations in values, a
coordinated cellular response such as the diauxic shift
from fermentation to respiration is associated with multi-
ple changes in gene expression and enzyme activities,
which are not necessarily small. To analyze this response,
we used two sets of published time series of yeast micro-
array data [1,2] one for the primary analysis [1] and the
second for evaluating the reproducibility of the metabo-
lomic output [2].

DeRisi et al. [1] quantified changes in yeast gene expres-
sion with microarray experiments that were spaced in
two-hour intervals from 9 hrs to 21 hrs of batch culture.
Measurements were done with a wild type strain growing
in YPD medium at 30°C, and the study also reported the
levels of glucose and cellular densities at the experimental
time points (Fig. 2). To ensure maximal consistency with
the model, we chose the 11-hour time point as baseline,
because it falls within the exponential growth phase for
which the model parameters were originally selected.
Since DeRisi's experimental results consist of ratios of
mRNA expression over baseline, all expression levels were
divided by the 11-hour levels, so that the 11-hour meas-
urements became "normal" levels of 1 unit. Table 2 shows
the enzymatic specific activities in the model at the 11-
hour reference point. In the sphingolipid model, several
steps are catalyzed with isozymes, such as the sphingoid
base kinase (X36), phosphatidate phosphatase (X39), G3P
acyltransferase (X49), and ELO1p (X59), or by different
subunits such as FAS (X52) and SPT (X57). The contribu-
tions of these isozymes and subunits were weighted
against their corresponding mRNA isoenzymes or subu-
nits.

The ACSp (X63) isoenzymes were not weighted because
their product (Ac-CoA) is considered an independent var-
iable in the model.

For example, at 9 hrs, the two reported isoenzymes for
phosphatidate phosphatase (X39), represented in Table 3,
were weighted against their corresponding highest nor-
malized mRNA values as:

mRNA39 = (1.02 × 1.02/1.84 + 1.03 × 1.03/1.41)/(1.02/
1.84 + 1.03/1.41) = 1.03.

As a second example, the weighted phosphatidate phos-
phatase mRNA fold change at 19 hrs is computed as

mRNA39 = (1.69 × 1.69/1.84 + 1.13 × 1.13/1.41)/(1.69/
1.84 + 1.13/1.41) = 1.43.
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In a more refined analyses, one could represent each iso-
zyme separately, which however would require more
input data for model design.

2.4. – Validation Experiments
Yeast strain and growth conditions
Background strain BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0
ura3Δ0) from the yeast deletion library was first grown in
an overnight culture of YPD from a freshly streaked plate
of the frozen stock. Flasks of SC medium were then inoc-
ulated to a starting OD600 ≅ 0.1 and incubated at 30°C
and 220 rpm. Samples were taken after 6 hours (OD600 =
0.34) and 24 hours (OD600 = 2.2), spun down at 3000
rpm for 5 minutes, the supernatant removed, and the
remaining cell pellet frozen at -80°C until lipid analysis.

Lipid extraction and measurement by mass spectrometry
Samples were fortified with internal standards, extracted
with a solvent system modified from Mandala et al. [23]
and then injected. ESI/MS/MS analysis was performed on

a Thermo Finnigan TSQ 7000 triple quadrupole mass
spectrometer, operating in a Multiple Reaction Monitor-
ing (MRM) positive ionization mode [24]. Peaks corre-
sponding to the target analytes and internal standards
were collected and processed using the Xcalibur software
system.

Quantitative analysis was based on the calibration curves
generated by spiking an artificial matrix with the known
amounts of the target analyte synthetic standards and an
equal amount of the internal standards (ISs). The target
analyte/IS peak areas ratios were plotted against analyte
concentration. The target analyte/IS peak area ratios from
the samples were similarly normalized to their respective
ISs and compared to the calibration curves, using a linear
regression model.

Sample normalization by lipid phosphates
The lipid concentrations from the mass spectrometry
analysis were normalized by total lipid phosphate as

Table 1: Steady-state metabolite levels corresponding to mRNA profiles

FOLD CHANGE (normalized against 11 hr)

Abbreviation Symbol Value (mol%) 9 hr 11 hr 13 hr 15 hr 17 hr 19 hr 21 hr

KDHS X1 0.005 0.98 1 0.78 1.01 1.27 0.80 1.55
DHS X2 0.01 1.13 1 0.53 0.77 0.50 1.98 7.88
Dihydro-C X3 0.036 1.65 1 0.76 2.07 1.24 0.95 4.28
DHS-P X4 0.001 1.27 1 0.36 0.48 0.32 2.31 15.76
PHS X5 0.05 0.89 1 0.43 0.54 0.34 3.00 4.73
PHS-P X6 0.005 0.99 1 0.24 0.29 0.18 4.21 12.96
Phyto-C X7 0.052 0.86 1 0.51 0.51 0.55 0.33 1.02
IPC-g X8 0.102 1.93 1 0.06 0.61 0.80 0.003 3.71
CDP-DAG X9 5.4 1.18 1 0.44 0.72 0.95 0.76 3.13
PS X10 8.4 0.77 1 1.22 2.79 3.37 4.15 8.14
PA X11 3 1.06 1 0.82 1.51 2.11 2.46 5.11
Pal-CoA X12 0.01 (*) 0.97 1 0.96 1.17 1.14 0.95 1.29
Serine X13 2600 (*) 1 1 1 1 1 1 1
DAG, X14 X14 0.1 1.25 1 0.97 1.18 1.80 1.83 3.94
PI, X15 X15 16.7 1.03 1 0.57 0.78 1.14 0.36 1.74
Inositol X16 24.1 (*) 1 1 1 1 1 1 1
CDP-Eth X17 22 0.55 1 0.03 0.04 0.01 3.20 15.25
MIPC-g X18 0.14 1.56 1 0.37 1.25 1.17 0.07 2.02
M(IP)2C-g X19 0.0085 1.47 1 0.25 0.77 1.43 0.05 3.31
IPC-m X20 0.918 1.93 1 0.06 0.61 0.80 0.003 3.71
MIPC-m X21 1.26 1.56 1 0.37 1.25 1.17 0.07 2.02
M(IP)2C-m X22 0.0765 1.47 1 0.25 0.77 1.43 0.05 3.31
C26-CoA X23 0.5 0.79 1 4.33 1.97 4.21 0.47 0.06
Mal-CoA X24 183 (*) 1.04 1 0.35 0.46 0.31 1.20 11.60
Ac-CoA X25 870 (*) 1 1 1 1 1 1 1
Total IPC X8 + X20 1.02 1.93 1 0.06 0.61 0.80 0.003 3.71
Total MIPC X18 + X21 1.4 1.56 1 0.37 1.25 1.17 0.07 2.02
Total MIP2C X19 + X22 0.085 1.47 1 0.25 0.77 1.43 0.05 3.31
Total_Ceramide X3 + X7 0.088 1.18 1 0.61 1.15 0.83 0.59 2.35

(*) μM. Steady-state metabolite levels corresponding to microarray time course data during the diauxic shift (from DeRisi et al. [1]). Each case is 
represented as fold change of the value presented in Alvarez-Vasquez et al. [9]
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determined with a standard curve analysis and colorimet-
ric assay of ashed phosphate: aliquots of extracted sam-
ples were re-extracted via Bligh and Dyer [25] to separate
the lipid-containing organic phase which was dried and
assayed for phosphate content by ashing as previously
described by Jenkins and Hannun in [26].

3. – Results
3.1. – Log Gains
Initially, the most relevant metabolites were grouped in
three functional blocks and analyzed with respect to the
flux and metabolite LG within each block. The blocks
were chosen as: a) precursor block, including fatty acid
metabolism and serine metabolism; b) sphingolipid
block, including complex and backbone sphingolipids,
which are crucial in cell regulation [27,28], and c) glycer-
olipids.

In Fig. 1, the LG associated with the sphingolipid block
are colored according to their summed absolute values,
ranking from highest to lowest impact by red, yellow,
green, and blue.

In Fig. 3, the metabolite and flux LG are shown in a "spi-
der-web" representation. In this representation, spikes to
the outside of 1 exhibit magnification with direct propor-
tionality, whereas spikes to the inside indicate that
increases in the independent variable lead to decreases in
the output variable. As an example, consider the system
response in DHS-P (X4) to perturbations in independent
variables, as shown in Fig. 3f. Most independent variables

in this block have only a modest effect. This is seen by
starting at the 12 o'clock spoke and following the polygon
labeled 0 clockwise to the spoke labeled DHS-P, X4. The
dark and light blue lines indicate that alterations in PS
synthase and PI kinase activities have essentially no effect
on the steady-state value of DHS-P. Following the spoke
inward, one can see that a 1% increase in G3P acyltans-
ferase leads to a steady-state DHS-P value that is decreased
by about 4%. Thus, the LG is about -4. Looking at the cor-
responding spoke in Fig. 3e, a 1% increase in SPT is pre-
dicted to lead to an 11% increase in DHS-P.

The widest metabolite LG range was obtained inside the
precursor block (+200,-200) followed by the sphingolipid
block (+90,-70), and lastly by the glycerolipid block (+15,
-35). The fluxes in all three blocks have smaller LG values
than the metabolites, which means that the metabolic
profile is more sensitive than the overall flux pattern.

3.1.1. – Precursor Block
The LG pattern in this block is extreme (Figs. 3a,d). Some
key variables, such as dihydroceramide and palmitoyl-
CoA are essentially unaffected by any change in precur-
sors. By contrast, DHS-P and PHS-P exhibit enormous
sensitivity, followed by strong effects on DHS and PHS.
The highest LGs by far are associated with the dynamics of
Pal-CoA (X12) and Ac-CoA (X25), followed by serine (X13).
Also high are LG for ACSp (X63) and FAS (X52), which is
consistent with the crucial biological importance of these
two enzymes for yeast viability: indeed, ACS1/2 double
null mutant yeast strains and FAS3 knockout have been
reported as non-viable [29,30].

The LG for Ac-CoA precursors have mostly an inverse
effect on the sphingoid phosphates, which suggests that
even small increases in Ac-CoA could lead to significant
decreases in these metabolites. While the importance of
Ac-CoA for sphingolipid dynamics is clear from this LG
profile, the specific numerical values of the LG associated
with Ac-CoA should at this point be considered merely as
a measure of tendency. First, a 1% increase in Ac-CoA cor-
responds to an available Ac-CoA concentration of 8.7 μM
of material into the system. This amount is very large in
comparison to the normal sphingolipid concentrations.
Second, it is known that Ac-CoA is involved in many proc-
esses that are not modeled here (e.g., [31]), with the con-
sequence that there is no buffering against perturbations
in production or degradation of Ac-CoA. Thus, while
changes in Ac-CoA at diauxic shift have been reported
([32], Fig 2A–B) and certainly have significant effects,
such changes are controlled very tightly in the living cell.

The high positive LG associated with external serine trans-
port is in accordance with experiments from our labora-
tory where this process was identified as the determinant

Cellular density and external glucose concentration during the time period when genomic expression was measuredFigure 2
Cellular density and external glucose concentration during 
the time period when genomic expression was measured. 
mRNA levels at 11 hrs are assumed to correspond to the 
model of [9]. Adapted from DeRisi ([1], Fig 5A).

9 11 13 15 17 19 21
0

4

8

12

16

20

OD 600nm
Glucose [g/liter]

Hours
Page 7 of 20
(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2007, 4:42 http://www.tbiomed.com/content/4/1/42
for the control of sphingolipid flux and even more impor-
tant than external palmitate input [33]. Again, the numer-
ical values of the LG should not be taken at face value.
Instead these LG results with respect to precursors should
be interpreted on a scale of relative importance.

It might be interesting to note that the concentration of
DHS-P is more strongly affected than that of PHS-P, while
the opposite is true with respect to fluxes. Given the high
LG, one could expect sphingoid base kinase and lyase to
be more influential, but that does not seem to be the case.

3.1.2. – Sphingolipid Block
Within the block of sphingolipid associated enzymes, SPT
(X57) has the strongest effect (Figs. 3b,e). This effect is pos-
itive throughout and most clearly visible in the backbone
sphingolipids and their phosphates. This finding is not
surprising as SPT is commonly considered the first
enzyme that controls entry into the sphingolipid pathway.
Its crucial role has been widely documented [34,35]. As in
the case of precursors, the metabolite and flux LG patterns
with respect to DHS-P and PHS-P are opposite to each
other.

Interestingly, the Elo1p (X59) complex exhibits negative
LG for the sphingoid phosphates and backbones, indicat-

Table 2: Specific enzyme activities

Abbreviation Activity (U/mg) Ref.

GLYCEROLIPID BLOCK:
Phosphatidylinositol Synthase PI Synthase X26 0.00266 [57]
Phosphatidylserine Synthase PS Synthase X38 0.00332 [57]
Phosphatidate Phosphatase PA-Ppase X39 0.0024 [58]
CDP-Diacylglycerol Synthase CDP-DAG Synthase X40 0.00061 [59]
DG-Choline Phosphotransferase ChoPT X42 0.00066 [60]
Phosphoinositide Kinase PI Kinase X44 0.00172 [61]
Diacylglycerol-Ethanolamine Phosphotransferase EthPT X45 0.001 [60]
Inositol-1-P Synthase I-1-P Synth X46 0.000833 [62]
Glycerol-3-Phosphate Acyltransferase G3P Acyltranferase X49 0.00394 [63]
Phosphatidylserine Decarboxilase PS Decarboxylase X56 0.00001066 [64]
Phospholipase B Phospholipase B X68 0.0005 δ
SPHINGOLIPID BLOCK:
3-Ketodihydrosphingosine Reductase KDHS Reductase X27 0.000262 [65]
Dihydroceramide Alkaline Ceramidase Dihydro-Cdase X29 0.0000054 [66]
Inositol Phosphorylceramide Synthase IPC Synthase X33 0.00033 [67]
Ceramide Synthase Cer Synthase X34 0.0000165 [68]
Mannosyl Inositol Phosphoceramide Synthase MIPC Synthase X35 0.000165 [8, 69]
Sphingoid Base Kinase Sphingoid Base Kinase X36 0.000004 [43]
Sphingoid-1-phosphate Phosphatase SB-Ppase X41 0.0008 [70]
GUP1p GUP1p X43 0.0001 δ
Sphingosine-Phosphate Lyase Lyase X50 0.0000367 [71]
IPCase, Phyto-C formation IPCase X51 0.00015 [72]
Phytoceramide Ceramidase Phyto-Cdase X53 0.0000198 [66]
4-Hydroxylase Hydroxylase X54 0.00017
Mannosyldiinositol Phosphorylceramide Synthase M(IP)2C Synthase X55 0.0000825 [8, 69]
Serine Palmitoyltransferase SPT X57 0.000106 [65]
Very Long Chain Fatty Acid Synthase ELO1p X59 0.0006 [73]
IPCase, Dihydro-C formation IPCase X64 0.00015 [72]
PRECURSOR BLOCK:
Transport/Palmitoyl CoA Synthase Transp./Palmitoyl CoA Synthase X30 0.0508 [74]
Phosphoserine-Phosphatase P-Serine-PPase X31 0.0013 [75]
Serine Hydroxymethyl Transferase SHMT X32 0.0045 [76]
Acyl-CoA-Binding Protein ACBP X48 20 (*) [77]
Fatty Acid Synthetase FAS X52 0.0089 [78]
Acetyl-Coenzyme A Carboxylase ACCp X60 0.022 [79]
Acetyl-Coenzyme A Synthetase ACSp X63 0.73 [80]
Serine Transport Serine Transport X65 0.0193224 [81, 82]

(*) μM. (δ) Estimated. Specific enzyme activities during the exponential growth phase; from Alvarez-Vasquez et al. [9]. The enzymes were 
categorized into glycerolipid, sphingolipid, and precursor blocks.
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ing that increases tend to short-circuit production of
sphingoid phosphates (or compete with it) and instead
channels fatty acid precursors directly into ceramide,
which is immediately (i.e., without sustained increase in
concentration) used for IPC-g and the production of com-
plex sphingolipids.

3.1.3. – Glycerolipid Block
The LG of this block (Figs. 3c,f) are generally smaller in
magnitude. G3P acyltransferase (X49) tends to have nega-

tive LG values because increases in this enzyme divert its
substrate, palmitoyl-CoA (X12), away from sphingolipid
metabolism and toward the glycerolipid pathway. The
strongest effects are again seen in the sphingoid phos-
phates.

Interestingly, the LG associated with inositol-1-phosphate
synthase (X46) are relatively high. The reasons are not
intuitively evident, and we will explore in the laboratory
whether this enzyme might be a regulator of the sphingol-

Table 3: Fold changes in mRNA's of model enzymes

Gene ORF's 9 hr 11 hr 13 hr 15 hr 17 hr 19 hr 21 hr

Fold Increases in mRNA (DeRisi et al ., 1997)

LCB4 YOR171C 1.1 1.16 1.3 0.92 1.02 1.61 1.37
LCB5 YLR260W 0.88 0.81 0.97 0.9 0.77 2.13 1.35

DPP1 YDR284C 0.93 0.91 1.67 1.15 0.98 1.54 0.83
LPP1 YDR503C 1.08 1.04 1.47 1.05 1.15 1.18 1.27

GPT2 YKR067W 1.01 1.05 1.16 1.35 1.64 2.10 2.36
GAT2/SCT1 YBL011W 0.96 0.94 1.09 0.83 0.85 1.15 0.72

FAS1 YKL182W 1.11 1.08 0.97 0.83 0.78 0.88 0.77
FAS2 YPL231W 0.95 1.03 0.95 0.92 0.71 0.71 0.71

LCB1 YMR296C 0.97 1 1.16 0.82 0.90 1.04 1.19
LCB2/SCS1 YDR062W 0.96 1.04 1.14 0.93 0.83 0.45 0.40

ELO1 YJL196C 0.95 0.85 1.23 1.09 1.33 0.79 0.41
ELO2/FEN1 YCR034W 1.09 1.11 1.89 1.01 0.75 0.54 0.32
ELO3/SUR4 YLR372W 1.06 1.27 1.56 0.95 1.05 0.43 0.23

Fold Increases normalized against 11 hr values

LCB4 YOR171C 0.94 1 1.11 0.79 0.88 1.40 1.19
LCB5 YLR260W 1.08 1 1.20 1.11 0.95 2.65 1.66

DPP1 YDR284C 1.02 1 1.84 1.26 1.08 1.69 0.91
LPP1 YDR503C 1.03 1 1.41 1.01 1.10 1.13 1.22

GPT2 YKR067W 0.97 1 1.11 1.29 1.57 2.00 2.25
GAT2/SCT1 YBL011W 1.03 1 1.15 0.88 0.90 1.22 0.77

FAS1 YKL182W 1.04 1 0.90 0.77 0.72 0.82 0.72
FAS2 YPL231W 0.93 1 0.93 0.89 0.69 0.69 0.70

LCB1 YMR296C 0.98 1 1.16 0.82 0.91 1.05 1.20
LCB2/SCS1 YDR062W 0.93 1 1.09 0.90 0.80 0.44 0.39

ELO1 YJL196C 1.11 1 1.45 1.27 1.57 0.92 0.48
ELO2/FEN1 YCR034W 0.99 1 1.69 0.91 0.67 0.49 0.29
ELO3/SUR4 YLR372W 0.84 1 1.22 0.75 0.83 0.34 0.18

mRNA fold changes and corresponding values of enzyme activities in the model at the different time point, normalized against 11 hr data. Data from 
DeRisi et al. [1]. LCB4 – LCB5 and DPP1-LPP1 are a pair of enzymes with similar substrates and/or products and they represent the sphingoid base 
kinase (X36) and the phosphatidate phosphatase (X39), respectively. FAS1- FAS2 and LCB1-LCB2 correspond to sub-units for fatty acid synthase (X52) 
and serine palmitoyl transferase (X57), respectively. The three ELO's represent the battery of enzymes involved in fatty acid elongation represented 
in the model by Elo1p (X59).
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"Spider-web" representation of log gains in the model of Fig. 1 at the 11 hr time pointFigure 3
"Spider-web" representation of log gains in the model of Fig. 1 at the 11 hr time point. Log gains are summed for ten represent-
ative sphingolipid related metabolites or fluxes with respect to the time independent variable blocks listed in Table 2. Overlap-
ping lines correspond to log gains with similar values. a. Metabolite Log Gains of the Precursor block. b. Metabolite Log Gains 
of the Sphingolipid block. c. Metabolite Log Gains of the Glycerolipid block. d. Flux Log Gains of the Precursor block. e. Flux 
Log Gains of the Sphingolipid block. f. Flux Log Gains of the Glycerolipid block.
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ipids pathway. The fluxes through the IPC-g require phos-
phatidylinositol (PI), so that increases in enzymes that
generate PI might significantly affect the production of
complex sphingolipids, while enzymes that use PI in
other processes, like PI kinase, have the opposite effect.

3.2. – Metabolic Consequences of Changes in Gene 
Expression
Table 1 and Fig. 4 exhibit fold changes in metabolites that
were calculated to result from changing enzyme activities
according to DeRisi's microarray measurements. Where
available, specific activities were adjusted according to
reported values in the literature. For example, even
though its mRNA changes at later times, the specific activ-
ity of PI synthase is known to remain within a range of
10–20% around its normal value, independent of external
conditions ([36]: Fig. 2B and Table 2). It is to be expected
that such discrepancies are due to post-transcriptional
modifications. For published information of this type, we
therefore decided to override the microarray results. For
instance, we modified PI synthase levels only within a
10% range of its 11-hr value. At the same time, Homann

[36] reported values for CDP-DG synthase (X40) and PS
synthase (X38) that are consistent with the mRNA fold
changes in the microarrays and therefore did not require
adjustments.

Likewise, Table 4 presents fold changes in metabolites
computed from simulated enzyme variations, according
to the diauxic shift microarray time series [2]. These
results are similar to those presented in Table 1 obtained
under similar conditions with DeRisi's data. In fact, the
correlation coefficient between Tables 3 and 4 (r = 0.88)
is very similar to the value reported for replicate experi-
ments in DeRisi's complete dataset (r = 0.87) [1]. To con-
firm the similarity between Tables 3 and 4 further, we
performed a two-tailed Wilcoxon signed rank test, which
detected no significant difference between the corre-
sponding 22 dependent variables from both tables (p =
0.93). All of the above confirms that the two datasets are
consistent and that the model implementation is repro-
ducible.

3.3. – Sphingolipid Metabolism before and after the 
Diauxic Shift
DeRisi's microarray results, as they pertain to variables in
the model, are shown in Figs. 5, 6, and 7. They suggest that
there are two relatively distinct phases, namely from the
beginning of the experiment to time 17 hr (Phase 1, where
glucose is available in relatively high concentrations), and
time points 19 and 21 (Phase 2, where glucose is essen-
tially depleted) (see Fig. 2). During Phase 1, the variables
in the precursor block (Fig. 7) remain more or less close to
the baseline level, i.e., within a factor of 2, which used to
be considered the signal-to-noise threshold at the time
when DeRisi's data were obtained. During Phase 2, ACSp
and serine transport spike to 10- and 5-fold levels, respec-
tively. The situation is similar for the glycerolipid and
sphingolipid blocks (Figs. 5 and 6). During Phase 1,
essentially all sphingolipid enzymes remain within a two-
fold range, with the exception of phyto-ceramidase and
dihydro-ceramidase, which moderately increase during
the first phase and spike in Phase 2. Similarly in the glyc-
erolipid block, the variables in the precursor block remain
more or less close to the baseline level during Phase 1.
During Phase 2, three variables exceed the signal-to-noise
threshold with essentially the same fold increase of 2.3.
They are I-1-P synthase, PI synthase, and PI kinase. It
seems more than coincidence that these three out of
eleven enzymes are directly associated with the dynamics
of phosphatidyl inositol, the former two with its synthe-
sis, and the latter with its further metabolism.

Microarray results on the sphingolipid pathway, taken by
themselves, are difficult to interpret. However, applica-
tion of the current dynamic model facilitates an addi-
tional type of exploration. Under the assumption that

Selected fold changes in steady-state metabolite levels, according to the mathematical model, normalized with respect to metabolite values at 11 hrs (deduced from mRNA profiles in [1])Figure 4
Selected fold changes in steady-state metabolite levels, 
according to the mathematical model, normalized with 
respect to metabolite values at 11 hrs (deduced from mRNA 
profiles in [1]).
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most regulation is transcriptional, it is easy to adjust
enzyme activities in accordance with changes in mRNA
levels and to compute the corresponding metabolic pro-
files by letting the model reach steady state. The results of
this analysis are shown in Fig. 4. In Phase 1, when glucose
is relatively plentiful, the only metabolites that are signif-
icantly increased over baseline (at 11 hr) are C26-CoA and
Phosphatidylserine (PS). By and large, all other metabo-
lites are at or below the 11-hr baseline level. Between 17
and 19 hrs, some dramatic changes take place. Most
prominent are several-fold increases in the sphingoid
phosphates DHS-P and PHS-P. DHS, PHS, PA, and DAG
are also increased. Interestingly, C26-CoA becomes signif-
icantly depleted, while IPC increases four-fold.

Considering Figs. 4, 5, 6 and 7 simultaneously allows us
to piece together the dynamics of sphingolipid metabo-
lism during the diauxic shift. During Phase 1, C26-CoA is
produced faster than it is utilized. This is not accom-
plished with one or two high-gain enzymes that are

strongly up- or down-regulated, but through the coordi-
nated regulation of many enzyme activities that are
slightly increased or decreased. Initially Elo1p is up-regu-
lated, but quickly returns to its original level, so that it
alone cannot be responsible for the increase in C26-CoA
levels. Notably, all backbone sphingolipids and sphin-
goid phosphates are reduced in concentration, which
through the lyase reaction may lead to recycled palmitoyl-
CoA, which is subsequently converted into C26-CoA. One
could surmise that some important factor might be miss-
ing from the model, but even if that was the case, it would
yield no explanation, because the mathematical model
generates these higher levels of C26-CoA without addi-
tional input or manipulation. Further analysis of Figs. 4
and 5 suggests that sphingolipids are also utilized for
remodeling, via GPI anchor enzymes as the Gup1p (e.g.
[37]).

Of particular note is that serine transport is up-regulated.
At least part of this increase of serine seems to be utilized

Table 4: Steady-state-metabolite levels

FOLD CHANGE (normalized against 9.5 hr)

Abbreviation Symbol Value (mol%) 0 hr 9.5 hr 11.5 hr 13.5 hr 15.5 hr 18.5 hr 20.5 hr

KDHS X1 0.005 1 1 0.79 1.01 1.28 0.80 1.57
DHS X2 0.01 1.09 1 0.58 0.56 0.65 5.08 11.00
Dihydro-C X3 0.036 1.67 1 0.75 2.07 1.20 0.72 4.06
DHS-P X4 0.001 1.23 1 0.41 0.35 0.42 5.98 22.10
PHS X5 0.05 0.84 1 0.51 0.33 0.53 6.76 5.94
PHS-P X6 0.005 0.93 1 0.31 0.16 0.29 10.67 16.86
Phyto-C X7 0.052 0.87 1 0.50 0.51 0.54 0.24 0.94
IPC-g X8 0.102 2.03 1 0.05 0.58 0.76 0.002 3.41
CDP-DAG X9 5.4 1.19 1 0.45 0.70 0.97 0.77 3.18
PS X10 8.4 0.78 1 1.26 2.73 3.45 4.08 8.25
PA X11 3 1.08 1 0.82 1.48 2.14 2.46 5.16
Pal-CoA X12 0.01 (*) 0.99 1 0.96 1.17 1.14 0.94 1.30
Serine X13 2600 (*) 1 1 1 1 1 1 1
DAG X14 0.1 1.27 1 0.97 1.20 1.78 1.68 3.86
PI X15 16.7 1.05 1 0.58 0.76 1.16 0.36 1.77
Inositol X16 24.1 (*) 1 1 1 1 1 1 1
CDP-Eth X17 22 0.48 1 0.04 0.02 0.03 12.72 24.37
MIPC-g X18 0.14 1.58 1 0.36 1.23 1.09 0.05 1.83
M(IP)2C-g X19 0.0085 1.53 1 0.25 0.74 1.44 0.04 3.26
IPC-m X20 0.918 2.03 1 0.05 0.58 0.76 0.002 3.41
MIPC-m X21 1.26 1.58 1 0.36 1.23 1.09 0.05 1.83
M(IP)2C-m X22 0.0765 1.53 1 0.25 0.74 1.44 0.04 3.26
C26-CoA X23 0.5 0.87 1 3.60 3.62 2.57 0.07 0.03
Mal-CoA X24 183 (*) 1.03 1 0.35 0.47 0.31 0.84 10.52
Ac-CoA X25 870 (*) 1 1 1 1 1 1 1
Total IPC X8 + X20 1.02 2.03 1 0.05 0.58 0.76 0.002 3.41
Total MIPC X18 + X21 1.4 1.58 1 0.36 1.23 1.09 0.05 1.83
Total MIP2C X19 + X22 0.085 1.53 1 0.25 0.74 1.44 0.04 3.26
Total_Ceramide X3 + X7 0.088 1.20 1 0.60 1.15 0.81 0.44 2.21

(*) μM. Steady-state metabolite levels corresponding to published microarray results from the diauxic shift time course of Gash and Spellman [2]. 
Each case is represented as fold change of the value presented in Alvarez-Vasquez et al. [9]. "Zero" corresponds to quiescence.
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for the generation of PS as PS synthase is up-regulated,
along with PI synthase. On the other hand, and although
the SPT level/activity is unchanged, a recent study from
our group showed that increased serine influx drives flux
through the sphingolipid pathway [33]. These results are
in direct accordance with our LG analysis that revealed
serine transport with the second highest value after the de
novo palmitoyl-CoA production (Figs. 3a,d). It is also pos-
sible that PI is used for the creation of IPC, which however
is immediately converted into complex sphingolipids.
This connection is indirectly supported by earlier model
simulations, in which an external inositol bolus led to
decreases in ceramide levels and increases in the complex
sphingolipids [9].

During Phase 2, drastic changes occur. Both ACSp and ser-
ine transport are strongly up-regulated, along with
enzymes that shift production to sphingoid phosphates
(Fig. 6). These may function as signaling agents that regu-
late/affect the genomic response to substrate depletion.
Of note is that the shift toward sphingoid phosphates is
not accomplished through up-regulation of the high-gain

enzyme SPT (see Fig. 3b), which is often seen as the rate
determining step of sphingolipid metabolism. Instead,
low-gain ceramidases are increased in activity, along with
lesser increases in sphingoid base kinase, while ceramide
synthase is decreased. Thus, the coordinated action of
these enzymes explains the increase in the sphingoid base
phosphates. Also, Elo1p is reduced, which causes the for-
merly high C26-CoA levels to be used up, and IPC jumps
from low amounts to four-fold over baseline. According
to the gain profile, the loss in Elo1p activity also further
increases the sphingoid phosphate levels. Concomitant
with the jump in IPC, MIPC synthase and M(IP)2C syn-
thase are also up-regulated, suggesting utilization of
remaining sphingolipids in membrane material.

Overall, the cell seems to use a mixture of high-gain vari-
ables, including serine transport (with positive LG) and
SHMT (with negative LG), and low-gain variables, such as
ceramidases, to mount the sphingolipid responses to glu-
cose depletion. ACSp, which has a very strong negative
gain on sphingoid phosphates, is strongly up-regulated in
Phase 2. One can only speculate that the effects of this up-

Fold change variation in mRNA levels at 9, 13, 15, 17, 19, and 21 hrs, normalized with respect to values during the expo-nential growth phase (11 hrs) [1]Figure 6
Fold change variation in mRNA levels at 9, 13, 15, 17, 19, and 
21 hrs, normalized with respect to values during the expo-
nential growth phase (11 hrs) [1]. Sphingolipid block.
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SB-Ppase, X41 1.20 1.28 1.13 1.04 1.14 0.69
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M(IP)2C Synthase, X55 0.88 1.30 0.84 0.74 1.30 0.91

SPT, X57 0.95 1.13 0.86 0.85 0.86 0.99

ELO1p, X59 0.98 1.45 1.01 1.16 0.68 0.36

IPCase-Dihydro formation, X64 0.81 1.17 0.75 0.66 1.11 1.08
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Fold change variation in mRNA levels at 9, 13, 15, 17, 19, and 21 hrs, normalized with respect to values during the expo-nential growth phase (11 hrs) [1]Figure 5
Fold change variation in mRNA levels at 9, 13, 15, 17, 19, and 
21 hrs, normalized with respect to values during the expo-
nential growth phase (11 hrs) [1]. Glycerolipid block.
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regulation may be compensated by a lack of substrates for
this reaction.

3.4. Validation Experiments
In a de novo experiment, subsequent to the model predic-
tions, wild type sphingolipid levels were determined after

6 and 24 hours of growth, representing two clearly
defined pre- and post- diauxic time points (Table 5). The
fold-change results (last column of Table 5) show general
qualitative concordance with the simulations from Tables
3 and 4 at 21 and 20.5 hr, respectively, and the predicted
increase in most lipid levels after the diauxic shift corre-
sponds with the experimental data.

There is a large quantitative difference for DHS (X2) and
especially DHS-P (X4) in the experimental data vs. the
major increases shown for those metabolites in the simu-
lations. This disparity may result from the difference in
strains and growth media in our experiments and those of
DeRisi et al. [1] and Gasch et al. [2]. Another possibility is
the need to include in the model the exogenous trafficking
of sphingoid bases that potentially contribute to their lev-
els, as well as the levels of the sphingoid base phosphates
(cf. [27,38-41]).

4. – Discussion
The results from this study advance the development,
analysis, and utility of a previous mathematical model for
sphingolipid metabolism in yeast. The model was further
refined with minor modifications encompassing the
inclusion of enzymes for PI degradation, serine import,
and GPI remodeling, and adjustments to ceramide syn-
thase fluxes based on experimental data (see Appendix).
LG analysis was conducted, and this provided further
insight into the model and into the structure of the sphin-
golipid pathway in yeast. Finally, the model was applied
to data extracted from the literature on changes in
enzymes of sphingolipid metabolism, and this allowed
for specific and novel insights into sphingolipid metabo-
lism in during the diauxic shift. This use of a mathemati-
cal model, coupled with the integration of data from
several sources, promises to have applicability beyond the
system discussed here.

Table 5: Experimental data before and after the diauxic shift

[pmole/total sample]/total lipid phosphate
6 hr 24 hr Fold change 24 hr/6 hr

A B A B

OD 600 nm 0.34 0.35 2.31 2.19
DHS X2 0.45 0.40 1.44 1.49 3.44
Dihydro-C X3 0.06 0.05 0.14 0.14 2.64
DHS-P X4 0.04 0.04 0.06 0.05 1.24
PHS X5 0.90 0.71 2.32 1.78 2.55
PHS-P X6 0.02 0.02 0.37 0.30 17.83
Phyto-C X7 7.80 7.38 9.20 8.05 1.14

Sphingolipid metabolite levels for wild type strain BY4742 at 6 and 24 hours. The right hand column shows the average fold change for each hour. A 
and B correspond to two independent experiments. See the material and methods secction for details.

Fold change variation in mRNA levels at 9, 13, 15, 17, 19, and 21 hrs, normalized with respect to values during the expo-nential growth phase (11 hrs) [1]Figure 7
Fold change variation in mRNA levels at 9, 13, 15, 17, 19, and 
21 hrs, normalized with respect to values during the expo-
nential growth phase (11 hrs) [1]. Precursor block.
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Transp. / Palmitoyl CoA
Synthase, X30

1.06 1.09 1.09 1.07 0.93 0.95

P-Serine-Ppase, X31 0.81 1.29 0.74 0.63 0.61 0.58

SHMT, X32 0.88 1.49 0.97 1.93 0.43 0.31

ACBP, X48 1.12 1.00 0.81 0.80 0.83 0.40

FAS, X52 0.98 0.92 0.84 0.71 0.76 0.71

ACCp, X60 0.98 0.91 0.77 0.71 0.62 0.75

ACSp, X63 0.88 0.98 0.74 0.69 1.42 9.98

Serine Transp., X65 0.70 2.05 1.43 1.19 3.59 4.62

9 hr 13 hr 15 hr 17 hr 19 hr 21 hr
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4.1. – Log Gains
LG analysis revealed several clusters of high LG. These
were not randomly distributed throughout the pathway
but showed very distinct patterns that allowed specific
diagnostics. In general, the flux and metabolite LG analy-
ses suggest that enzymes and metabolites of de novo fatty
acid synthesis (Elo1p, acetyl-CoA carboxylase, CoA, ace-
tate, acetyl-CoA synthetase), ATP, and the serine
hydroxymethyl transferase have the strongest effect on the
sphingolipid backbone metabolites (Fig. 3).

The second block consisted of relatively high gains that
are presumably real, demonstrating that the sphingolipid
signaling pathway has the capacity to amplify specific
inputs. This cluster of high-gain dependent variables con-
sists of dihydrosphingosine, dihydrosphingosine 1-phos-
phate, phytosphingosine, phytosphingosine 1-phosphate
and inositol phosphorylceramide, which show moderate
to strong responses to changes in a number of enzyme
activities (Fig. 3).

Other high gains appeared to be modeling artifacts. These
were associated with acetyl-CoA, whose gains in some
cases reached up to 200 (Fig. 3a), as well as the model
inputs, serine, glucose 6-phosphate, cytidine-diphosphate
ethanolamine (CDP-Eth) and inositol (log gains of the
last three are not shown) which exhibited less dramatic
gains that nonetheless were much higher than one would
normally expect in a metabolic pathway. In fact, the
metabolites associated with these gains are very prevalent
and involved in numerous pathways. However, in the
model they appear only as part of the model input, and
their dynamics is controlled entirely by a handful of vari-
ables, which in the global picture of an entire cell consti-
tute but one aspect of their metabolism (see Fig. 1). While
the gains suggest that these variables at the "fringes" of the
model are not adequately represented, the initial model
was designed to capture the dynamics of sphingolipids,
and keeping the input variables relatively close to their
baseline levels, the observed responses in other variables
were not unreasonably affected by the high gains. None-
theless, because fatty acids and serine play critical roles for
the dynamics of sphingolipids [33,34], we found it useful
to expand the original model by including external serine,
specific components of fatty acid synthesis, phospholi-
pase B, and the remodeling enzyme Gup1p that, together
with the sphingosine-phosphate lyase reaction, are the
two ultimate exit routes out of the system, and to revisit
sensitivity and gain profiles characterizing crucial nodes
in the model.

Taken together, coupling established LG analysis with
biochemical insights begins to define at least one subset
of parameters that stand out as being of potential signifi-
cance. This type of analysis should aid the experimentalist

in focusing on these more significant pathway compo-
nents (enzymes and/or metabolites) for further study.

4.2. – Changes During the Diauxic Shift: a paradigm for 
pathway analysis through mining databases and applying 
mathematical analysis
Several key features emerged from the calculated changes
in sphingolipids during the diauxic shift.

First, significant increases were predicted in complex
sphingolipids. The diauxic shift demands increases in
membrane lipids, which may be explained in part by a
sudden increase in density of immature daughter yeast
cells occurring during the late exponential growing phase
[42]. The increases in IPC, MIPC, and MIP2C in the post
diauxic phase are consistent with this requirement (Table
1 and Fig. 4).

A possible explanation for the drastic decrease in complex
sphingolipids seen at 19 hr is the decrease in the levels of
PI (Table 1 and Fig. 4). This close link between complex
sphingolipids and PI is expected based on the effect that
inositol and PI have on ceramide levels [9].

Second, significant increases were observed in LCB's and
LCBP's at 19 and 21 hrs (Tables 1, 4 and Fig. 4), which
reflect the integrated response of a group of synergistically
functioning enzymes and suggest functional importance
for these lipids. These model results are in close agreement
with the published experimental results of Lanterman and
Saba [43] who observed a sharp increase in sphingoid
base 1-phosphates during the diauxic shift. Moreover, an
increase in sphingosine kinase (Fig. 6) at the diauxic shift
was reported by Dickson and co-workers [27] who also
suggested that its products PHSP and DHSP may have a
physiological role in the diauxic shift or the stationary
phase that follows this cellular event.

Serine Palmitoyl Transferase. Even though the LCB 1/2
mRNA levels increase at the diauxic shift by only 20%
with respect to their 11 hr values, the KM's of SPT with
respect to serine and palmitoyl-CoA are close to the cell
levels of these metabolites, and therefore the concentra-
tions of the substrates exert an important effect on the
overall flux throughout the sphingolipid pathway.

The increases in ceramidase at later times contribute sig-
nificantly to the sphingoid backbones and sphingoid
phosphates at the expense of the levels of ceramide. By
contrast, the three ELO's mRNA levels decreased at later
times [1]. In the model these three mRNA's were consid-
ered collectively and weighted by decreasing the Elo1p
(X59) by a 32% and 64% at 19 and 21 hrs respectively.
This decrease exerted great influence on the metabolomic
profile because Elo1p shows one of the highest LGs
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reported (Fig. 1 and Fig. 3b). The concomitant decrease of
the three ELO's suggests a coordinate regulation of the
long and very long chain ceramides.

Because the IPCase activity in the model increased only
slightly right after the diauxic shift (Fig. 6), it is probable
that the observed increase in dihydroceramide at 21 hr
(Table 1 and Fig. 4) is mainly caused by the de novo path-
way. Indeed, when one compares the phytoceramide lev-
els at 9 and 21 hrs, one finds an increase of 20% (Fig. 4),
which is in line with observations of Vaena de Avalos et al.
([44]: Fig, 5), who showed that phytoceramide increases
about 40% in wild type cells between early-log phase and
after the diauxic shift.

In accordance with the mRNA levels of DPL1 pre and post
diauxic shift, the breakdown of sphingoid phosphates
through lyase (X50) increased 45% at 19 hr and returned
to the basal values at 21 hr (Fig. 6). This creates an effec-
tive bottleneck for the LCBPs formed at later times and
contributes to the accumulation of LCBs and LCBPs
(Table 1 and Fig. 4).

LCB4 and LCB3 also contribute to the rise in LCBPs at the
expense of the LCB's. LCB4, coding for one of the two
sphingosine base kinases (X36), increased 100% at 19 hr.
On the other hand, mRNA of LCB3, which codes for one
of the sphingoid base phosphate phosphatases (X41)
decreased 40% from pre to post diauxic shift.

Other notable changes are those in RSB1, a suggested ATP
dependent flippase or transporter for LCBs which may cat-
alyze LCB movement from the inner to the outer leaflet of
the plasma membrane [40]. In the post diauxic phase, the
mRNA level of RSB1 increased four fold with respect to its
value at the early exponential phase, suggesting a require-
ment for increased plasma membrane LCBs translocation.

Svf1p was recently shown to be involved in the regulation
of sphingoid bases and their phosphates [45]. Ypk1p is a
kinase similarly involved in mediating the action of
sphingoid bases [46]. Interestingly, both genes were
recently associated with the regulation of the transient
growth arrest observed at the diauxic shift [45]. Because
we predict an increase in sphingoid bases at later times
(Fig. 4) and because high levels of LCBs are toxic to wild
type cells [47], the decrease in post diauxic mRNA levels
for SVF1 and YPK1 to about 50% [1], could possibly serve
to regulate metabolism and function of LCBs.

Third, there are many possible relationships between the
changes in enzymes of sphingolipid metabolism and cal-
cium homoestasis. According to Birchwood et al. [48], the
accumulation of intracellular sphingoid base phosphates
after the diauxic shift might serve as a regulator of calcium

signaling. Analyzing the mRNA database for genes related
to Ca+2 influx, such as BNI1, FAR1, MID1, and CRZ1
[48,49], we noticed that these decrease at the diauxic shift.
Also increases in the mRNA for PMC1 (a gene that codes
for vacuolar Ca2+-ATPase) suggest the tendency to main-
tain a low cytoplasmatic Ca2+ level at this cellular
moment.

Fourth, the model predicts some notable changes in glyc-
erolipids, which increase at later times. It is important to
remark here that the glycerolipids represented in the
model are restricted to the metabolites directly related
with the sphingolipid pathway and that not all routes
involved in glycerolipid metabolism are included. For
example, the cardiolipin pathway is not included in the
model. This route becomes important when the cell needs
to increase the mitochondrial biomass after the diauxic
shift. In fact the deletion of the phosphatidylglycerophos-
phate synthase, the first and rate limiting enzyme of the
cardiolipin pathway, is not essential to cell viability but
causes growth dependence on fermentable carbon sources
because of mitochondrial dysfunction [50]. Pilot simula-
tions (not shown) of variations in phosphatidylglycero-
phosphate synthase show only small effects on the global
metabolic system.

Table 1 shows that, in general, the glycerolipid metabo-
lites increase after the diauxic shift. Specifically, they drive
the flux mainly through PS production at the expense of
PI production [50]. At the diauxic shift, PA accumulation
occurs in part due to a 40% decrease in CDP-DAG syn-
thase activity with respect to its 11 hr value (Fig. 5). In
light of the reported effects of inositol on ceramide levels
[9] and on the glycerolipid pathway [51], we are led to
suggest that this regulation is another important contribu-
tion to formation of complex sphingolipids, especially at
later times (e.g., the 19 hr time point).

Table 5 shows a qualitative concordance between experi-
mental data and the simulations at well defined cellular
moments, which indicates that the simulations and
microarray implementation are reasonable. The experi-
mental data suggest future fine tuning of the model to
include a route for trafficking of the sphingoid bases and
their phosphates to and from the cell.

In conclusion, the computational study presented here
suggests that the coordination of sphingolipid involve-
ment in the diauxic shift in yeast is achieved through mul-
tiple small modifications of functional clusters of mRNAs
rather than through large alterations in just a few "key"
genes or metabolic steps. In most cases, the variations in
mRNA expression are less than 2-fold, which implies that
expression studies have to achieve a level of relatively high
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accuracy, if they are to detect subtle, coordinated control
mechanisms.

The combined approaches of this study may also repre-
sent an important new paradigm in metabolomic studies
whereby mathematical modeling of metabolic pathways
is employed to mine and analyze gene expression studies.
Given the rapidly increasing accumulation of microarray-
based gene expression datasets, such an approach may
result in very important insights into the changes, behav-
ior, and possibly function of specific metabolic pathways.
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Appendix
A.1 – Modifications of the published model
The model of Alvarez-Vasquez et al. [8,9] is based on the
metabolic pathway structure shown in Fig. 1 and mathe-
matically represented as a Generalized Mass Action
(GMA) model within Biochemical Systems Theory (e.g.,
[52-54]). In this formulation, all chemical conversions,
enzyme catalyzed reactions and transport processes are
described as products of power-law functions that contain
those and only those metabolites, enzymes and other fac-
tors that directly affect this process. The processes are col-
lected to form a system of ordinary differential equations.
The original model was slightly refined here to account for
information that emerged as more important than was
assumed in the design of the original model.

A.1.1
Enzyme Plb3p, which catalyzes the degradation of phos-
phatidylinositol (PI), was added to the collection of proc-
esses metabolizing PI. Merkel et al. [55] reported that
deletion of this enzyme reduces PI breakdown by 50%.

A.1.2
Gup1p was included explicitly as a representative enzyme
for GPI remodeling. In the original model, the independ-
ent variable responsible for driving the phytoceramide
flux toward GPI remodeling (X43) was not associated with
a specific enzyme. Recently, Bosson et al. [37] identified
Gup1p as a key enzyme involved in the incorporation of
PHS-C26:0 and PHS-C26:0-OH ceramide into the anchor
for GPI remodeling.

A.1.3
Serine transport was explicitly incorporated. Research in
our lab has identified this variable as very important in
the control of flux through the sphingolipid pathway [33].

Many permeases are known to play a role in serine trans-
port. We chose the polyamine permease AGP2p as repre-
sentative of serine import because it plays an important
role in amino acid transport [56], with mRNA levels
changing significantly during the diauxic shift.

A.1.4
The quantification of ceramide synthase fluxes was fine-
tuned. i.e experiments performed by the Lipidomics Core
of our research group suggest that an external inositol
bolus causes the concentration of phytoceramide to
decrease more strongly than that of dihydroceramide
(data not shown). This result was implemented as a
numerical alteration of the former ceramide synthase
fluxes in this model.

A.2 – Definitions of Logarithmic Gains (LG)
To simplify the assessment of LG terms, the model was
implemented as an S-system by aggregating all influxes
and effluxes for each time-dependent variable into a sin-
gle power-law term each (e.g., [52-54]). This procedure is
legitimate, because gains and sensitivities are computed at
the steady state, where the GMA and S-system models are
equivalent. Beyond the steady state, we showed in Alva-
rez-Vasquez et al. [8] that alternative formulations of the
sphingolipid pathway (including Michaelis-Menten, S-
system, and GMA models) yield essentially equivalent
responses.

Logarithmic gains come in two varieties. Each metabolite
LG is defined as the ratio of the percent change in a
dependent variable (typically a metabolite concentration)
Xi to the percent change in an independent variable (typi-
cally an input, enzyme activity or transport step) Xk, while
all other independent concentrations and parameters are
held constant. It is thus defined as

where the subscript 0 refers to the chosen operating point,
which usually coincides with the steady state.

In an analogous fashion, a flux LG is defined as:

where Vi represents a given (aggregated) flux, and Xk and
the subscript 0 are defined as before.
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A.3 – Assumptions Underlying the Translation of Gene 
Expression into Metabolic Changes
The conversion of gene expression profiles into changes in
enzyme activities (cf. [5-7]) relies on the following
assumptions.

A.3.1
The direct proportionality between a change in mRNA
level and the corresponding enzymatic activity presup-
poses strictly transcriptional regulation, while posttransla-
tional modifications are ignored. There is circumstantial
evidence suggesting that this assumption is quite realistic
in the case of heat stress responses in yeast.

A.3.2
It is assumed that the mathematical model [8,9] accu-
rately describes sphingolipid metabolism at the 11 hr
time point in DeRisi's dataset and the 9.5 hr time point in
Gasch's dataset. These time points were chosen because
they fall within the exponential growth phase, for which
most of the data for our model design were obtained. It is
similarly assumed that the model structure, with adjusted
enzyme activities, captures the dynamics of sphingolipid
metabolism with sufficient accuracy over the time span in
DeRisi's and Gasch's datasets.

A.3.3
It is assumed that the values of internal serine (X13), inosi-
tol (X16), and acetyl-CoA (X25) do not change significantly
between the time points of analysis. The rationale for this
assumption is that these metabolites are involved in very
many cellular processes that are not adequately repre-
sented in the model. Thus, while they are buffered in real-
ity by a slew of metabolic processes, the model does not
allow for such buffering, because peripheral reactions and
pathways outside sphingolipid metabolism are not mod-
eled. In fact, experimental results from our lab (A. Cowart,
pers. comm.) suggest that internal serine is maintained
close to its baseline concentration of 2.6 mM throughout
the diauxic shift. The production of inositol depends
directly on G-6-P through catalysis mediated by I-1-P syn-
thase. However, G-6-P is not comprehensively modeled
because, for instance, utilization for trehalose or pentose
production is not included in the model. Because the
branch point at G-6-P is highly regulated and we do not
have specific information on changes in inositol concen-
trations in vivo, we consider inositol as constant by
default.

Acetyl-CoA is increasingly notably at the diauxic shift [32]
because it is required for the tricarboxilic acid and glyoxy-
late cycles and enhances respiration. However, like G-6-P,
acetyl-CoA is involved in many processes that are not cap-
tured by the model, thereby causing inconsistencies in
some simulations (not shown). Our default is therefore to

keep this variable constant, assuming that the effective
acetyl-CoA flux into the sphingolipid and glycerolipid
pathways is tightly regulated within a narrow range; in fact
FAS (X52) and ACCp (X60) mRNA's are down-regulated at
the diauxic shift, thereby probably affecting the acetyl-
CoA influx (Fig. 7).

A.3.4
The steady states obtained for each new mRNA profile
were obtained with a model where all fluxes are balanced,
while the previous model contained some unbalanced
fluxes among the complex sphingolipids, reflecting the
need for membrane in the exponentially growing culture
[9].
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