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Background
This paper is intended to be read along with a working
copy of the EpiFlex software, (see Additional file 1). It

Abstract

Background: EpiFlex is a flexible, easy to use computer model for a single computer, intended to
be operated by one user who need not be an expert. Its purpose is to study in-silico the epidemic
behavior of a wide variety of diseases, both known and theoretical, by simulating their spread at
the level of individuals contracting and infecting others. To understand the system fully, this paper
must be read together in conjunction with study of the software and its results. EpiFlex is evaluated
using results from modeling influenza A epidemics and comparing them with a variety of field data
sources and other types of modeling.

EpiFlex is an object-oriented Monte Carlo system, allocating entities to correspond to individuals,
disease vectors, diseases, and the locations that hosts may inhabit. EpiFlex defines eight different
contact types available for a disease. Contacts occur inside locations within the model. Populations
are composed of demographic groups, each of which has a cycle of movement between locations.
Within locations, superspreading is defined by skewing of contact distributions.

Results: EpiFlex indicates three phenomena of interest for public health: (1) Ry is variable, and the
smaller the population, the larger the infected fraction within that population will be; (2) significant
compression/synchronization between cities by a factor of roughly 2 occurs between the early
incubation phase of a multi-city epidemic and the major manifestation phase; (3) if better true
morbidity data were available, more asymptomatic hosts would be seen to spread disease than we
currently believe is the case for influenza. These results suggest that field research to study such
phenomena, while expensive, should be worthwhile.

Conclusion: Since EpiFlex shows all stages of disease progression, detailed insight into the
progress of epidemics is possible. EpiFlex shows the characteristic multimodality and apparently
random variation characteristic of real world data, but does so as an emergent property of a
carefully constructed model of disease dynamics and is not simply a stochastic system. EpiFlex can
provide a better understanding of infectious diseases and strategies for response.

describes the context of the work, an overview of the sys-
tem design, a discussion of certain primary mechanisms,
and examples of observations made using the system. Epi-
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Flex was designed to be as easy to use as possible and is
intended to be usable by non-experts, though experts
would be expected to gain greater insight and understand-
ing from it. Much of what it presents requires significant
study and preliminary training before it can be used effec-
tively and understood. EpiFlex can be an effective aid to
teaching. Availability of source code can be discussed on
a case by case basis with the author. Such collaborators are
desired. Epiflex is written in C++ for Windows platform at
this time.

Context of this work

This work is related to several threads within modeling
and simulation. Giro et al. [1] proposed detailed discrete
modeling of ecosystems; Ginovart et al. [2] developed
INDISIM, a discrete simulation of bacterial colonies;
Eubank et al. [3] and Barret et al. [4] discuss EpiSims-
related work [5]. EpiSims is a Los Alamos project for dis-
crete modeling of epidemics in cities, starting with Port-
land, Oregon. It was developed in relationship to the
TRANSIM model for understanding movements of people
in cities. According to press releases, there is similar work
at Emory University aimed at developing a model of dis-
ease in hypothetical American communities of 2,000 to
48,000 people [6]. Johns Hopkins University has a pro-
gram that has been funded to accomplish similar goals
[7]- A number of authors including Schinazi [8], Aparicio
et al. [9] and others [10,11] have explored clustering in
the real world and its relevance to the spread of disease, as
well as theoretical models. EpiFlex has modeled commu-
nities with multiple demographics linked by transport
corridors for population sizes up to 3.5 million. This is
not the limit; large models can be quite slow to execute,
but EpiFlex can be scaled up given enough computing
resources. This will happen to some degree as Moore's law
provides faster computers with more memory. Addition-
ally, the internal architecture of EpiFlex was designed with
parallelization of modules in mind, so it should be fairly
straightforward to do modify given resources. However,
some of the more interesting results are obtained from
lower order population sizes where "small world net-
works" [11,12] can have interesting impacts, and models
can show differences in morbidity linked to population
size. Watts has criticized mathematical models as inade-
quate to show real world variation in epidemics [13].

Discussion of R,

The most commonly used measure in public health, R, is
estimated from historical data and derived from SIS/SIR
type models (and descendents) for forward projec-
tion[14,15] R, is the basic reproductive ratio for how
many individuals each infected person is going to
infect[16] R, is often used on its own in public health as
an indicator of epidemic probability; if R, < 1 then an epi-
demic is not generally considered possible, for Ry > 1, the
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larger the value, the more likely an epidemic is to occur.
R, is a composite value describing the behavior of an
infectious agent. Hence, R, can be decomposed classically,
for example, as: p d ¢, where p is probability of infection
occurring for a contact, d is duration of infectiousness,
and c is number of contacts[17].

However, R, in the classical decomposition above, while
itis one of the best tools we have, does not account for age
segregation of response, existing immunity in population,
network topology of infectious contacts and other factors.
These observations were significant in the motivation for
developing EpiFlex.

Design of EpiFlex

The EpiFlex model was designed to create a system that
could incorporate as much realism as possible in an epi-
demic model so as to enable emerging disease events to be
simulated. There are limitations, described below in a sep-
arate section, but the model is quite effective as it stands.
In most cases, the limitations of EpiFlex are shared by
other modeling systems.

There are a variety of methods used for mathematical
modeling of diseases. The most common of these are the
SIR (susceptible, infected, recovered) of Kermack and
McKendrick [15], SIS (susceptible, infected, susceptible),
SEIR (susceptible, exposed, infected, recovered), and SIRP
(susceptible, infected, recovered, partially immune) as
developed by Hyman et al. [18] and further developed by
Hyman and LaForce[19]. The SIRP model was used as the
starting point for development of the object model of Epi-
Flex. In SIRP, the SIR model is extended to include partial
immunity (denoted by P) and the progressive decline of
partial immunity to allow influenza to be modeled more
accurately. (See Appendix.)

There is a need for experimentation in more realistic dis-
crete modeling, since the lattice type of discrete modeling
is understood to skew in favor of propagation, as dis-
cussed by Rhodes and Anderson [20] and Haraguchi and
Sasaki [21]. Others such as Eames and Keeling [22] and
Edmunds et al. [12] have explored the use of networks to
model interactions between infectable entities, and Fergu-
son et al. [23] and others have called for more balance in
realism for epidemiology models. Since EpiFlex was com-
pleted, Lloyd-Smith et al. [17] have shown the importance
of superspreading in disease transmission for the SARS
epidemic. EpiFlex is designed to take these issues into
account.

There are known weaknesses in SIS-descended models,
some of which are discussed by Hyman and LaForce [14].
They suggested that a model dealing with demographics
and their subgroups would be useful and described a start
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toward conceiving such a model, creating a matrix of SIRP
flows for each demographic group within a "city" and
modeling contacts between these groups. Thus, the possi-
bility of building an entirely discrete model using the
object-oriented approach, essentially setting the granular-
ity of the Hyman-LaForce concept at the level of the indi-
vidual, together with Monte Carlo method, was attractive.
The object method of design seemed to be a good fit, since
object-oriented programming was invented for discrete
simulations [24]. An Object-Oriented (OO) design
defines as its primitive elements "black box" subunits that
have defined ways of interacting with each other [25].

The OO language concept originally was conceived for the
Simula languages [24] for the purpose of verifiable simu-
lation. Enforcement of explicit connections between
objects is fundamental to OO design, whereas procedural
languages such as FORTRAN and COBOL do not because
data areas can be freely accessed by the whole program.
OO languages wrap data in methods for accessing the
data. If each "black box" (i.e. object) has a set of specified
behaviors, without the possibility of invisible, unnoticed
interactions between them, then the simulation can
potentially be validated by logical proof in addition to
testing. (It would take an entire course to introduce OO
languages and concepts, and there is not space to do so
here. Interested readers are suggested to start with an
implementation of Smalltalk. There are excellent free ver-
sions downloadable. Smalltalk also has an enthusiastic
and quite friendly user community. See: http://

www.smalltalk.org/main/.)

Models and methods

The design of EpiFlex is described more completely in the
appendix. Design proceeded by establishing the defini-
tion of a disease organism as the cornerstone, then defin-
ing practical structures and objects for simulating the
movement of a disease through populations. The disease
object was assigned a set of definitions drawn from litera-
ture that would allow a wide spectrum of disease-produc-
ing organisms to be specified. The aim was to minimize
the number of configuration parameters that require
understanding of mathematical models.

The hosts that are infected became the second primary
object. A host lives and works in some area, where hosts
are members of some demographic group, which
together determine what of n types of contacts they might
have to spread an infectious disease. The hosts move
about the area in which they live between locations at
which they interact. In EpiFlex, an area contains some
configured number of locations, and locations are con-
tainers for temporary groups of hosts. Since people travel
between metro areas, the model supports linkages
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between areas to move people randomly drawn from a
configurable set of demographic groups.

The remainder of this section presents the disease model
adopted, an overview of each component, an overview of
program flow, and a description of the core methods. This
is followed by discussion of results from the EpiFlex soft-
ware system.

Disease model

This model has up to four stages during the infection
cycle: the Incubation, Prodromal, Manifestation, and
Chronic stages; to this is added a fatality phase. I have
named this 'extended-SIRP". Fig. 1 shows a diagram of this
model.

The model of Fig. 1 allows us to track the different phases
of the disease process separately, and to define variable
infectiousness, symptoms, fatality, recovery and transition
to chronic disease at each stage as appropriate. This allows
us to model the progress of a disease in an individual
more realistically. For diseases that have no identifiable
occurrence of a particular stage, this stage can be set to
length zero to bypass it entirely.

Contact types in disease model

The 8 contact types designed into EpiFlex are drawn from
literature in an attempt to model spread of infection more
accurately. These contact types are: blood contact by nee-
dle stick, blood to mucosal contact, sexual intercourse,
skin contact, close airborne, casual airborne, surface to
hand to mucosa, and food contact. The probability of
infection for a contact type is input by the user as esti-
mated from literature or based on hypothetical organism
characteristics.

Monte Carlo inputs to disease model

Durations of disease stages are chosen uniformly at ran-
dom from a user-specified interval [Ry,, Rp;gn]. Random
numbers, denoted by &, on [0, 1] are used to seed the
determination of the infected disease stage periods
(denOted Ilncubation' IProdromal’ IManifestation' IChronic)' Rlow and
Ryign are taken from medical literature and describe a
range of days for each stage of an illness. These calcula-
tions are simply: (& x (Rpigh - Riow)) + Rigw = D, where D
is days for a particular stage. (This may be extended in the
future to include ability to define a graph to determine the
flatness of distribution and the normative peak. This will
make a significant difference in modeling of diseases such
as rabies, which can, under unusual circumstances, have
very long incubations.)

One of the following three equations describing immu-
nity decay is chosen; L is the current level of partial immu-
nity, P is the level of partial immunity specified as existing
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I Manifestation

Extended-SIRP disease model of Epiflex. S: susceptible I: Infected R: recovered P: partially immune F: fatality Extended SIRP

breaks the infected stage l'into 4: Ilncubation’ IProdromal’ IManifestacion’ IChronic’

and adds a fatality terminating stage.

immediately following recovery, A is number of days since
recovery, D is the duration in days of the partial immunity
stage, and C is a constant chosen by the user to describe
the shape of the asymptotic curve in choice 3.

1. if (Equation = No Decline) then L = P
2. if (Equation = Linear Decline) then L = P x A/D

3. if (Equation = Asymptotic Decline) then L=P (1 - (1
- (A/D) ©)

When L <0 then L = 0.

Random values on [0, 1] are then used to decide whether
an infection occurs during the partial immunity phase P
shown in the chart above. This decision uses the output of
the immunity level algorithm, L, which is a number on [0,
1], as is the random value &:

if (¢ > L) then infection has occurred.

Location contact distributions for infection modeling

EpiFlex uses a dynamic network to model the interactions
between hosts at a particular location based on the skew
provided and the demographic segments movement
cycles. The networks of contacts generated in this version
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of EpiFlex are not made visible externally; they can only
be observed in their effects. (See: Limitations of EpiFlex
modeling.) Their algorithms were carefully designed and
tested at small scales, observing each element.

A location describes a place, the activities that occur there,
and the demographic groups that may be drawn there
automatically. A location can have a certain number of
cells, which are used to specify N identically behaving
locations concurrently. This acts as a location repetition
count within an area when the location is defined. The
user sets an average number of hosts inhabiting each cell,
and a maximum. There is also a cell exchange fraction
specifiable to model hosts moving from cell to cell. The
algorithm for allocating hosts in cells is semi-random. It
randomly puts hosts into cells in the location. If a cell hits
the average, then it does another random draw of a cell. If
all locations are at maximum, then it overloads cells.

Interactions are within the cell. So a host must be
exchanged to another cell in order to be infective. See the
appendix for 'Location component', and also with an
open model look at how hospitals were defined. House-
holds are modeled at this time using a cell configuration.

Monte Carlo algorithm

EpiFlex is implemented with a Monte Carlo algorithm
such that each host in a location is assigned a certain
number of interactions according to the Cauchy distribu-
tion parameter setting for that location. This distribution
describes a curve with the y axis specifying the fraction of
the maximum interactions for the location and x axis
specifying the fractional ordinal within the list of hosts in
the location. The distribution can be made nearly flat, or
severely skewed with only a few actors providing nearly all
contacts, as desired by the user of EpiFlex. Note that the
structure of the network formed also depends on what
locations are defined, what demographic groups are
defined for the population, and how demographic groups
are moved between locations. Each location has a maxi-
mum number of interactions specified per person, which
is used as the base input. Initially, a Gaussian equation
was used, but it was discarded in favor of a Cauchy func-
tion since this better fits the needs of the skew function
and computes faster. The algorithm iterates for each infec-
tious host, and selects other hosts to expose to the infected
party in the location, by a Monte Carlo function. This
results in a dynamically allocated network of interactions
within each location.

Exposure cycle

The exposure cycle also makes use of Monte Carlo inputs.
Each location has a list of contact types that can take place
at a particular location, and a maximum frequency of
interactions. This interaction frequency determines how
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many times contacts that can spread a disease will be
made, and the contact specification defines the fractional
efficacy of infection by any specific route. Modeling the
effect of different types of contacts has been discussed in
the literature, e.g. Song et al. [26]. EpiFlex attempts to
make a more generalized version.

For each host infection source, target hosts are drawn at
random from the location queue. A contact connection is
established with the target as long as the contact alloca-
tion of that target has not been used up already. Contact
connections made to each target are kept track of within
the location to prevent over-allocation of contacts to any
target. Thus, for each randomly established connection, a
value is set on both ends for the maximum number of
connections that can be supported. Once the maximum
for either end of the link is reached, the algorithm will
search for a different connection.

Cauchy distribution

The location algorithm is described below in more detail.
The user specifies the maximum number of connections
for a location; the ¢ output from a Cauchy distribution
function determines how many connections an individ-
ual will have. This allows variations in the degree of skew-
ness for superspreading in a population to be modeled,
which has been shown to be of critical importance by
Lloyd-Smith et al. [17].

If p = position in queue, q = number of hosts in queue for
location:

X = p/q, where X denotes the proportional fraction of
queue for position.

If K is a constant chosen for the location to express skew
distribution, the Cauchy distribution function is:

o = K2/(K2 + X2) since we want a normal on [0, 1]

If k is the number of contacts for a particular host and
is maximum number of contacts for any given host in the
location:

K=KpaxX O
When hosts move from one location to another within
the model, they tend to maintain a rough order of ordinal
position. Consequently, when there is a high ¢ for a loca-
tion, the high connection host in one location tends to be
a high connection host in another. This reflects real-world
situations, (though not perfectly) and corresponds better
than persistently maintaining high connection individu-
als from location to location, since host behavior changes
from place to place.

Page 5 of 25

(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2006, 3:32

The Cauchy distribution function is fairly fast in execu-
tion. The function can be used to approximate the often
radical variations seen in epidemiology studies; as an
extreme example, one active super-spreader individual
might infect large numbers, when one or even zero is typ-
ical [17]. This type of scale-free network interaction has
been explored by Chowell and Chavez [27]. The Cauchy
function allows networks to be generated dynamically
within each type of location in a very flexible manner,
such as corresponding to super-spreader dynamics [17].
In addition to the specification of skew within a location,
the network of contacts is also defined by (a) what loca-
tions are present and (b) the movement cycles defined for
each demographic group within the model.

Processing time is primarily the series sum of infection
modeling events

Processing time increases with population. This slowing is
an expected characteristic of an object modeling system
and is the price paid for the discrete detail of the EpiFlex
model. The primary source of this increase in processing
time is the sum of series of possible infectious events that
are modeled for each iteration. It therefore scales as a
series sum not as a log, based on the contagiousness of the
disease and the number of potential hosts in a location
with an infected host. This is minimized by only process-
ing infectious host contacts. The increase stems from the
characteristics of networks in which each node has n con-
nections to other nodes. When iteration is done for a loca-
tion containing infectable hosts, it is the number of
infected hosts that creates an element of the series. The
infected hosts are put into a list, and each one interacts
randomly with other hosts (including other infected
ones) in the location. Thus, considered as a network with
m nodes, each of the m nodes is a host. A temporary con-
nection to another host is made to n other nodes where n
<m, and n<k. The value of k is determined by a rand-
omized input that returns the number of contacts of this
infected host in this location. Consequently, the series
consists of all the temporary connections made for con-
tact modeling for each cycle.

Limitations of EpiFlex modeling

In the interest of completeness, the limitations of the Epi-
Flex model are described here. The plan is to address these
elements for implementation in future versions.

One disease at a time

Only one infectious disease can be occurring at a time.
Thus, competitive inhibition [28] and synergistic effects
will not be seen.

One type of host
Only one kind of host can exist. Multiple hosts are needed
to model zoonoses optimally. EpiFlex can imitate zoon-
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oses to some extent by defining a 'vector' within the
model in various ways. (See Appendix, 'Initiating Disease
Vector Component')

Hosts do not reproduce

Hosts do not reproduce within a model. Removal and
addition rates are defined for the population as a whole,
and the basis is US Census data. To meet the specifications
for removal and addition within the model, hosts are
removed from randomly chosen locations, and similarly
added to randomly chosen locations. Demographic group
is also randomly assigned. For long-term modeling, and
modeling of alternative short-lived hosts, a reproduction
cycle is desirable. However, EpiFlex is a practical way of
modeling periods of a few years.

No explicit definition of age distribution

There is no explicit definition of an age distribution for
the host population, which can be quite significant [29].
To a degree, age is taken into account through the demo-
graphic segmentation of populations. A demographic can
be defined with a fraction or multiple of baseline suscep-
tibility. However, hosts do not age, nor do they move
from one demographic to another as they age.

Previous exposure profile for hosts and complex antigen specification
are not provided

No provision is made to define a previous exposure pro-
file for hosts [30,31]. In real populations previous expo-
sures can have significant effects on the spread of a disease
and dramatic effects on mortality where infection does
occur [32]. Proper implementation of previous exposure
profiles is intertwined with age definition.

Disease mutation not modeled — rolled into immunity decay

There is no implementation of mutation rate for diseases.
Mutation rates vary considerably by type, particularly for
viruses [33]. Decay of immunity is modeled, and immu-
nity decay can act as a fair surrogate for antigenic change.

Pass-through events must be defined as part of surface contacts
For efficiency, EpiFlex eliminates pass-through infection
events from being modeled: for example, an infected A
shakes the hand of a non-infected B, who then shakes the
hand of another non-infected C, but B washes hands and
does not become infected while C does. Therefore, the
model definition must account for this through "Surface
to hand to mucosa" contacts, where a person can also be
a surface.

Network of contacts not easily available within locations

The model does not at this time record the contact net-
work that is dynamically created except in the log file at
this time. Those that are logged are only potential infec-
tious contacts. To get at that data requires looking at the
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log file and writing an extract program. Making the net-
work visible is an item for the future.

Seasonal damping cycle not provided

Currently, EpiFlex has no way of accounting for seasonal
damping. Similarity of results is due to the settings of the
rate at which immunity declines. Addition of a seasonal
damping function would be expected to cause EpiFlex
results to synchronize with a yearly cycle. Seasonal damp-
ing would result in loss of interesting epidemic behavior
with an overriding function that would virtually be guar-
anteed to drown out other behaviors.

Public health response to epidemics is not optimally modeled

A public health response definition component is present
in EpiFlex. Testing of this component, and more thorough
review of literature, indicate that the method used is not
optimal. Current public health responses are centered on
contact tracing, ring vaccination and quarantine [34],
with mass vaccination as a backup when it is available.
Closures of schools, daycare and travel restrictions are
also used. These methods are not modeled in EpiFlex'
response component. Their importance has recently been
underscored by Lloyd-Smith et al. [17]. As a consequence,
results from the current system that defines across-the-
board cuts in the probability of infection should be con-
sidered in this light. It is not clear whether any other
object system can model all current techniques properly.

Distribution of disease stage times is flat

Diseases have ranges of times for each stage that can be
drawn from literature. Probability of a specific disease
stage time period for an infected host being chosen within
the range is equal. This is reasonably adequate for most
diseases where times are measured in a few days, however,
some, such as rabies have a quite unequal distribution,
and their very long tail makes a difference in modeling.

Discussion

The discussion is presented in three parts: (1) a brief set of
examples of native EpiFlex displays to develop a better feel
for the system; (2) comparisons of EpiFlex results with
real world data; (3) a set of examples of observations
made using EpiFlex. The purpose of these examples is to
serve as a guide to others who may want to experiment
and analyze results.

EpiFlex display data

Different views of the epidemic data for simulated influ-
enza in two different populations are shown in Figure 2.
Figures 2a and 2b show graphs of the second and third
epidemics in the population. These graphs show the kinds
of commonly-seen deviations from a smooth curve that
occur in real world data [35]. In the EpiFlex model, this is
attributed to less synchronization of immunity combined

http://www.tbiomed.com/content/3/1/32

with the formation of small world networks among
demographic groups as they move from location to loca-
tion.

Figures 2c and 2d are alternate views of a simple influenza
epidemic occurring within a naive population (Figure 3).

Comparisons with real world data and a mathematical
model

Comparison of EpiFlex with WHO/NREVSS surveillance
Comparing EpiFlex with surveillance data, we see that
WHO/NREVSS surveillance data [36] have a qualitatively
similar graph form to EpiFlex for influenza, as shown in
Figures 4 and 5.

The width of the primary curves per season for EpiFlex is
3.5 to 4.5 months while that of the NREVSS data is
approximately 5 to 7 months, which can be explained by
the NREVSS data being collected nationally from surveil-
lance centers, whereas the EpiFlex data shown are for a
single area. EpiFlex runs executed with multiple cities con-
nected by transport, such as the 3.5 million population 35
city model, have a combined graph for all cities showing
self-similarity to the graphs for individual areas, becom-
ing wider, matching the NREVSS data graph formation.

The NREVSS data consist of diagnostics of samples sent in
by physicians. Comparisons of absolute numbers in terms
of quantity are therefore not applicable. A percentage of
population comparison is done below.

Comparison of percentage infected with California surveillance data
and other seroprevalence

In Table 1, EpiFlex indicates that roughly 48% of the pop-
ulation has been infected before herd immunity stops the
epidemic, though this depends on population size. Total
morbidity is obtainable from EpiFlex by adding maxi-
mum immune level to deaths, although deaths contribute
such a small amount to influenza morbidity that for prac-
tical purposes the immune level is used as a proxy for
morbidity. Moreover, true morbidity itself is relatively
prone to inaccuracy, whereas better measures of immune
fractions for influenza are available. The California state
average for 2000-2003 is 25.4% infected in a range from
12.7 to 44.6 depending on county [37]. Thus, EpiFlex is
above the high end of the state of California estimated
morbidity range.

Dowdle [32] gives serological influenza data categorized
by age. For influenza A/Swine/15/30 H1, seroprevalence
ranges from roughly 25% to over 95%. For influenza A/
Hong Kong/68 H3, the range is from 5% to 99%. EpiFlex
figures fall within this latter pair of ranges, and EpiFlex
immune fraction is more properly comparable.
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Incubation [
Prodromal | |
Manifestation i

Immune [

Figure 2

(Clockwise, a, b, ¢ d) — Part of a multi-year simulation display for a city of 350,000 people. (2a., 2b.) Two alternative displays.
Vertical scale demarcation is 10,000. Horizontal scale one year per demarcation. Simulation specifies asymptotic immunity
decay period of 730 days. Intention is to simulate a virus with mutation leading to major epitope change over a period of 600
to 730 days. A continuous seeding of 3 attempts to infect a college student each day was defined. (2c. 2d.) A simulation of a sin-
gle influenza epidemic in a 35,000 population. Vertical scale 1,000. Horizontal scale one month per demarcation.

Comparison with SIRP classical modeling Milwaukee data. Contrast this with the graph from the
What is most notable in Figure 7 is the relationship  EpiFlex simulator. The SIRP classical type model results
between the rough sine wave form of the classically are on the left and the EpiFlex simulations are in the right
derived SIRP [19] mathematical model and real world  hand chart of Figure 7. Comparing the two, it is clear that
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Figure 3

This is the simulation that was imported for comparison. Vertical scale 1000 per demarcation. Horizontal scale one year per
demarcation. Upper white line is total population with standard removal rate.

once the initial startup period is over for influenza, a
repeating wave develops that is similar in overall shape
and variability to real world data such as those for Mil-
waukee, at a roughly similar scale. These two graphs refer
to populations that differ in size by about 1 order of mag-
nitude (i.e. Milwaukee is 9 times the size of the model run
shown). We can also see a similar number of peaks.
Owing to the need to compare these two graphs natively,
these two figures are not optimum. However, they show
essential features.

Example observations

Total morbidity rate linked to population size

The smaller a population over the range 1,000 to ~3.5 mil-
lion, the higher the total morbidity rate, given identical
organisms (Figure 6). It is intuitively expected that popu-
lation size will affect morbidity since, for any given net-
work of contacts connecting individuals in populations,
the chance of the epidemic spreading during the window
prior to the development of immunity in parts of the pop-
ulation increases as the population size decreases. This
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Figure 4

effect is most striking when very small populations in the
order of 1,000 are examined. Literature data regarding this
in real world populations are sparse. However, there are
indications from historical accounts of small populations
in the new world that a link between population size and
morbidity is observable in real world populations [38-
43]. The most recent such account is from Heyerdahl in
the Pacific in the mid 20t century [44].

In the graphs of Figure 6, the immune fraction at comple-
tion is used as a proxy for total morbidity on a log scale of
population. The longer an epidemic takes to progress
within an enclosed population, the greater the number of
potentially infectious contacts that hit a dead end because
the host is already immune. Since very small populations
will mostly function within the window when there is no
host immunity, the infection will spread to a larger frac-
tion. This effect has public health implications because,
clearly, the structure of the network is highly significant in
determining the likelihood that an infected host will con-
tact naive hosts. Essentially what this EpiFlex result indi-

cates is that during the period prior to the development of
an immune subpopulation, a disease has a functionally
higher R, (i.e. Ry is variable through the course of an epi-
demic.)

In the Figure 6 graphs, EpiFlex is also suggesting that there
are more asymptomatic infected spreaders of influenza in
our populations than surveillance data estimate. This is
also suggested by the discussion above regarding compar-
ison with seroprevalence.

Difference in peak morbidity related to number of attempted seed
events

A minor experimental result is that for a repeating illness
such as influenza, when a continuously active initiating
disease vector tries to infect 3 people per day, it will
develop higher peaks after the initial event than a vector
that tries to infect 30 people a day (where both are ran-
domly distributed through the population.) This makes
intuitive sense, because there is lower probability that a
subpopulation of susceptible hosts will become large

Page 10 of 25

(page number not for citation purposes)



Theoretical Biology and Medical Modelling 2006, 3:32

http://www.tbiomed.com/content/3/1/32

Epiflex - Influenza manifestation phase
Export file rendered in Excel

14000

12000

10000

8000

Population

6000

4000

2000

Figure 5

when there are more attempts to infect them. Similarly, in
a system of cities interconnected by transport linkages,
later peaks tend to be smaller and more variable than ear-
lier ones. This is due to two things. First, a degree of low-
grade infection linking back through the system provides
a higher total level of infection events in the whole system
than the formally defined initiating disease vector. Sec-
ond, as time passes, the mix of immune versus susceptible
becomes unsynchronized for the population as a whole,
since hosts that escaped infection during one epidemic
may be infected during the next, and some whose immu-
nity has declined may also become infected. Thus, it is
expected that we would see the development of a complex
non-repeating waveform with some similarity. This type
of waveform is what EpiFlex shows with longer simula-
tions in large populations, as illustrated in Figure 8.

Variety of results for index cases

A variety of results is obtained when one or just a few
index cases are provided to seed a single city's susceptible
population when those index cases are not repeated. This
is expected, owing to random interactions that break the

chain of contacts in some percentage of cases. This effect
would be expected to increase with a higher skew on
super-spreaders. The significance of this for modeled epi-
demics, particularly in the light of recent work [17], is that
in some cases (the proportion would be expected to vary
in rough accordance with R;) the infection dies out owing
to random chance. Thus, a Monte-Carlo model such as
EpiFlex, when used in multiple trials, clearly reveals the
potential range of variation in epidemics given apparently
identical conditions.

Wave propagation between cities — manifestation of epidemic

EpiFlex shows wave propagation of epidemics through its
transport network that are similar to real world epidemic
studies such as those of Viboud et al. [45]. Viboud et al.
state a mean duration of 5.2 weeks to spread across the
United States, with a range from 2.7 to 8.4 weeks. The Epi-
Flex results shown using a simplified city configuration of
35 major airline hub cities, with a total 3.5 million popu-
lation among all 35 cities, shows a propagation wave of
1.8 weeks. While this is shorter than real world data, sev-
eral factors account for the difference. First, in the current
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Figure 6
Upper graph shows graphed points for population versus total morbidity as estimated from immunity. Lower two graphs show
sample graphs for 3500 (lower left) and 35000 (lower right). The green line in the lower two graphs shows immunity. One ver-
tical demarcation on the x axis is one month in the lower two graphs.

EpiFlex "vanilla" configuration, the transport network is
flat in terms of the numbers of persons moved from city
to city. Second, each city contains the same population of
only 100,000 due to practical limitations. For the propa-
gation histogram of Figure 9a, 1000 manifesting cases or
more was used as the data point. Please note, however,
this flatness of transport and population is purely a matter
of the configuration of the specific model used. The Epi-
Flex system allows separate specification of all parameters

for each city, and any kind of transport level between any
two cities that is desired.

Wave propagation between cities — incubation versus manifestation
of epidemic

Figure 9a shows a histogram of cities in which 1,000 man-
ifesting cases are first occurring. Figure 9b shows a histo-
gram of cities in which the first occurrences of at least 10
incubating cases of influenza appear. Note that in Figure
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(a. left b. right). Black repeating curve = Hyman-LaForce model Blue = EpiFlex manifestation (morbidity) Light jagged = CDC

data from Hyman-LaForce Horizontal black = 2,600 Numeric scale = thousands Horizontal scale = 365 days per demarcation.
Time scales are for equal periods of years. (7a.) Results from the SIRP mathematical model of influenza in Milwaukee which is
superimposed over CDC data from that paper. The SIRP model of Hyman Laforce was used because its SIRP model for influ-
enza was extended for developing EpiFlex. (7b.) Results from EpiFlex.

9b, the duration of spread is 3.4 weeks as opposed to 1.8
weeks for 9a. This ratio of approximately 2X (i.e. 3.4/1.8)
is quite possibly significant for real world epidemics. Epi-
Flex is indicating that during the ramp-up to an epidemic,
a significant amount of synchronization occurs between
cities.

Conclusion

EpiFlex is useful for doing in-silico experiments with epi-
demic behavior and easy to configure. It can run on an
ordinary computer without special configuration. Data
can be imported from it into other tools and worked with
there. It is effective for showing factors that are invisible or
difficult to access under normal conditions, such as visi-
bility of incubation and prodromal stages, true morbidity
and estimates of immunity. EpiFlex has capabilities that
were not discussed owing to time and space constraints.
This system is effective in duplicating the kind of multi-
modality and apparent stochastic variation [13] that are
seen in real populations. EpiFlex results can provoke
thought about the nature of epidemics and infectious dis-
ease spread in interesting ways by providing an experi-
mental test environment that is not as abstracted from its
subject as most mathematical models are.

Glossary

Items in bold below are entities that are objects in the Epi-
Flex system. They are the "nouns", each of which became
a class when the program was written in C++. [tems in ital-
ics are actions, the "verbs" that represent interactions
between objects.

Diseases infect hosts

Hosts go through the infectious stages, are members of
Demographic groups and move between locations

Locations contain hosts (For example a hospital, home or
workplace.)

Areas contain locations (A city, typically) and contain spe-
cial locations that can move hosts to locations in other
areas.

Disease Vectors introduce disease into host populations
at some location in some area, in either a limited way or
on a regular cycle.

Epidemic responses modify the spread of an infection. They
represent actions taken to respond to the epidemic that
will damp the spread.
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Figure 8

A 5.5 year, 9 city simulation linked by transport corridors. 100,000 people per city.

SIRP

SIRP is a simple flow chart, which is then elaborated into
a multi-city system. Three graphics are reproduced in Fig-
ure 10 concluding with output of the model, because the
SIRP paper is in a specialty publication and the work was
important to the conception of EpiFlex.

As seen in the "SIRP diagram" of Figure 10, a host begins
as susceptible (S) in the upper left. They can become
infected (1), and then they either recover (R) or are removed
(removal not shown). After recovery (R), they have an
immunity level that starts at or near complete as in SIR.
This immunity declines, in the case of influenza, over a
period of roughly 2 years, with a steep drop-off beginning
after the first year, and hence is termed partial immu-
nity(P). (It is not actually the case that the immune sys-
tem's response to influenza antigens degrades so rapidly;
rather, the virus mutates rapidly, and host immunity
declines. The net result is similar.) This decline in immu-
nity models the real world antigenic mutation of influ-

enza viruses. In a more perfect model, the influenza virus
would change and multiple viruses would be modeled. At
some point the immunity declines so that it is effectively
zero in the model (which corresponds to large antigenic
change) and the person is returned to the fully suscepti-
ble(S) population. A person can become reinfected (diag-
onal arrow), though their probability of reinfection is
lower, during this period of declining immunity.

In the "Multi-city SIRP" flows of Figure 10 center, m,,,
denote movement between the cities in a four city exam-
ple. Moving further to the right of Figure 10 and looking
at the "Actual versus model graph", one can see how a
sinusoid curve, with some general correlation with period,
results from the conventional model.

Appendix

Files

There are four files used or generated by EpiFlex. All three
generated files have the name of the configuration from
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City frequency of 1,000 influenza cases manifest by day of model progression
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Figure 9
Comparison of distribution of days when 1,000 manifesting cases or more first appear in a city (upper graph — 9a) versus distri-
bution of days when 10 or more incubating cases first appear in a city (lower graph — 9b).
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Figure 10

(from left) SIRP Diagram, Multi-city SIRP, Actual versus model.
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the configuration panel appended to the name of the
model. After the configuration name is appended the
Greenwich Mean Time (GMT) date and time ending with
the second.

Model file

Model files end in .EPDM. These files are an XML format.
This is the file edited by Epiflex using the various panels
available from the menu. An EPDM file can also be edited
directly in WordPad or a good XML editor by more
sophisticated users. Reading through them should be self-
explanatory to most users who familiarize themselves
with the software.

Run record files

Run record files end in .RPX. These files are in text format,
comma, and semicolon delimited. This format is intended
to be as easy to import as possible. RPX files can be
imported into Excel, read by SAS, SPSS, etcetera. At the top
of this file is a descriptor of the fields. The most common
problem is to import using spaces as a delimiter and have
spaces in area names define new columns.

Log files

Log files end in .LOG. Everything that happens in a model
is logged. These files can get fairly large. Potentially, they
could be parsed by a secondary piece of software to match
them up with RPX files. However, that is an exercise for
the user at this time. There is a viewer for log files under
the View menu.

Snapshot files

Snapshot files end in .SNAP. Whenever a run completes, a
SNAP file is written that is read only. This file is a dupli-
cate of the model that was used to run - as that model
existed in memory at completion of the run. This is done

as a "lab notebook" aid because it was recognized early on
that remembering exactly what was contained in a model
was well nigh impossible and a lot of work to document.
Note that if your model does not complete its run, the
RPX file will still be there, but the SNAP file will not be. In
that case it is up to the experimenter to make a record of
the state of the model.

The SNAP file can be copied outside of Epiflex, manually
changed from read-only and the extension renamed to
.EPDM. The resulting model can then be used and run just
like any other.

EpiFlex component developments

Software engineering details such as internal class defini-
tions and structure of components will not be presented
since the UI does a better job of educating, and is much
more compact.

Disease component

Looking at screen shots of the current Ul in Figure 11, one
can see what the functional parametric elements of a dis-
ease specification are. This particular example is selected
for influenza. The parameters set reproduce the known
characteristics of the disease.

The disease stages of Figure 11 correspond to the model
diagram shown in Figure 1. One can see that this defini-
tion is superior in several ways to what is available with
SIRP modeling as shown in the previous section. (See Fig-
ure 10). In addition to multiple stages, one can define the
level of infectiousness for each type of contact that an
infected host might have. On the lower right, the partial
immunity stage is specified. Here, one is able to define a
wide variety of immune responses. Asymptotic decline
seems to fit available data and theory on immune system
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function the best for many diseases. Use of the slider
allows one to "eyeball" the asymptotic curve to approxi-
mate what seems reasonable. In this case, immunity is set
to begin dropping after approximately half the 730 day
period has passed. It makes sense to do this because data
in this area are fairly sparse, and one may want to perform
multiple runs with slightly different immune drop charac-
teristics. Keep in mind that the width of the graph is for
the number of days entered on this panel.

Host component

A host is implicitly one of the number in the population
of an area. In the EpiFlex system, there is one object defin-
ing each disease. A host infected by a disease receives a
pointer to this archetypal disease object, and stores their
disease stages internally as the disease progresses. Most of
the functionality of hosts consists of an implementation
of disease stage transition.

Group component

Figure 12 is a screen shot of the UI for a set of demo-
graphic definitions selected from US Census data for the
nation as a whole. In the resulting model, one can over-

ride the default fractions later when using them in popu-
lations for specific areas. No fractions are represented that
could not be derived from recent census data.

Each demographic group can be set up to specify varia-
tions in overall susceptibility to disease, or modify it by
specific type of contact if that is desired. In the example,
no fractional modifiers have been created for this demo-
graphic group. There is no necessity to stick to the demo-
graphic groups defined here. One can add new ones as
desired.

Location component

Alocation describes a place, the activities that occur there,
and the demographic groups that may be drawn there
automatically. A location can have a certain number of
cells, which are used to specify N identically behaving
locations concurrently. This acts as a location repetition
count within an area when the location is defined.

A technical point with homes as cells is that the model
cannot yet be set to create a number of homes based on
population size with a distribution of household sizes.
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Figure 12
Group demographic population definition panel.
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Consequently, one must, at present, define the number of
home cells appropriate to hold the population for each
area. If a distribution function were available to specify
household sizes and households were definable by popu-
lation size, it would then be practical to provide canned
profiles of household sizes based on US census data.

The types of contacts that are available among hosts in the
location are defined, together with the average number of
such contacts per host during one cycle of the model; see
Figure 13. To the right of the contact definitions is a skew
function that enables one to specify the degree to which
contacts vary. Within any host subpopulation, there are
high contact individuals and lower contact individuals.
The example shown sets the difference rather high to
describe the way that service workers interact more
strongly than customers. When running the simulation,
during determination of which hosts become infected in
this cycle, the position of the host in the queue is used
together with the contact frequency to decide how many
contacts an individual will get in a particular cycle. Think

of this adjustable skew graph as the histogram of contact
counts.

For each demographic group, a cycle of movement
between locations in an area is defined as illustrated in
Figure 14. In the model used as an example, days are
divided into three cycles. So a sequence of 21 movements
defines a 7 day week. Once a cycle completes, it restarts at
the top. This is how hosts in the model are moved from
one location to the next.

Area component

An area is made up of a list of locations that it contains, as
shown in Figure 15. An area specifies a particular popula-
tion level, and the population fractions for each demo-
graphic group making up the area are allocated at
runtime. Demographic population, removals and addi-
tions can be overridden at the area level.

An area also has linkages to other areas, through special

locations that are eligible as links. In the example of Fig-
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Figure 13
Location definition panel.
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ure 16, the Anchorage airport is going to send 2% of its
population to Chicago, Illinois, each cycle. In each cycle,
70% of the population of the Anchorage airport location
is going to be shipped off somewhere.

Initiating disease vector component

A 'Vector' is defined in EpiFlex as n infection events to
attempt at a specific location. A vector can repeat each
cycle, or have a limited input. A vector can represent an
arthropod or snail, or it can represent people arriving on
aircraft from Hong Kong. The vector shown in Figure 17 is
a startup vector for influenza used for these modeling
runs. This initiating disease vector will operate for the first
3 cycles, then stop, attempting to produce 9 cases at a loca-
tion in Chicago. An initiation disease vector can have
delay parameters, run continuously, or run once. It can
force the infection of a specific number of people or infect
them at a particular rate.

Response component

When a disease occurs, the medical system will respond to
it in some way. Some illnesses, such as influenza A, will
result in very little intervention. Others, such as SARS or
smallpox, would result in a great deal of intervention very

rapidly. Consequently, a reasonable modeling system will
allow response to an epidemic occurrence to be modeled.

In the example shown in Figure 18, we see the response
specification for an emergent illness. A response has an
alert trigger, which in this case is the appearance of fatali-
ties. This results in a period of heightened awareness of
the disease and its symptoms, which is set in this example
to 100 days. The probability of noticing the triggering
event is set, to unity in this example, which may be overly
optimistic. This specification says that after three fatalities,
an alert would be triggered. Since this alert trigger is for
fatalities, not symptoms or instruments, the detection
fraction for each disease stage is not applicable.

Once the alert has been triggered, the detection method
for the illness switches primarily to symptoms. We can
then specify what fraction of each occurrence will be diag-
nosed and at what stage. If we detect an event, then we can
mitigate it. In this implementation, one has to specify the
degree of infectiousness remaining after intervention is in
process. Some methods, for some diseases, can stop dis-
ease spread completely. This is not true for all diseases, so
it must be specifiable.
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Group movement cycle definition panel.

Note that this component is the one with which the
author is least comfortable. None of the examples for this
paper have used responses as a consequence. The primary
reason is that the way response is modeled is over-simpli-
fied and does not conform well to the response that hap-
pens in the real world; see: Limitations of EpiFlex
modeling in the introduction.

Walkthrough

Overview

EpiFlex is now composed of 83 major classes, of which 45
are core internal model functionality, the rest being infra-
structure and UL A functional walkthrough of how the
system operates is presented below.

Verification

A model starts running by verifying the model data. It
looks for any references to things that were deleted and
definitions that are impossible. It writes an error log file
with this information that can be audited after the run. If
errors are found, you will be informed of their severity
and given the option to cancel. Many of these errors are
non-fatal, and may be modified with a warning, but they
may change the results of a run.

Initialization

The EpiFlex system iterates through all areas in a model
and allocates hosts, putting them in their initial locations,
per the movement definitions for the demographic group.

Each group steps through its location movement list to
determine whether the area to which it is attached has the
locations the group needs. If it does not, EpiFlex will
increment the pointer when it comes to this location, but
it will leave the hosts in their previous real location until
a good one is found. This was done for ease of practical
use, allowing the same demographic to be used when a
location may not exist in an area.

Cycle

Step 1 - disease stage pass. For each infected host, it will
update the stage of the illness for that host. This is also
where the system checks to see if disease response condi-
tions have been met yet.

Step 2 - vector pass. EpiFlex will iterate through each vec-
tor and apply the disease to the locations in each area in
the vector according to the rules defined.

Step 3 - infection pass. Iterate through each location in
each area, and figure out the contacts between infected
and uninfected hosts. For each contact between an
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Figure 15
Area definition panel.
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infected host and a host not infected with the disease, a
probabilistic determination will decide whether or not
this illness is communicated.

Step 4 - iterate areas looking for locations that have group
draw factors. Randomly pull hosts from the groups speci-
fied, and move them to the group draw location. This fea-
ture is used to simulate various things; generally an airport
will have this type of specification.

Step 5 - iterate all areas looking at area links. Area links
push population from one location to another area's loca-
tion as specified.

Step 6 — Areas will be iterated, and each location in each
area will be iterated using the random exchange factor to
move hosts assigned to cells of a location between cells in
that location.

Step 7 - Normal addition and removal of population
groups is applied to model. This allows the user to model
normal birth and death rate plus immigration and emi-
gration across the outer boundary of the model.

Step 8 - iterate all areas, and iterate through each location
in each area. For each location, it will iterate each host
attached to the location. Each host has a location pointer
for its group that indicates where it is in its movement
cycle. It increments the pointer, and if the location name
is different from the one it is in, it will find a location of
that name in the area to put itself into. If the location has
N cells, it will put itself into the cells in a semi-rand-
omized fashion according to the parameters defined. Note
that currently the hosts do not remember which cell they
are put into from one iteration to another. So they will not
return to the same cell next time they come back around
in their movement cycle. This is a limitation at present,
which would require greatly increased space allocations to
change.

Step 9 — An audit is done to verify that all hosts occur only
once in a location.

Step 10 - Areas are iterated, locations are iterated, to total
results. Results are then either written to the log file and/
or displayed on the main window in a graph form
depending on how parameters were specified.
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Figure 16
Area linkages panel.

Final - When a model run completes, the .RPX data file is
closed, a .SNAP snapshot of the model is made as a read
only file to record exactly what parameters gave rise to the
data, and the log file is closed.

Additional material

Additional File 1

containing software and models. Use of Epiflex software for research pub-
lications requires citation to this paper.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1742-
4682-3-32-S1.zip|
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Figure 17
Initiating disease vector definition panel.
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Epidemic response definition panel.
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