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Abstract
Background: Murray's Law states that, when a parent blood vessel branches into daughter
vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of
daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the
energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The
cost is minimized when vessel radii are consistent with Murray's Law. This law has also been
derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is
constant throughout the vascular system. However, this derivation, like Murray's earlier derivation,
is based on the assumption of constant blood flow.

Methods: To determine the implications of the constant shear force hypothesis and to extend
Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an
elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force
is derived.

Results: For medium and small arteries with pulsatile flow, Murray's energy minimization leads to
Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of
pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately
true. The approximation is good for all but the largest vessels (aorta and its major branches) of the
arterial system.

Conclusion: A cellular mechanism that senses shear force at the inner wall of a blood vessel and
triggers remodeling that increases the circumference of the wall when a shear force threshold is
exceeded would result in the observed scaling of vessel radii described by Murray's Law.

Background
In 1926, the physiologist Cecil Murray published a theo-
retical explanation for the relationship between the radius
of an artery immediately upstream from a branch point
(parent artery) and the radii of arteries immediately
downstream (daughter arteries) [1,2]. In its simplest form,

i.e., when an artery of radius Rk branches into η arteries of

radius Rk+1, the relationship termed Murray's Law states

that . Murray's derivation of this relationship

assumed that there is an energy requirement for produc-
ing the blood contained in a vessel that is proportional to
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the volume of blood in a vessel and that there is an energy
requirement for pumping blood through a vessel that is
given by Poiseuille's Law for flow in a tube. When the
radius of a branching artery is increased, the cost of blood
in the artery increases, but the cost of pumping blood
through the artery decreases. Calculation of the radius
that minimizes cost, using the calculus of variations, leads
to Murray's Law.

While Murray did not suggest a mechanism for the regula-
tion of the radius of an artery, other scientists have. A
recent hypothesis is that shear force at the inner surface
triggers circumferential growth if the force is above a
threshold [3,4]. This is an attractive hypothesis because
high values of shear in fluids can damage or destroy cells.
Furthermore, turbulence, which occurs above critical val-
ues of shear in fluids, is associated with atherosclerosis of
arterial walls.

Implications of constant shear force at the wall of blood
vessels have been analyzed by Kassab and Fung for a con-
stant pressure gradient model [5]. They showed that, if
shear force at the inner wall of vessels is constant in their
model, then scaling of the radius of blood vessels is
described by Murray's Law.

If the shear-force remodeling (SFR) hypothesis is correct,
it should be possible to derive Murray's Law from the
equations describing the fluid mechanics of pulsatile
blood flow in a tubular structure. Specifically, it should be
possible to derive the law from the basic work of Womer-
sley on pulsatile flow in an elastic tube [6]. However, the
results of Womersley are complex, and the approxima-
tions introduced by Womersley may result in inaccurate
predictions. Furthermore, the elastic tube in Womersley's
model is not tethered to surrounding structures. There-
fore, we analyze an elastic tube model where the inside
surface can move relative to the outside surface but where
the outside wall is attached to surrounding structures. We
also use a general solution for the differential equation
describing the pulsatile flow model that was not used
directly by Womersley and that leads to an exact solution.
We show that the exact solution can be closely approxi-
mated by a simpler expression and use this result to ana-
lyze the relationship between vessel radius and shear force
during pulsatile blood flow.

The rigid tube model
To develop the model, we first consider blood flow in a
rigid cylindrical tube of constant radius R. We make the
same assumptions as Kassab and Fung: that "blood is an
incompressible viscous fluid so that flow is described by
the Navier-Stokes equation" and that "each blood vessel is
a straight circular cylindrical tube" [5]. The distance from

the central axis of the tube is denoted r, the tube length is
L, and the velocity of flow is u. The Navier-Stokes equation
of motion is

where A is the pressure gradient ∆P/L, µ is viscosity and ρ
is density. Substituting ξ for µ/ρ gives

Let  be the initial-condition-independent solution of
Equation (1) when the pressure gradient is a constant
(denoted Ã). The solution is Poiseuille's equation

The rate of blood flow in the tube, , is

and the shear force (per unit area) of the fluid on the inner
wall of the tube is

Now consider the rigid tube model with an oscillating
pressure gradient Ăeiωt. The solution for the velocity, ,
stated by Womersley [6], is

 = [Ă/(ρiω)]eiωt[1 - J0(i3/2αr)/J0(i3/2αR)],

where α = (ω/ξ)1/2 and J0(i3/2αr) is the Bessel function of
order 0,

Womersley did not provide a derivation of the solution
for the rigid tube. He cited Lambossy [7] as the source, but
Lambossy did not arrive at this solution for . Therefore, we
provide a derivation of the solution for the rigid tube
model that can be extended to a solution for an elastic
tube model. We write  as a power series of the variable r:

 = b0 + b1r + b2r2 + ...  (5)

where bi is a function of time, t. Equating the coefficients
of r0 following substitution of this power series into Equa-
tion (1) gives
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where  = dbn/dt. Equating the coefficients of rn for n>0

gives

Solving for bn+2 gives

Because ∂/∂r = 0 at r = 0, b1 is 0 for all values of t. Conse-
quently, for all odd values of n, bn is 0.

We now define the constant B1,0 by the equation

b2 = [(iω/ξ)/4]eiωtB1,0.  (8)

From this equation and Equations (5) and (7) it follows
that the series

b2r2 + b4r4 + b6r6 + ... is

B1,0eiωt {[(iωr2/ξ)/4]/(1!)2 + [(iωr2/ξ)/4]2/(2!)2 + [(iωr2/
ξ)/4]3/(3!)2 + ...}.

From Equation (6) and Equation (8), it follows that

b0 = [Ă/(ρiω)]eiωt + B1,0eiωt.

Consequently, the expression for blood velocity is

 = [Ă/(ρiω)]eiωt + B1,0eiωt J0(i3/2αr).  (9)

The above derivation is similar to many published analy-
ses of differential equations that have solutions contain-
ing Bessel functions. The derivation is provided to make it
clear that all solutions of the model of blood flow in a
rigid tube in response to the pressure gradient Ăeiωt are
described by the above expression. This solution can also
be derived from the assumption that we can write  = νeiωt,
where ν is a function of the single variable r. Substitution
into Equation (1) leads to

which can be written as

We note that, if ν0 is a solution of the equation

, which is Bessel's equation of

order 0, then ν0 + A/(i α2 µ) is a solution of Equation (1)

for the oscillating pressure gradient. Noting that the solu-

tion of Bessel's equation is BJ0(i3/2αr), where B is a con-

stant, completes the derivation.

A boundary condition for the rigid tube is that the func-
tion  in Equation (9) is 0 at r = R:

0 = [Ă/(ρiω)]eiωt + B1,0eiωt J0(i3/2αR).

Consequently, B1,0 = -[Ă/(ρiω)]/J0(i3/2αR), and

 = [Ă/(ρiω)]eiωt[1 - J0(i3/2αr)/J0(i3/2αR)],  (10)

which is the result published without derivation by Wom-
ersley [6].

The rate of blood flow  is computed as

where J1(i3/2αR) is the Bessel function of order 1,

We simplify this expression using the identity

(i3/2αR)2J0(i3/2αR) - 2(i3/2αR)J1(i3/2αR) = -(i3/2αR)2J2(i3/

2αR), where J2(i3/2αR) is the Bessel function of order 2,

Division of both sides by (i3/2αR)2 gives

J0(i3/2αR) - 2J1(i3/2αR)/(i3/2αR) = -J2(i3/2αR), and substitu-
tion gives

 = [πĂR2eiωt/(iωρ)][-J2(i3/2αR)/J0(i3/2αR)].  (11)

We define PQ(i3/2αR) as J2(i3/2αR)/[(i3/2αR)2/8] and note

that as R goes to zero the imaginary part of PQ(i3/2αR) van-

ishes and |PQ(i3/2αR)| goes to 1. Substitution now gives 

= [πĂR4/(8µ)]eiωtPQ(i3/2αR)/J0(i3/2αR). This expression is

further simplified to
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where θPQ is the argument of PQ(i3/2αR) and θj0 is the argu-
ment of J0(i3/2αR).

The shear force (per unit area) at the inner wall of the tube
is -µ[∂u/∂r|r=R = -[Ăµ/(ρiω)]eiωti3/2αJ-1(i3/2αR)/J0(i3/2αR),
where i3/2αJ-1(i3/2αR) = dJ0(i3/2αr)/dr|r=R. We note that -J-

1(i3/2αR) = J1(i3/2αR), which is written as (i3/2αR/2)PS(i3/

2αR). Substitution now gives the expression for the shear
force (per unit area), [ĂeiωtR/2]PS(i3/2αR)/J0(i3/2αR). This
expression is further simplified to

where θPS is the argument of PS(i3/2αR). Note that PS(i3/

2αR) is a function with an imaginary part that vanishes
and a modulus that approaches 1 as R approaches 0.

The final step in the description of the arterial pressure
gradient is to express it as a sum of a forward-pumping
gradient and a purely oscillatory gradient. In large human
arteries under normal physiological conditions, pressure
cycles from approximately 120 mm Hg (systolic) to
approximately 80 mm Hg (diastolic). Pressure in the ter-
minal arterioles is much lower than 80 mm Hg. These
pressures suggest a model where there is a forward-pump-
ing pressure gradient, Ã, plus an oscillating pressure gradi-
ent, Ăeiωt. The flow velocity of this forward-pumping,
pulsatile model is the sum of the solutions for the con-
stant gradient model and the oscillating gradient model.
Similarly, the flow rate in the tube and the shear force at
the inner wall of the tube are the sums of the flow rates
and the shear forces, respectively, of the constant gradient
model and the oscillating gradient model.

Flow in an elastic tube
Now consider flow in an elastic tube where the radius is
constant but the inside surface moves in response to the
pull of adjacent fluid. The thickness of the wall is denoted
h, and wall tissue density is denoted ρw. The displacement
of a point on the inside wall of the tube from the locus
when the oscillatory component of force is identically 0 is
denoted Z, and the coefficient of deformation relating Z
to the force per unit area along the inside wall is K.

The model considered in this section differs from the
Womersley model in how the elastic tube responds to
shear force on the inner wall. In the Womersley model,
the outer wall is not connected to surrounding structures.
The full thickness of the wall moves in response to shear
force, and regions of relatively high force stretch upstream
regions of the wall and compress downstream regions. In
the model analyzed below, the outer wall is tethered by

branching arteries, and its movement is further restricted
by contact with adjacent tissues. The tube matrix between
the inner and outer wall is modeled as elastic tissue.

We first consider the pressure gradient Ăeiωt. From Equa-
tion (9), the expression for  is again [Ă/(ρiω)]eiωt +
B1,0eiωtJ0(i3/2αr), where B1,0 is determined by the boundary
condition requiring the velocity of fluid at the wall surface
to equal the velocity of the wall surface. The solution for
wall displacement, Z, is periodic with period 2π/ω. There-
fore, the position of the inner wall of the tube is described
by a Fourier series

The condition requiring the velocity of the wall to equal
the velocity of the adjacent fluid gives

Equating the coefficients of einωt leads to C1= (Ă/ρ)/(iω)2 +
B1,0J0(i3/2αR)/(iω), and from the definition of Z, it follows
that C0 = 0. Furthermore, for n > 1 and for n < 0 Cn = 0.
Consequently, we have

Z = {(Ă/ρ)/(iω)2 + B1,0J0(i3/2αR)/(iω)}einωt.  (14)

If the outer wall is assumed to be stationary, the average
velocity of the wall is described by iω C1eiωt/2, and the
requirement that the force (per unit surface area) on a
point on the wall, -µ[∂v/∂r|r=R-KC1eiωt, equals the rate of
change of wall momentum (per unit wall surface area),
(hρw/2)(iω)2C1eiωt, gives

-µ[∂B1,0eiωtJ0(i3/2αr)/∂r|r=R] - KC1eiωt = (hρw/2)(iω)2C1eiωt.

Substitution for C1 gives

µB1,0eiωti3/2αJ-1(i3/2αR)eiωt/[-K/(iω) - (hρw/2)(iω)]

= [Ă/(iω)]eiωt + B1,0eiωtJ0(i3/2αR),

where i3/2αJ-1(i3/2αR) = ∂J0(i3/2αr)/∂r|r=R. Consequently,

B1,0 = - [Ă/(ρiω)]/{J0(i3/2αR) - µ[i3/2αJ-1(i3/2αR)]/(-K/(iω) -
(iω)hρw/2)},  (15)

and

 = [Ă/(ρiω)]eiωt{1 - J0(i3/2αr)/[J0(i3/2αR)

+µi3/2αJ1(i3/2αR)/(K/(iω) + (iω)hρw/2)]}.  (16)

Now, consider the relationship between the thickness h
and the elastic coefficient K of the wall. Using the analogy
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of a sheet of rubber with thickness h, we can write K = κ/
h, where κ is a constant. Substituting κ/h for K and -J1(i3/

2αR) for J-1(i3/2αR) in Equation (15) gives

 = [Ă/(ρiω)]eiωt{1 - J0(i3/2αr)/[J0(i3/2αR) + DPS(i3/2αR)]},
 (17)

where

D = (µ/κ)(h/R)(iω)(i3/2αR)2/2/(1 + (h/κ)(iω)2hρw/2).
(18)

Integration over the cross-sectional area of the tube now
gives

= [πĂR2/(ρiω)]eiωt{1 - PS(i3/2αR)/[J0(i3/2αR) + DPS(i3/

2αR)]}.  (19)

From Equation (17), the shear force (per unit area) at the
wall of the elastic tube is

-µ[∂u/∂r|r=R = [Ăµ/(ρiω)]eiωt(-i3/2α)(i3/2αR/2)PS(i3/2αR)/
[J0(i3/2αR) + DPS(i3/2αR)].

This expression is further simplified to

-µ[∂u/∂r|r=R = [ĂR/2]eiωtPS(i3/2αR)/[J0(i3/2αR) + DPS(i3/

2αR)].  (20)

We note that, as D goes to 0, the above expressions for
flow velocity, flow rate and shear force in the elastic tube
model approach the values given by Equation (10), Equa-
tion (11) and Equation (13), respectively, derived for the
rigid tube model. A bound on D can be derived from the
expression for Z, Equation (14), which is simplified by
substituting the value of B1,0 from Equation (15) and the
definition of D from Equation (18) to give

Z = [Ă/(ρω2)]eiωtDPS(i3/2αR)/[J0(i3/2αR) + DPS(i3/2αR)].

We now divide Equation (20) by -iωπR2Z to give

D = {[J0(i3/2αR) - PS(i3/2αR)]/PS(i3/2αR)}/[ /(iωπR2Z) -

1],

which implies

D ≤ [|J0(i3/2αR)|/|PS(i3/2αR)|+1]/| /(iωπR2Z) - 1|.

We can set an upper bound on D by setting an upper
bound on Z. For example, a reasonable assumption is that
the maximum value of Z is bounded by h/2. This condi-
tion limits the movement of the inner surface of the tube

during a cycle of pulsatile flow to a distance no greater
than the thickness of the vessel wall. In small muscular
arteries and arterioles, h is approximately equal to or
slightly less than R [8]. As R increases, h/R decreases to a
value of approximately 0.2 for the aorta [9]. The viscosity
of blood at a shear gradient of 100/s is approximately
0.033 dyne-s/cm2 [10], and the density is approximately
1.06 g/cm3. Therefore, at a heart rate of 1/s, α2 is approxi-
mately 32/cm2.

The rate of arterial blood flow in the proximal aorta is
equal to the cardiac output, which in humans is approxi-
mately 70 ml/s. The velocity ranges from approximately
100 cm/s in early systole to 0 or a slightly negative value
in diastole. In our oscillatory, forward-pumping model,
total blood flow in the human aorta is described by Q =

 + , where  = 70 ml/s and  = (70 ml/s)eiωt. From

the value of R, approximately 1 cm, αR is approximately
5, and h is approximately 0.2 cm. Therefore, from Table 1,

|J0(i3/2αR)|/|PS(i3/2αR)| is approximately equal to (but

less than) 3. From the bounding of Z assumption, the

quantity | /(iωπR2Z)| is greater than |2 /(iωπR2h)|,

which is in turn greater than 201. Therefore, 1/| /

(iωπR2Z) - 1| is less than 1/200, and D is less than 2 × 10-2.

We can also use data on blood flow velocity to calculate a

bound on D using the equation  = πR2Ave{} where

Ave{} denotes the cross-sectional average value of . For
the lumbar artery, a medium-sized artery with R approxi-

mately equal to 0.1 cm, αR is approximately 0.5. (An
artery of medium size is defined here as one with a radius
between 0.15 cm and 0.015 cm.) From Table 1, |PS(i3/

2αR)| is very close to 1. From the first term of the Taylor's

series for J0(i3/2αR) - PS(i3/2αR), |J0(i3/2αR) - PS(i3/2αR)| is

approximately 2-5. For the lumbar artery, Ave{} is approx-
imately 10 cm/s [11]. Therefore, in this example D is less
than 10-3.

Finally, we note from Equation (18) that D is a decreasing
function of both h and R. Because both h and R decrease
from the aorta to the terminal arterioles, D is clearly very
small throughout the arterial system. Consequently, the
expressions for the rate of blood flow and the shear force
on the inner surface of the wall of an elastic tube are
closely approximated by the corresponding expressions,
Equation (11) and Equation (13), for the rigid tube.

Shear force and Murray's Law
Consider a vessel of radius Rk that branches into η vessels
of radius Rk+1. Clearly, the average rate of flow in the par-
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ent artery is η times the average rate of flow in each daugh-
ter artery. Similarly, the peak rate of flow in the parent
artery is η times the peak rate of flow in each daughter
artery. From Equation (3) and Equation (12), this condi-
tion is expressed as

From Equation (4) and Equation (13), the SFR hypothesis
states that

(Rk/2)[Ãk + Ăk|PS(i3/2αRk)|/|J0(i3/2αRk)|]

= (Rk+1/2)[Ãk+1 + Ăk+1|PS(i3/2αRk+1)|/|J0(i3/2αRk+1)|].
(22)

The approximations |PQ(i3/2αR)|/|J0(i3/2αR)| = 1 and

|PS(αR)|/|J0(i3/2αR)| = 1 now lead to Murray's Law,

. The above argument is easily modified for

the general case, i.e., when an artery of radius Rk branches

into η daughter arteries of radius Rk+1,1,Rk+1,2,...Rk+1,η. The

general form of Murray's Law is

. When |PQ(i3/2αR)|/

|J0(i3/2αR)| and |PS(i3/2αR)|/|J0(i3/2αR)| differ signifi-

cantly from 1, Murray's Law can be derived as an approx-

imation as long as |PS(i3/2αR)|/|J0(i3/2αR)| is

approximately equal to |PQ(αR)|/|J0(i3/2αR)|. Table 1

shows that these ratios are approximately equal for values

of αR as large as 2.5. Therefore, the SFR hypothesis leads
to the conclusion that Murray's Law is a good approxima-
tion for all but the largest arteries.

The statement that Murray's Law is a good approximation
has little meaning for highly asymmetric branching. This
point can be illustrated by considering a bifurcating artery
and noting that Murray's Law for bifurcation can be stated
as X3 + Y3 = 1, where X = Rk+1,1/Rk and Y = Rk+1,2/Rk. Figure
1 shows that, for X ≤ 1/2 or Y ≤ 1/2, values satisfying Mur-
ray's Law are approximately equal to values satisfying a
second-power law or a fourth-power law. This figure
shows that, as branching becomes more and more asym-
metric, all laws of the form XM + YM = 1, where M > 1, give
nearly identical predictions for the scaling of vessel radii
[12].

Murray's principle of energy minimization
In a model for the scaling of the mammalian basal meta-
bolic rate (BMR), West et al. used Womersley's model and
Murray's principle of energy minimization to argue that
the exponent 3 in Murray's Law is replaced by the expo-
nent 2 for large and medium arteries [13]. The claim of
second-power scaling is a crucial step in their derivation of
a 3/4-power allometric scaling relationship for mamma-
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Table 1: Values of |J0(i3/2αR)|, |PS(i3/2αR)|/|J0(i3/2αR)|, |PQ(i3/2αR)|/|J0(i3/2αR)| and θd = -θPQ + θJ0 (in degrees).

αR |J0(i3/2αR)| |PS(i3/2αR)| -θPQ + θJ0

0.00 1.000000 1.000000 1.000000 1.000000 0.000000
0.25 1.000061 1.00001 0.999949 0.999942 0.596807
0.50 1.000976 1.000163 0.999187 0.999079 2.385789
0.75 1.004934 1.000824 0.99591 0.995364 5.354071
1.00 1.015525 1.002602 0.987275 0.985567 9.452664
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3.00 1.950193 1.199938 0.615292 0.548354 54.30262
3.25 2.237433 1.270948 0.568039 0.48947 57.90541
3.50 2.576414 1.357868 0.527038 0.437549 60.9244
3.75 2.97404 1.462421 0.491729 0.392306 63.44954
4.00 3.439118 1.586448 0.461295 0.353099 65.56827
4.25 3.982607 1.732001 0.434891 0.319165 67.3584
4.50 4.617878 1.901445 0.411757 0.289747 68.88554
4.75 5.361012 2.097556 0.391261 0.264156 70.20298
5.00 6.231163 2.323623 0.372904 0.241795 71.35285
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lian BMR. To do this, they argued that flow velocity is
independent of vessel radius for medium and large arter-
ies.

It is remarkable that West et al. did not base their energy
calculation on the product of pressure gradient and blood
flow, Q, where Q is well approximated by Equations (11)
and (12). Instead, they used the expression,

where c0 is the Korteweg-Moens wave velocity for a perfect
liquid in an elastic tube, [(Eh)/(2ρR)]1/2. In their reviews
of the West et al. model, Dodds et al. [14] and Chaui-
Blinkerd [15] also assumed that pulsatile flow is described
by Equation (23). The constant E is the elastic modulus of
the wall describing radial tension. Because h/R is nearly
the same in a parent artery and in the daughter arteries, c0
is nearly equal in arteries connected at a branching.

West et al. used the relationship c2/  ≈ -J2(i3/2αR)/J0(i3/

2αR) to estimate blood flow. For αR >> 1, -J2(i3/2αR)/J0(i3/

2αR) ≈ 1, and blood flow rate computed from Equation
(23) is proportional to R2. Assuming that the energy cost
of pumping blood through arteries is entirely the cost of
the oscillating flow, the energy minimization principle

used by Murray and West et al. leads to the conclusion
that the exponent in the equation

 is approximately 2

when αR >> 1. However, for αR < 1, -J2(i3/2αR)/J0(i3/2αR)

≈ i(αR)2/8, and Equation (23) leads to the conclusion that
Q is proportional to R3 (again assuming that h/R is invar-
iant). However, this prediction contradicts the prediction
of Equation (12) that Q is approximately proportional to

R4 for αR < 1.

Another error in the argument of West et al. results from
their reliance on complex-variable valued expressions for
pressure gradient and blood flow. For an oscillating pres-
sure gradient with period 2π/ω, the rate of work per unit
length required to pump blood over the time cycle from -
π/ω to π/ω can be calculated by integrating the product of
the expression for the pressure gradient and the expres-
sion for blood flow. However, the result of this calculation
is incorrect if the integration is performed using complex-
variable solutions for these expressions. This can be dem-
onstrated for the case of the oscillating pressure gradient
Ăeiωt: the integral of the pressure gradient multiplied by
flow rate is 0 when pressure and flow are the complex-var-
iable solutions. However, heat is produced during the
cycle by shear forces in the liquid. Clearly, this contradicts
the laws of thermodynamics. A correct calculation of the
average rate of energy dissipation can be made from the
product of the real part of the solution for the pressure
gradient and the real part of the solution for the blood
flow equation.

The real part of the oscillatory pressure gradient is

The solution for the rate of energy dissipation (per unit
length) that is attributable to the oscillatory component
of blood flow is equal to the real part of the product of
Expression (24) and the expression for the rate of blood
flow, Equation (12). The integral with respect to time of

this product from -π/ω to π/ω divided by 2π/ω gives the
average rate of energy dissipation (per unit length) result-
ing from the oscillatory component,

, which has the real part

It is clear from Table 1 that when αR ≤ 1 the angle θd = -

θPQ + θJ0 is small and cos(θd) ≈ 1. Furthermore, when αR ≤
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1, the quantity |PQ(i3/2αR)|/|J0(i3/2αR)| is close to 1. Con-

sequently, for αR ≤ 1, we have Re{ /L} ≈ π(Ă2/2)R4/

(8µ). Therefore, energy dissipation for the oscillatory
component is proportional to R4. The rate of energy dissi-
pation per unit length for the constant, forward-pumping

component of flow is easily shown to be πÃ2R4/(8µ).
Therefore, as previously stated without formal proof by
Bengtsson and Edén [16], the total rate of energy dissipa-
tion in this case is proportional to R4. Consequently, Mur-
ray's optimization procedure leads to Murray's Law when

αR ≤ 1.

To evaluate energy dissipation due to the oscillatory com-
ponent of pressure when αR > 1, we start by rewriting
Equation (11) as

The integral defining the average rate of energy dissipation
(per unit length) that is attributable to oscillatory pressure
is

πR2Ă2 cos(-π/2 + θJ2 - θJ0)/(2ωρ)|J2(i3/2αR)|/|J0(i3/2αR)|.

For αR >> 1, |J2(i3/2αR)|/|J0(i3/2αR)| approaches 1, and θJ2
- θJ0 approaches π [17]. Consequently, cos(-π/2 + θJ2 - θJ0)
goes to 0, and the above rate of energy dissipation is not
proportional to R2 as claimed by West et al. When energy
dissipation that is attributable to the oscillating pressure
gradient is very small compared with energy dissipation
resulting from the constant, forward-pumping compo-
nent of the gradient, Murray's procedure again leads to the
conclusion that Murray's Law is approximately correct.

Discussion
The exact solution for blood velocity in the tethered elastic
tube model in this paper does not contain terms with a
frequency greater than the frequency ω of the oscillating
pressure gradient. In contrast, the approximate solutions
of Womersley [6] contain exponential functions with fre-
quencies that are integral multiples of ω. If the terms with
a frequency greater than ω resulted from one or more of
the approximations, then the results of Womersley do not
provide a valid explanation for the reversal of flow during
early systole in large blood vessels, e.g., the reversal shown
in Figure 5 of the article by Womersley [6].

While Womersley did include a term describing an elastic
tethering force in his last publication [18], he did not
reach an exact solution for the modified model. The exact
solution for the tethered elastic tube model provides the
basis for demonstrating that the solutions for blood flow
and shear force in the rigid tube are good approximations

for the oscillatory component of blood flow and shear
force, respectively, in arteries. These approximations are
used to calculate shear stress at the inner wall of an artery
as a plausible explanation for the scaling described in
Murray's Law. The same approximations lead to the con-
clusion that blood flow and energy dissipation are not
proportional to R2 in large arteries. This result leads to the
conclusion that the "general model for the origin of allo-
metric scaling laws in biology" of West et al. [13] does not
support a 3/4-power scaling law for mammalian BMR.

Since Murray published his explanation for the scaling of
the radii of blood vessels, a number of investigations have

shown that the exponent λ in the relationship,

, is close to 3 for mam-

malian arteries [19-22]. While the mechanism responsible
for this scaling of vessel radius is a matter of some specu-
lation, the SFR hypothesis is an attractive explanation for
the scaling. As shown previously by Kassab and Fung for
constant pressure gradients [5] and in this paper for pul-
satile gradients, the constant shear force assumption leads
to the conclusion that arterial radii follow Murray's Law
for all but the largest arteries.

As reviewed by Barakat et al. [4], a causal role for shear
stress in determining the radius of an artery is supported
by experimental observations. However, much of the evi-
dence that supports the SFR hypothesis also supports the
cost minimization hypothesis of Murray. Whether Mur-
ray's hypothesis, the SFR hypothesis or some other pro-
posal is the correct explanation for the scaling of the radii
of arteries ultimately depends on biological plausibility,
and this will largely depend on observations from experi-
mental studies.
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r Distance from the central axis of an artery to a point in
the arterial bloodstream

η Number of daughter arteries connected to the parent
artery at a branching

h Thickness of the arterial wall

Z Displacement of the inner arterial wall caused by oscil-
latory shear force and measured parallel to the central axis

νw Velocity of the inner arterial wall measured parallel to
the central axis

u Velocity of arterial blood measured parallel to the cen-
tral axis:  denotes the velocity for a harmonic pressure gra-
dient with mean 0, and  denotes the velocity for a constant
pressure gradient.

A Pressure gradient at a point in an artery: an oscillating
gradient with mean equal to 0 is denoted Ă, and a con-
stant gradient is denoted Ã.

Q Rate of blood flow measured as volume per second: 

denotes the rate for an oscillating pressure gradient with

mean 0, and  denotes the rate for a constant pressure

gradient.

/L Rate of energy dissipation per unit length that is
attributable to the oscillatory component of blood flow.

ω Frequency of an oscillating pressure gradient in radians
per second

ρ Density of blood

µ Viscosity of blood

α (ωρ/µ)1/2

K Coefficient of arterial wall elastic deformation resulting
from shear force

κ Kh

Jm(i3/2αR) Bessel function of order m and variable i3/2αR,

PQ(i3/2αR) [R2i3/2αJ0(i3/2αR) - 2RJ1(i3/2αR)]/(R4/8)

PS(i3/2αR) J1(i3/2αR)/[(R/2)(i3/2α)]

θJ0 Argument of J0(i3/2αR)

θPQ Argument of PQ(i3/2αR)

θPS Argument of PS(i3/2αR)

θd -θJ0 + θPQ
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