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Abstract

Background: There has been a variation in published opinions toward the
effectiveness of school closure which is implemented reactively when substantial
influenza transmissions are seen at schools. Parameterizing an age-structured
epidemic model using published estimates of the pandemic H1N1-2009 and accounting
for the cost effectiveness, we examined if the timing and length of school closure could
be optimized.

Methods: Age-structured renewal equation was employed to describe the epidemic
dynamics of an influenza pandemic. School closure was assumed to take place only
once during the course of the pandemic, abruptly reducing child-to-child transmission
for a fixed length of time and also influencing the transmission between children and
adults. Public health effectiveness was measured by reduction in the cumulative
incidence, and cost effectiveness was also examined by calculating the incremental
cost effectiveness ratio and adopting a threshold of 1.0 × 107 Japanese Yen/life-year.

Results: School closure at the epidemic peak appeared to yield the largest reduction
in the final size, while the time of epidemic peak was shown to depend on the
transmissibility. As the length of school closure was extended, we observed larger
reduction in the cumulative incidence. Nevertheless, the cost effectiveness analysis
showed that the cost of our school closure scenario with the parameters derived from
H1N1-2009 was not justifiable. If the risk of death is three times or greater than that of
H1N1-2009, the school closure could be regarded as cost effective.

Conclusions: There is no fixed timing and duration of school closure that can be
recommended as universal guideline for different types of influenza viruses. The
effectiveness of school closure depends on the transmission dynamics of a particular
influenza virus strain, especially the virulence (i.e. the infection fatality risk).
Background
School closure is one of important non-pharmaceutical countermeasures against influ-

enza pandemic [1]. Among various types of school closure, the so-called “proactive

closure”, i.e., the closure of schools before observing substantial transmissions among

school children [1], was conducted in Japan during the early stage of H1N1-2009

pandemic [2], and micro-clade of the viruses that caused the earliest clusters is

known to have declined to extinction [3]. Japanese experience demonstrated that
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the proactive closure as part of concerted effort of containment measure can be very

helpful in achieving the local extinction.

However, there has been a variation in published opinions toward another type of

closure, “the reactive closure”, i.e., the closure of schools when many children, staff or

both are experiencing illness, as part of mitigation strategy. Published studies have

empirically explored the impact of reactive school closure on an influenza epidemic or

pandemic, and some of the studies demonstrated substantial reduction in the rate of

transmission among school children during the closure [4-7]. However, others empha-

sized that the community impact, e.g. reduction in the demand of healthcare service

including hospitalization of severe cases, is likely very limited [8-10]. Elucidating the

details of school transmission mechanism has been ongoing (see Discussion), and there

has been no simple policy (e.g. the timing and duration) to implement the closure in

the reactive manner during the course of a pandemic.

If we have a clear quantitative guideline for the reactive closure (e.g. provision of

public health conditions at which the closure can be justified and decided), that could

greatly benefit public health policymakers. Fundamental insights into the effectiveness

of school closure can be gained from a parsimonious mathematical model, exploring

possible answers to such key policy questions using simplistic modelling approaches.

In the present study, our questions are two-folds. First, we examine when one should

close the school during the course of a pandemic. Second, we explore how long the

closure should be implemented. Parameterizing the model using published epi-

demiological estimates of the pandemic H1N1-2009 and accounting for the cost

effectiveness of closure, we discuss if the timing and length of school closure could

be optimized.

Methods
Transmission model

In the present study, the cost effectiveness of school closure is examined using a single-

layer epidemic model. Specifically, we consider an age-structured epidemic model that

describes the time- and age-dependent transmission dynamics of influenza [11]. Let ja(t)

be the incidence (i.e. the number of new infections) of influenza in age-group a at calen-

dar time t. The renewal process is modelled as

ja tð Þ ¼ sa tð Þ∑
b

Z∞

0

Aab sð Þjb t−sð Þds; ð1Þ

where sa(t) is the fraction of susceptible individuals of age-group a at time t, and Aab(s)

stands for the rate of secondary transmission from a single infected individual in age-

group b to susceptibles in age-group a at the infection-age (i.e. the time since infection)

s, which may be decomposed as

Aab sð Þ ¼ Rabgb sð Þ; ð2Þ

where Rab represents the average number of secondary cases in age-group a generated

by single infected individual in age-group b, constituting a single element of the

so-called age-dependent “next-generation matrix”. gb(s) is the probability density
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function of the generation time, assumed as dependent on the age-group of pri-

mary case. This model can be interpreted as a general representation of the so-

called Susceptible-Exposed-Infected-Removed (SEIR) model and its variants in

continuous time with a discrete age-structure (e.g. [7,9]). Susceptible individuals

are depleted as:

sa tð Þ ¼ sa 0ð Þ−

Z t

0

ja xð Þdx

Na
; ð3Þ

where Na represents the population size of age-group a.

School closure

Let K be the age-dependent next-generation matrix, [Rab] which scales the secondary

transmission in (2). In the present study, we consider 3 × 3 matrix, describing within

and between group transmissions between/among children, young adults and elderly.

That is, we have

K ¼
R11 R12 R13

R21 R22 R23

R31 R32 R33

0
@

1
A; ð4Þ

where subscripts 1, 2 and 3 represent children, young adults and elderly, respectively.

The basic reproduction number, R0, representing the average number of secondary

cases produced by a single ‘typical’ primary case in a fully susceptible population is

computed as the largest eigenvalue of the next-generation matrix (4). During the course

of a pandemic, the matrix which describes the age-dependent net reproduction would

be scaled by the remaining fraction of susceptibles, sa(t), i.e.,

K tð Þ ¼
s1 tð ÞR11 s1 tð ÞR12 s1 tð ÞR13

s2 tð ÞR21 s2 tð ÞR22 s2 tð ÞR23

s3 tð ÞR31 s3 tð ÞR32 s3 tð ÞR33

0
@

1
A ð5Þ

We assume that K(t) is decomposed into biological part (e.g. those characterizing sus-
ceptibility or infectivity) and contact part (i.e. those associated with contact), i.e.,

K tð Þ∼
s1 tð Þα1 0 0

0 s2 tð Þα2 0
0 0 s3 tð Þα3

0
@

1
A M11Γ1 M12Γ2 M13Γ3

M21Γ1 M22Γ2 M23Γ3

M31Γ1 M32Γ2 M33Γ3

0
@

1
A; ð6Þ

where αi is a relative susceptibility of age group i, Mij represents the number of con-

tacts that an individual in age group i experiences with individuals in age group j per

unit time, and Γi is the integral of the survival function of infectious period of age

group i (Γi = 1/γi if the infectious period is exponentially distributed with the mean 1/γi
days). Hereafter, the matrix M = [Mij] is referred to as the contact matrix.
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In the event of school closure, we assume that the net reproduction matrix is further

scaled by a function ε(t). If the closure influences only the contact among children, we

would simplify the issue by rescaling (1,1)-element, i.e.,

K0 tð Þ ¼
ε tð Þs1 tð ÞR11 s1 tð ÞR12 s1 tð ÞR13

s2 tð ÞR21 s2 tð ÞR22 s2 tð ÞR23

s3 tð ÞR31 s3 tð ÞR32 s3 tð ÞR33

0
@

1
A; ð7Þ

where ε(t) may be modelled as

ε tð Þ ¼ 1 for t < t0 or t ≥ t0 þ τ;
q for t0 ≤ t < t0 þ τ;

�
ð8Þ

where q represents the relative risk of secondary transmissions during the closure, t0 repre-

sents the starting time of closure, and τ stands for the total length of closure. In the existing

guideline in Japan, τ is suggested to be on the order of 7 days [12] which we regard as our

baseline, and examine the possible length up to 50 days. As can be understood from (8),

our study considers an epidemic scenario in which the school closure takes place only

once. If we additionally account for a compensation of contact with young adults, we

assume that the net reproduction matrix is rescaled as

K0 tð Þ ¼
ε tð Þs1 tð ÞR11 ϕ tð Þs1 tð ÞR12 s1 tð ÞR13

ϕ tð Þs2 tð ÞR21 s2 tð ÞR22 s2 tð ÞR23

s3 tð ÞR31 s3 tð ÞR32 s3 tð ÞR33

0
@

1
A; ð9Þ

where ϕ(t) represents the relative increase in the reproduction number between children

and young adults due to compensatory behaviour of children with young adults during the

closure. For clarity of modelling and due to shortage of scientific evidence, we ignore the

influence of compensation on other elements of the contact matrix (e.g. we assume that the

contacts within young adults and between children and elderly are not influenced by clo-

sure). Further mathematical details of the compensatory contact are described in Appendix.

Epidemiological outcomes

Let za represent the final size (i.e. the cumulative incidence) of age group a, i.e.,

za ¼
Z∞

0

ja xð Þdx−ja 0ð Þ ð10Þ

Although mitigation strategy including school closure involves multiple public health
objectives (e.g. delaying peak and reducing the height of peak prevalence), the present

study focuses on the cumulative risk of infection. Concentrating on this aspect, we ex-

plore the possible optimal timing and duration of school closure and examine the cost

effectiveness of this countermeasure. Since the average life expectancies are different

between age-groups, the loss of life-years, L, due to the pandemic is measured by

employing age-dependent weighting function, wa.

L ¼
X3
a¼1

waza ð11Þ

wa is given as the product of the infection fatality risk (IFR; i.e., the risk of death given

infection with influenza virus) and life-expectancy of age group a, assumed to be 65, 45
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and 15 years for children, young adults and elderly, respectively [13]. The age-specific

estimates of IFR are extracted from empirical study in Hong Kong, assumed as 1, 10

and 500 deaths per 100,000 infections for children, young adults and elderly, respect-

ively [14]. To measure the effectiveness of school closure, we compare the absolute

difference of L between two scenarios, i.e. with and without school closure, L1 and L0
(i.e., L0-L1), yielding the life-years saved by the school closure.

School closure also involves the cost of forced annual leave among parents during

the closure. The frequency of such annual leave among Japanese businessmen has been

surveyed by Mizumoto et al. [15], showing that up to 16% of daylight time workers

were influenced by the school closure and were compelled to take at least an annual

leave for half a day. Especially, the parental absenteeism was as high as 26.7% among

households with at least one infected child, and this proportion was 10.4% otherwise

[15]. Let c be the average daily rate of cost induced by annual leave per single young

adult. The gross social cost of such parental absenteeism, G, is calculated as

G ¼ cτ u1

Zt0þτ

t0

j1 xð Þdxþ u0
N2

2
−
Zt0þτ

t0

j1 xð Þdx
0
@

1
A

2
4

3
5; ð12Þ

where u1 and u0 are the proportions of households in which either father or mother

has to take annual leave, with or without an infected child in the household, respect-

ively (i.e., u1 = 0.267 and u0 = 0.104) and N2 is the population size of adults. For simpli-

city, we ignore small fractions of childless couples and unmarried adults among the

total young adults. The cost of u1 is multiplied to the cumulative incidence of children

during the closure, ignoring multiple infections in a household (i.e. we ignore brother(s)

or sister(s) who are infected at the same time in a household). The population size to

multiply u0 is calculated by subtracting the cumulative incidence from N2/2, because it is

usually the case that either father or mother is absent from work during closure (and one

of them continues to work). According to a white paper of an economic study, c is given

as the product of hourly wage, the average working hours (per day) and the cost to be paid

for workers during school closure [16], yielding c = 10,019.52 Japanese Yen (approximately

100 US Dollars) per day. Since we consider the short (and realistic) lengths of closure (e.g.

7, 14 or 21 days), we account for only individual impact of closure and ignore other indirect

social cost such as the loss of business opportunities due to extended period of closure or

stagnation of overall economic activity.

Restricting our scenarios to those reducing epidemic peak by the school closure, we

measure the average cost that is required to save a single life year as

Y q; τ; t0; c;Rab; ja 0ð Þð Þ ¼ G
L0−L1

ð13Þ

It should be noted that the quantity Y is theoretically equivalent to the incremental
cost effectiveness ratio (ICER) in the cost effectiveness analysis (CEA) studies. We aim

to identify reasonable combination of τ and t0 that minimizes our objective function Y.

In the United States and United Kingdom, the acceptable threshold of ICER tends to

lie around 100,000 US dollars and 30,000 British Pound per life year, respectively.

Accordingly, we assume that the corresponding threshold lies in the range from 5.0 × 106

to 1.0 × 107 Japanese Yen (and draw a line for the latter threshold in all associated figures).
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Parameter setting

We consider an epidemic in a population of 1 million. The size of each age group is

assumed as proportional to age-specific population sizes of those aged from 0–19, 20–

59 and 60 years and over for the entire Japan, i.e., (N1, N2, N3) = (177207, 500957,

321836). The parameters of contact matrix are derived from previous study with an

identical age categorization [17] which essentially assumed that the age-specific contact

pattern in Japan is not different from that in England [18]. In our scenario, an epidemic

takes place with an introduction of single infected child j1(0) = 1 (while j2(0) = j3(0) = 0),

and all residents are assumed as initially susceptible, i.e., (s1(0), s2(0), s3(0)) = (1,1,1).

Nevertheless, their relative susceptibility per contact (e.g. the probability of successful

transmission per contact) depends on age, i.e., (α1, α2, α3) = (1.000,0.370,0.059) as em-

pirical evidence suggests [11,19]. Mean generation times of secondary transmission

caused by children and young adults or elderly are assumed to be 2.2 days and 2.7 days,

respectively [20], and we assume that the generation time follows an exponential distri-

bution for mathematical convenience (so that the model (1) can also be written as

ordinary differential equations using the next-generation matrix parameterized by (6)).

The basic reproduction number, R0, is used for scaling the next-generation matrix and

is assumed to be 1.4 [21,22].

With respect to the protective effect of intervention, the relative reduction in the

reproduction number during school closure (hereafter referred to as the “efficacy” of

school closure) has been empirically estimated in limited number of settings [4,5,9,23].

As our baseline, we assume that there is a 70% decline in child-to-child transmission

during the closure and thus q = 0.3 [5]. In a Japanese survey [15], no apparent increase

in the frequency of child-to-adult contact was observed during the closure, and we set

the proportion of child contacts compensated (π; see Appendix) as 0 at the baseline

and then vary it from 0 to 0.5 (where 0.5 means that 50% of intervened within-child

contacts are alternatively made with young adults).

The above-mentioned parameters correspond to empirically measured results from

pandemic H1N1-2009 which is known to have been very mild [24]. Thus, we also

measure the sensitivity of ICER to different levels of transmission potential and risks of

death, varying R0 from 1.2 to 1.8 and elevating the relative risk of death from 1 to 100

(using H1N1-2009 as the reference).

Results
Epidemic dynamics and school closure

Figure 1 illustrates a single scenario of influenza pandemic with school closure. At a

specified epidemic day, we assumed that school closure is initiated, abruptly reducing

the number of child-to-child secondary transmissions by a constant factor for a fixed

length of time, and the transmission potential recovers when the school is reopened

(Figure 1A). A sharp decline in the child incidence was observed, and it also influenced

the transmission dynamics of adults and elderly. In the absence of school closure, the

cumulative incidence of children, young adults and elderly were 103242 (58.2%), 66156

(13.2%) and 3142 (0.9%), respectively, yielding the final size of 17.3% for the entire

population. These figures were in line with the result from seroepidemiological survey

of H1N1-2009 in Japan [25]. The highest incidence was observed at Day 61. When the

school closure is implemented at Day 50 for 7 days, the cumulative incidence of children,



Figure 1 A scenario of school closure during the course of an influenza pandemic. School closure is
implemented for 7 days from Day 50. The basic reproduction number is set at 1.4. Panel A. The average
number of child-to-child secondary transmissions in the absence of the depletion of susceptibles. There is
an abrupt 70% decline in the child-to-child secondary transmissions, while no compensatory contact with
adults is assumed at the baseline. B. Age-dependent prevalence (i.e. the age-specific number of infectious
individuals) as a function of calendar time.
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young adults and elderly were 95795 (54.1%), 61967 (12.4%) and 2930 (0.9%), respectively,

yielding the final size of 16.1% for the entire population. The highest incidence was ob-

served at Day 75.

Figure 2 shows the sensitivity of the cumulative incidence to variable timing and

lengths of school closure. The cumulative incidence was minimized if the closure was

started at Day 61. Namely, the largest reduction of final size was observed by imple-

menting the closure at the peak of the epidemic (Figure 2A). Moreover, as the length of

school closure was extended, the cumulative incidence was decreased (Figure 2B).

Based on our univariate sensitivity analysis, these findings were only marginally influ-

enced by different efficacy of school closure (i.e. variations in the relative reduction

in the child-to-child secondary transmissions had little impact on the cumulative

incidence) (Figures 2C and 2D) and variable compensatory behaviour of children with

young adults (Figures 2E and 2F).

Cost effectiveness analysis of school closure

Figure 3 shows ICER values with various timing and lengths of school closure. As there

was an optimal timing to minimize the final size in Figure 2, the ICER also took the

minimum value when the closure is implemented at the epidemic peak (Figures 3A and

3C). Nevertheless, it is noteworthy that the ICER remained to be above the acceptable

threshold for all the assumed parameter space for H1N1-2009 (even when ICER took

the minimum value). As for the length of closure, the ICER appeared to be a monoton-

ically increasing function of the length of closure. For both the timing and length, the

variations in the efficacy of closure and proportion of contacts compensated had only

marginal impact on ICER.

Figure 4 examines the ICER by varying two additional epidemiological variables,

i.e., the basic reproduction number (Figure 4A) and the relative risk of death

given infection (Figure 4B). The timing of epidemic peak varied with R0, and thus,

the time for ICER to take the minimum value also greatly varied with R0. Greater



Figure 2 Cumulative incidence of pandemic with different timing and lengths of school closure.
Panels A, C and E examine the sensitivity of the cumulative incidence (i.e. final size) to different timing of
school closure. Length of school closure in these panels is set at 7 days. Similarly, Panels B, D and F explore
the sensitivity of the cumulative incidence to different lengths of school closure. Timing of school closure in
these panels is set at Day 50. The basic reproduction number is set at 1.4. Panels A and B compare the final
size among children to that of the entire population. Panels C and D vary the efficacy of school closure (i.e. the
relative reduction in the child-to-child secondary transmissions) from 50% to 90%. No compensatory contact with
adults is assumed in these panels. Panels E and F vary the proportion of child contact compensated with young
adults, assuming that the compensation occurs for 0 to 50% of intervened within-child contacts. In these panels,
the efficacy of school closure is set at 70%.
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R0 yielded the minimum ICER value at earlier epidemic time. Nevertheless, again

all the ICER values were above the acceptable threshold in Figure 4A. When the

infection fatality risk was proportionally magnified, we found that the ICER fall

below acceptable threshold. That is, when the risk of death was three times or

greater than that of H1N1-2009, all scenarios that we examined appeared to be

cost effective.



Figure 3 Cost effectiveness of school closure with different timing and lengths. Incremental cost
effectiveness ratio (ICER), expressed as Japanese Yen per single life-year saved, is computed. Horizontal
dashed grey line represents the threshold value of ICER, 1.0 × 107 Yen/life-year, below which one may
regard the intervention as cost-effective. Panels A and C examine the sensitivity of ICER to different timing
of school closure. Length of school closure in these panels is set at 7 days. Similarly, Panels B and D explore
the sensitivity of ICER to different lengths of school closure. Timing of school closure in these panels is set
at Day 50. The basic reproduction number is set at 1.4. Panels A and B vary the efficacy of school closure
(i.e. the relative reduction in the child-to-child secondary transmissions) from 50% to 90%. No compensatory
contact with adults is assumed in these panels. Panels C and D vary the proportion of child contact compensated
with young adults, assuming that the compensation occurs for 0 to 50% of intervened within-child contacts. In
these panels, the efficacy of school closure is set at 70%.
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Discussion
The present study examined the public health effectiveness and cost effectiveness

of school closure which was assumed to be implemented only once during the

course of a pandemic. The model was parameterized with reference to empirical es-

timates of the pandemic H1N1-2009. School closure at the epidemic peak appeared

to minimize the cumulative incidence, but the time of epidemic peak was shown to

depend on R0. As the duration of school closure was extended, we observed a lar-

ger reduction in the cumulative incidence. Strikingly, the cost effectiveness analysis

showed that our school closure scenario with parameters derived from the pan-

demic H1N1-2009 was not cost effective. Nevertheless, if the virulence is three

times or greater than that of H1N1-2009, the cost of closure could be justified.

These findings were not very sensitive to the efficacy of school closure and com-

pensatory contact behaviour among children.

There are three important learning points from the present study. First, we have

shown that there is no fixed timing and duration of school closure that can be rec-

ommended as universal for different types of influenza viruses. It is natural that the

effectiveness of school closure depends on the underlying transmission dynamics,



Figure 4 Sensitivity of the cost effectiveness of school closure to the severity of influenza pandemic.
Incremental cost effectiveness ratio (ICER), expressed as Japanese Yen per single life-year saved, is computed.
Panel A examines ICER as a function of the reproduction number (ranging from 1.2 to 1.8) and the timing of
school closure. Length of school closure in these panels is set at 7 days. It should be noted that the horizontal
axis is at the ICER of 1.0 × 107 Yen/life-year. Panel B shows ICER as a function of the risk of death relative to
assumed baseline of H1N1-2009 pandemic and the length of school closure. The relative risk of death of
assumed pandemic is expressed as multiplier to the infection fatality risk of H1N1-2009 (e.g. if the relative
risk is 50, the assumed pandemic is 50 times more likely lethal upon infection). The basic reproduction number
and the timing of school closure in these panels are set at 1.4 and Day 60, respectively. Horizontal dashed grey
line represents the threshold value of ICER, 1.0 × 107 Yen/life-year, below which one may regard the intervention
as cost-effective.
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and the absence of simple universal guideline should be explained and communi-

cated to non-experts. In fact, the dependence of the effectiveness of school closure

on the transmission dynamics could explain variations in published opinions toward

the epidemiological performance of the school closure as an option of mitigation

strategy. Second, school closure during the pandemic H1N1-2009 appeared not to

be cost effective even when the ICER took the minimum value. It implies that the

cost-effective intervention against mild pandemic strain such as H1N1-2009 is dif-

ferent from that of virulent strains. This echoes the finding by Halder et al. [26,27]

based on a simulation approach. Third, if a particular strain is virulent, school clos-

ure could be cost effective. Namely, given that the virulent strain widely spreads in

the community, yielding high disease burden, school closure intervention, the cost

of which is regarded as small for the high disease burden, should be implemented

to reduce the disaster size as much as possible. In addition, since the equation

(12) involves the wage of parents, it is important to remember that the cost-effectiveness

may also depend on an economic standard of a country (e.g. school closure of pandemic

H1N1-2009 may even be justified in a country with much smaller salary than that

of Japan).

As a policy implication at minimum, one should remember that optimal school clos-

ure depends on the severity of pandemic, characterized by the transmissibility and viru-

lence. Especially, the school closure is likely cost effective for virulent influenza strains.

One should also know that the cost-effective interventions of a particular influenza

strain are different from those for other strains. In addition, rather than industrialized

countries, it may be easier to justify the cost of school closure in developing countries

where the parental impact is likely smaller.

Three technical limitations should be noted. First, our model assumes that the trans-

mission from child to child is homogeneous. More rigorous network model has shown



Nishiura et al. Theoretical Biology and Medical Modelling 2014, 11:5 Page 11 of 14
http://www.tbiomed.com/content/11/1/5
that such random mixing assumption could overestimate the effectiveness of school

closure [28]. Second, the impact of school closure on social mixing patterns should

ideally be based on more realistically socially structured (layered) modelling approach

[29], perhaps classifying transmissions into those occurring in households, schools and

community [30]. Third, more precise features of child contact, including weekend

contact and the impact of illness on the contact, are recently shown to have a substantial

impact on the effectiveness of intervention [31,32].

Unfortunately, school closure during H1N1-2009 may not be fully justified when

it comes to the cost. Nevertheless, the cost effectiveness should be regarded as

merely a single aspect of the impact of this intervention to help policymaking.

Perhaps, rather than focusing more on the cost, one should carefully reconsider

public health objectives of this intervention, e.g. delaying epidemic peak, reducing

the height of peak prevalence, or reducing the overall epidemic size, and decide

what we would expect from this intervention more in detail. Expecting the effect-

iveness in all these aspects may not be feasible [33]. Despite the presence of numerous

tasks to guide school closure in the next pandemics, our study has at least shown that one

can examine the potential performance of school closure using the proposed simplistic

modelling approach.

Conclusions
The present study examined the public health effectiveness and cost effectiveness of

school closure. The effectiveness of school closure depends on the transmission dynamics

of a particular influenza virus strain, especially the virulence. School closure in our scenario

with parameters derived from the pandemic H1N1-2009 appeared not to be cost effective.

There is no fixed timing and duration of school closure that can be recommended as

universal guideline for different types of influenza viruses.
Appendix
Here we describe the mechanism of compensatory contact of children during school

closure. Let M* be a symmetric matrix that represents the rate of total contacts made

by each age-group. That is, supposing that the population sizes of children, young

adults and elderly are expressed as (N1, N2, N3), we have

M� ¼ M
N1 0 0
0 N2 0
0 0 N3

0
@

1
A ðA1Þ

Sum of elements in a single row i or single column i represents the total number of
contacts (per day) made by all of those in age-group i. We assume that the sum of each

column is decomposed as the product of average contact per person ki and the popula-

tion size Ni, so that the sum can be rewritten as kiNi. In the presence of compensatory

behaviour, we assume that the total number of contact, kiNi, made by age-group i is

partially maintained even during the school closure.

Let p1 and p2 be the proportion of child contacts spent for children and young adults,

then the first row (or first column) of M* should read (p1k1N1, p2k1N1, (1-p1-p2)k1N1).
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Similarly, let p3 be the proportion of young adult contacts for other young adults or

elderly that are spent for young adults. We get

M� ¼
p1k1N1 p2k1N1 1−p1−p2ð Þk1N1

p2k1N1 p3 k2N2−p2k1N1ð Þ 1−p3ð Þ k2N2−p2k1N1ð Þ
1−p1−p2ð Þk1N1 1−p3ð Þ k2N2−p2k1N1ð Þ k3N3− 1−p1−p2ð Þk1N1− 1−p3ð Þ k2N2−p2k1N1ð Þ

0
@

1
A

ðA2Þ

Thus, the contact matrix M is given by
M ¼ M�

1
N1

0 0

0
1
N2

0

0 0
1
N3

0
BBBBB@

1
CCCCCA

ðA3Þ

In the event of school closure, the contact rate among school children is expected to
decrease. If the impact of school closure were seen only among children, we would

have the following contact matrix during the closure, M*, as

M
0 ¼

ε tð Þp1k1
p2k1N1

N2

1−p1−p2ð Þk1N1

N3

p2k1
p3 k2N2−p2k1N1ð Þ

N2

1−p3ð Þ k2N2−p2k1N1ð Þ
N3

1−p1−p2ð Þk1 1−p3ð Þ k2N2−p2k1N1ð Þ
N2

k3−
1−p1−p2ð Þk1N1 þ 1−p3ð Þ k2N2−p2k1N1ð Þ

N3

0
BBBBBB@

1
CCCCCCA
;

ðA4Þ

where, as in the main text, ε(t) may be modelled as

ε tð Þ ¼ 1 for t < t0 or t ≥ t0 þ τ;
q for t0 ≤ t < t0 þ τ:

�
ðA5Þ

Nevertheless, school closure could, in theory, influence the contacts with other age-
groups too. That is, school children are likely to stay in the home during the closure

and the contact rate between children and adults may be increased in an indirect manner,

e.g., parents may have to spend longer time with children than usual. If the proportion π

of reduced child-to-child contacts is maintained and compensated by child-to-young adult

contacts, the contact matrix during the closure may read

M
0 ¼

qp1k1
1−qð Þπp1k1N1 þ p2k1N1

N2

1−p1−p2ð Þk1N1

N3

1−qð Þπp1k1 þ p2k1
p3 k2N2−p2k1N1ð Þ

N2

1−p3ð Þ k2N2−p2k1N1ð Þ
N3

1−p1−p2ð Þk1 1−p3ð Þ k2N2−p2k1N1ð Þ
N2

k3−
1−p1−p2ð Þk1N1 þ 1−p3ð Þ k2N2−p2k1N1ð Þ

N3

0
BBBBBB@

1
CCCCCCA
;

ðA6Þ

It should be noted that the increase in child contact with elderly is ignored, assuming

that mostly parents, not elderly, have to take care of children during the school closure

[15]. It should also be noted that other contacts were assumed not to have been influ-

enced by the compensation, although, in theory, the maintenance of contacts should

influence all other elements (so that the total number of contacts per day remain con-

stant for all age-groups); we ignore this mathematical issue for simplicity.
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