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IOP induces upregulation of GFAP and MHC-II
and microglia reactivity in mice retina
contralateral to experimental glaucoma
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Abstract

Background: Ocular hypertension is a major risk factor for glaucoma, a neurodegenerative disease characterized by
an irreversible decrease in ganglion cells and their axons. Macroglial and microglial cells appear to play an
important role in the pathogenic mechanisms of the disease. Here, we study the effects of laser-induced ocular
hypertension (OHT) in the macroglia, microglia and retinal ganglion cells (RGCs) of eyes with OHT (OHT-eyes) and
contralateral eyes two weeks after lasering.

Methods: Two groups of adult Swiss mice were used: age-matched control (naive, n=9); and lasered (n=9). In the
lasered animals, both OHT-eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained
with antibodies against glial fibrillary acid protein (GFAP), neurofilament of 200kD (NF-200), ionized calcium binding
adaptor molecule (Iba-1) and major histocompatibility complex class I molecule (MHC-II). The GFAP-labeled retinal
area (GFAP-RA), the intensity of GFAP immunoreaction (GFAP-IR), and the number of astrocytes and NF-200 + RGCs
were quantified.

Results: In comparison with naive: i) astrocytes were more robust in contralateral eyes. In OHT-eyes, the astrocyte
population was not homogeneous, given that astrocytes displaying only primary processes coexisted with
astrocytes in which primary and secondary processes could be recognized, the former having less intense GFAP-IR
(P<0.001); ii) GFAP-RA was increased in contralateral (P <0.05) and decreased in OHT-eyes (P <0.001); iii) the mean
intensity of GFAP-IR was higher in OHT-eyes (P < 0.01), and the percentage of the retinal area occupied by GFAP+
cells with higher intensity levels was increased in contralateral (P=0.05) and in OHT-eyes (P < 0.01); iv) both in
contralateral and in OHT-eyes, GFAP was upregulated in Muller cells and microglia was activated; v) MHC-II was
upregulated on macroglia and microglia. In microglia, it was similarly expressed in contralateral and OHT-eyes. By
contrast, in macroglia, MHC-II upregulation was observed mainly in astrocytes in contralateral eyes and in Mdller
cells in OHT-eyes; vi) NF-200+RGCs (degenerated cells) appeared in OHT-eyes with a trend for the GFAP-RA to
decrease and for the NF-200+RGC number to increase from the center to the periphery (r=-045).

Conclusion: The use of the contralateral eye as an internal control in experimental induction of unilateral IOP
should be reconsidered. The gliotic behavior in contralateral eyes could be related to the immune response. The
absence of NF-200+RGCs (sign of RGC degeneration) leads us to postulate that the MHC-II upregulation in
contralateral eyes could favor neuroprotection.
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Background

Ocular hypertension is a major risk factor for glaucoma,
a neurodegenerative disease characterized by an irrevers-
ible decrease of ganglion cells and their axons, the func-
tional impact of which leads to a visual-field loss [1-7].

Although the hypothesis is generally accepted that
glaucomatous damage is a consequence of axonal degen-
eration that ends with the death of ganglion cells, recent
studies have shown the important role played by glia in
the pathogenic mechanism of the disease [8-12].

Under normal conditions, astrocytes and Miiller glia
make contact with retinal neurons, providing stability to
the neural tissue [13]. Physiological studies have demon-
strated that both cell populations perform equivalent
functions, including: storing glycogen, providing glucose
to neurons, regulating the levels of extracellular potas-
sium, playing a major role in the regulation and me-
tabolism of neurotransmitters such as GABA, helping
to remove CO, from the retina, and contributing to
the maintenance of water homeostasis in the retina
[12,14-18]. Furthermore, astrocytes as well as Miiller
cells can induce blood-brain barrier properties within
the vascular endothelial cells [19].

Resident glia in the retina and optic-nerve head alter
their gene-expression profile during activation, presum-
ably exerting neuroprotective or damaging influences at
different phases of disease progression [20]. In the glau-
comatous optic neuropathy, glial cells from the retina
and from the optic nerve show abnormal behavior. This
results in the expression of glial fibrillary acid protein
(GFAP) in Miiller glia and the appearance of reactive
astrocytes, which are characterized by a change in their
form and their GFAP expression [21].

The neurofilaments from retinal ganglion cells (RGCs)
undergo alterations in glaucoma. It has been reported
that the excitatory neurotransmitter glutamate, which
exhibits elevated extracellular levels in pathologies such
as glaucoma, can enhance the phosphorylation of neuro-
filaments [22] and induce the accumulation of neurofila-
ments in the neuronal soma [23]. Additionally, the
interference of axonal transport has been proposed as
one possible mechanism of neurofilament-induced path-
ology and the disorganized neurofilaments can induce
selective neuronal degeneration and death [24].

It has been suggested that reactive glial cells could
help protect retinal ganglion cells, as they can be a
source of neurotrophic factors [25]. On the contrary, re-
active glial cells can exacerbate neuronal damage and
may become one of the etiologies of glaucoma through
the release of cytokines, reactive oxygen species, and
functional disorders of the glutamate uptake in Miiller
cells [26,27]. This could negatively influence ganglion
cells, which could lose their normal functional support
[28,29]. In this regard, the colocalization of caspase 3
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and GFAP in astrocytes and Miiller glia in glaucomatous
retina has indicated that these cells may be involved in
the apoptosis process, in which the increase of nitric
oxide (NO) and tumor-necrosis factor (TNF-a) pro-
duced by glial cells would lead to the death of retinal
ganglion cells exposed to stressful conditions [30,31].

Altered crosstalk between RGCs and microglia, astro-
cytes or oligodendrocytes has been proposed as an early
factor in the pathophysiology of glaucoma [20]. The lack
of agreement concerning the role played by the glia in
ganglion cells has raised the need for research on both
the location and the discrimination of responses which
take place simultaneously in the RGCs and glia [8].

The present study analyzes a mouse model of ocular
hypertension (OHT), both in the eye with laser-induced
OHT (OHT-eyes) and in the contralateral eye. The aim
was to determine i) concurrent responses of macroglial
and retinal ganglion cells, using specific antibodies as
markers against cytoskeletal proteins from both cells:
GFAP (a major constituent of the astrocyte cytoskeleton
[32] and NF-200kD (a major constituent of the neuronal
cytoskeleton, which after axonal injury has an abnormal
distribution in the soma and dendrites of the RGCs [33];
and ii) whether there is an inflammatory reaction to
OHT by using anti-Iba 1 (a retinal microglial-specific
calcium-binding adaptor protein) [34,35] and an anti-
body against the class II major histocompatiblity com-
plex (anti-MHC-II) (a marker for active antigen-
presenting cells) [36] and then compare them with ret-
inas from naive eyes.

Methods

Animals and anesthetics

Experiments were performed on adult male albino Swiss
mice (40 to 45 g) obtained from the breeding colony of
the University of Murcia (Murcia, Spain). The animals
were housed in temperature- and light-controlled rooms
with a 12-hour light/dark cycle and ad libitum access to
food and water. Light intensity within the cages ranged
from 9 to 24 luxes. Animal manipulation followed insti-
tutional guidelines, European Union regulations for the
use of animals in research, and the ARVO (Association
for Research in Vision and Ophthalmology) statement
for the use of animals in ophthalmic and vision research.
All surgical procedures were performed under general
anesthesia induced with an intraperitoneal (i.p.) injection
of a mixture of Ketamine (75 mg/kg, Ketolar®, Parke-
Davies, S.L., Barcelona, Spain) and Xylazine (10 mg/kg,
Rompun®, Bayer, S.A., Barcelona, Spain). During recov-
ery from anesthesia, mice were placed in their cages and
an ointment containing tobramycin (Tobrex®; Alcon S.
A., Barcelona, Spain) was applied on the cornea to pre-
vent corneal desiccation and infection. Additional mea-
sures were taken to minimize discomfort and pain after
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surgery. The animals were killed with an i.p. overdose of
pentobarbital (Dolethal Vetoquinol®, Especialidades
Veterinarias, S.A., Alcobendas, Madrid, Spain).

Experimental groups

Two groups of mice were considered for study: an age-
matched control (naive, n=9) and a lasered group (n=9).
This latter were processed two weeks after lasering.

Induction of ocular hypertension and IOP measurements
To induce OHT, the left eyes of anesthetized mice were
treated in a single session with a series of diode laser
(Viridis Ophthalmic Photocoagulator-532 nm, Quantel
Medical, Clermont-Ferrand, France) burns. The laser
beam was directly delivered without any lenses, aimed at
the limbal and episcleral veins. The spot size, duration,
and power were 50 to 100 um, 0.5 seconds and 0.3 W,
respectively. Each eye received between 55 to 76 burns.

The intraocular pressure (IOP) of the mice was mea-
sured under deep anesthesia in both eyes with a rebound
tonometer (Tono-Lab, Tiolat, OY, Helsinki, Finland)
[30,37] prior to and 24 to 48 hours and one week after
laser treatment for the lasered group and before being
killed for the naive. At each time point, 36 consecutive
readings were made for each eye and averaged. To avoid
fluctuations of the IOP due to the circadian rhythm in
albino Swiss mice [38] or due to the elevation of the
IOP itself [39], we tested the IOP consistently around
the same time, preferentially in the morning and directly
after deep anesthesia in all animals (lasered group and
naive). Moreover, because general anesthesia lowers the
IOP in the mouse, we measured the IOP of the treated
eye (OHT-eye) as well as the contralateral intact fellow
eye in all the experiments.

Immunohistochemistry

The mice were deeply anesthetized, perfused transcardially
through the ascending aorta first with saline and then with
4% paraformaldehyde in 0.1 M phosphate buffer (PB) (pH
7.4). The orientation of each eye was carefully maintained
with a suture placed on the superior pole immediately
after deep anesthesia and before perfusion fixation. More-
over, upon dissection of the eye, the insertion of the rectus
muscle and the nasal caruncle were used as additional
landmarks [40]. The eyes were post-fixed for two hours in
the same fixative and kept in sterile 0.1 M PB.

The retinas from both groups were dissected and pro-
cessed as retinal whole-mounts [41]. Of the nine mice
included in the lasered group, six were used to quantify
the effect of OHT on astrocytes and RGCs while three
were used to analyze whether there was an inflammatory
response to OHT. The retinas of the mice were double
immunostained as described elsewhere [42] with
anti-GFAP plus anti-NF-200 (which recognizes both
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phosphorylated and dephosphorylated forms of the
200-kD neurofilaments) in order to study the effect
of OHT on retinal macroglia and RGC, respectively.
The working dilutions were 1/80 for rabbit anti-
neurofilament 200 (Sigma-Aldrich, Tres Cantos, Ma-
drid, Spain) and 1/150 for mouse anti-GFAP (GFAP clone
GA-5) (Sigma-Aldrich, Tres Cantos, Madrid, Spain). Bind-
ing sites of the primary antibodies were visualized after
two days of incubation with the corresponding secondary
antibodies: the immunoglobulin fraction of goat anti-
mouse antibody conjugated to fluorescein isothiocyanate
(FITC) (Sigma, St. Louis, Missouri, USA) diluted 1/100
and goat anti-rabbit antibody conjugated to Texas-red
(Vector, Burlingame, CA, USA) diluted 1/50. Vectashield
mounting medium for fluorescence with nuclear counter-
staining (4',6-diamidino-2-phenylindole, DAPI) (Vector,
Burlingame, CA, USA) was used to distinguish one astro-
cyte clearly from another for counting purposes.

To determine whether there was an inflammatory re-
action to OHT, we triple immunostained the retinal
whole-mounts with the following primary antibodies:
anti-mouse MHC class II (I-A/I-E) (eBioscience, San
Diego, CA, USA) in a 1/100 dilution, rabbit anti Iba 1
(Wako, Osaka, Japan) in a 1/500 dilution and chicken anti-
GFAP (Millipore, Massachusetts, MA, USA) in a 1/100 di-
lution. Binding sites of the primary antibodies were visua-
lized with the corresponding secondary antibodies: goat
anti-mouse Alexa Fluor 488 (Invitrogen, Paisley, UK)
diluted 1/150, donkey anti-rabbit Alexa Fluor 594 (Invitro-
gen) diluted 1/800 and DyLight 405-conjugated donkey
anti-chicken (Jackson ImmunoResearch, West Grove, PA,
USA) diluted 1/150. Negative controls included replace-
ment of primary and secondary antibodies by normal
serum from those species in which the primary antibodies
were raised [42].

Retinal analysis

GFAP-labeled retinal area (GFAP-RA). Intensity of GFAP
immunoreaction (GFAP-IR). Astrocyte and NF-200+RGC
counting

Mice retinal whole-mounts were examined and photo-
graphed under a confocal microscope (Leika TCS SP2
AOBS) and a fluorescence microscope (Zeiss, Axioplan
2 Imaging Microscope) equipped with appropriate filters
for fluorescence emission spectra of FITC (Filter set 10,
Zeiss) and Texas-red (Filter set 15, Zeiss). Fluorescence
microphotographs were taken with the same exposure
time (700 ms). Retinal astrocytes and RGCs were quanti-
fied by a masking procedure.

To determine the effect of OHT, we quantified astro-
cytes and NF-200+RGC somas in the retinal whole-
mount as follows: In an initial step, NF-200+RGC somas
were counted and measured in the retinal whole-mount.
Each entire retinal whole-mount was analyzed using the
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motorized stage of the microscope to scan the whole
preparation along the x-y axis. Thus, all subsequent
fields analyzed were contiguous and were examined sys-
tematically to ensure that no portion of the retinal
whole-mount would be omitted or duplicated. Addition-
ally, so as not to undersample labeled NF-200+RGC
somas lying outside the immediate focal plane, we ana-
lyzed the whole preparation along the z axis. The NF-
200+RGC somas were counted and their size was calcu-
lated with the manual counting tool and the measuring
tool, respectively, included in the Metamorph Imaging
System version 4.5 computer program (© Universal Im-
aging Corps) in association with an Axioplan 2 Imaging
Microscope (Zeiss). The diameter used to estimate NEF-
200+RGC soma size was the longest distance between
opposing cell boundaries when passing through the cen-
ter of the cell. These procedures were made at 20x, giv-
ing up an area of 0.19 mm? per fields analyzed.

In the second step, to evaluate the effect of OHT in
astrocytes, equivalent areas of the retina were consistently
selected for each retinal whole-mount, which included the
optic disc, superior, inferior, nasal, and temporal zones of
the retina (13 areas in total for each retina; Figure 1A).
Photographs of these areas were taken at 10x, providing
an area of 0.78 mm? Astrocytes in mice retina are distrib-
uted in such a way that each GFAP-labeled astrocyte can
be easily distinguished from others, allowing cell counting.
Astrocytes were counted in each selected photograph by
using the manual counting tool of the Metamorph Im-
aging System (Figure 1B).

In addition, to analyze the effect of OHT in GFAD, we
used the same selected photographs to determine the
GFAP-labeled retinal area (GFAP-RA). For this purpose,
we used a computer-assisted morphometric analysis to
quantify the retinal area stained with GFAP. The images
were thus processed with the Threshold Tool of the Meta-
morph Imaging System. Thresholding defines a range of
gray-scale values found on the pixels of objects of interest,
differentiating them from other parts of the image based
on the images’ gray scale. Areas of the image that were
marked with the red threshold overlay (GFAP+ astrocytes
and GFAP+ end-foot of the Miiller cells; Figure 1C and D)
as a visual indicator of the thresholded areas were included
in the measurement and processing [43]. Individual images
were taken with a digital high-resolution camera (Cool-
SNAP Photometrics USA) and further processed when
required using Adobe Photoshop®™ CS3 Extended 10.0
(Adobe Systems, Inc., San Jose, CA, USA). Additionally, to
correlate the effect of OHT in both astrocytes and RGCs,
NF-200+RGC somas were manually counted in the 13 ret-
inal areas used for the astrocyte study (Figure 1E and F).

Finally, photographs taken at 10x were used to deter-
mine the intensity of the GFAP-IR. For this, we used
MATLAB (© MathWorks, Inc) and the Metamorph
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Imaging System. MATLAB is a high-level technical com-
puting language that can be used for image processing.
Some tools of the program allowed us to create absolute
pseudocolor intensity maps based in a gray scale ranging
from zero to 4,095 (12 bits images). All maps had the
same preset color scale that assigned a color to each in-
tensity value (Figure 2), allowing us to identify different
intensity levels of the GFAP-IR (Miiller cells plus astro-
cytes) among groups of study. In addition, MATLAB
was used to quantify the mean intensity of the GFAP-IR
and the percentage of the retinal area occupied by GFAP
+ cells with higher intensity levels.

The GFAP intensity of individual astrocytes in OHT-
eyes was quantified in each selected photograph by using
the pixel-value information associated with the manual
counting tool of the Metamorph Imaging System.

Analysis of Iba-1 and MHC-II expression

Samples processed with MHC-II and Iba-1 antibodies were
analyzed and photographed with the ApoTome device (Carl
Zeiss, Germany) coupled to a fluorescence microscope
(Zeiss, Axioplan 2 Imagin Microscope) equipped with ap-
propriate filters for fluorescence-emission spectra of Alexa
fluor 488 (Filter set 10, Zeiss), Alexa fluor 594 (Filter set 64,
Zeiss) and DyLight 405 (Filter set 49, Zeiss). The ApoTome
uses the ‘structured-illumination” method that enables con-
ventional microscopy to create optical sections through the
specimen and thereby improve the contrast and resolution
along the optical axis.

Statistical analysis

The selected areas of the retina that were taken at 10x
were used to quantify the number of astrocytes, GFAP-
RA, and the number of RGCs. These were grouped in
two different ways for analysis: as areas of the retina
(disc, superior, inferior, nasal, and temporal, giving rise
to 13 areas per retina) and concentric zones of the retina
(disc, central, intermediate and periphery).

Data for the statistical analysis were introduced and pro-
cessed in a SPSS 19.0 (comprehensive statistical software;
SPSS Inc®). Data are shown as mean + SD. Statistical ana-
lyses were performed with the analysis of variance
(ANOVA) and Bonferroni test to identify differences
among: i) IOP values of the OHT-eyes, the contralateral
and naive eyes; ii) the GFAP-labeled retinal area (GFAP-
RA); iii) mean intensity of GFAP-staining; iv) the percent-
age of the retinal area occupied by GFAP+ cells with
higher intensity levels (above 3,000 in the gray scale); and
v) astrocyte number. A T test was used to compare: i) the
GFAP-RA between the contralateral and the naive eyes; ii)
the number of astrocytes in which primary and secondary
processes could be identified between OHT-eyes and
naive; iii) the percentage of the retinal area occupied by
GFAP+ cells with higher intensity levels (above 3,000 in
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a Superior

Inferior

Figure 1 Retinal whole-mount. GFAP-labeled retinal area (GFAP-RA) and NF-200+RGC counting. A: division of the retina in concentric
zones for study and areas of retina selected from each zone; B: photomicrograph illustrating the astrocyte-counting methodology, GFAP+
astrocytes (in green) and DAPI, a nuclear marker (in red); C: photomicrograph of one of the areas of the retina selected for GFAP-RA
quantification; D: same area shown in C processed with the threshold tool included in the Metamorph Imaging System. In red, GFAP-labeled
retina included in the measurements and processing; E: double immunostaining photographs used to correlate the effect of OHT in both GFAP+
astrocytes (in green) and NF-200+RGCs (in red); F: same area shown in E used for manual counting of NF-200+RGCs. Fluorescence microscopy (B,
C,D); Confocal microscopy (EF). GFAP, glial fibrillary acidic protein; NF-200, 200 kD neurofilament; OHT, ocular hypertension; RGCs, retinal ganglion cells.

the gray scale) between the contralateral and the naive  processes could be identified. Pearson’s correlation was
eyes; and iv) the intensity of GFAP-IR between astrocytes  used to assess the possible relation between IOP and: i)
in OHT-eyes in which primary and secondary processes the GFAP-RA of eyes from lasered eyes; ii) the number of
could be identified and those in which only primary astrocytes in which only primary processes could be
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Figure 2 Intensity of GFAP immunoreaction. Pseudocolor-intensity maps drawn with MATLAB program. All maps had the same preset
color scale that assigned a color to each intensity value, identifying different intensity levels of the GFAP-IR (Mdller cells plus astrocytes). Cool
colors represent lower intensity levels while warm colors represent higher intensity levels. Although no differences in mean intensity of GFAP-IR
were found between naive (A) and contralateral (B) eyes, differences were found when the comparison was made by the percentage of the
retinal area occupied by GFAP+ cells with higher intensity levels. C-D microphotographs were taken from the same retina. They illustrate that
OHT-eyes had retinal areas with high (C) and low (D) intensity of GFAP-IR, the later having mainly astrocytes in which only primary processes
were detected. GFAP-IR, glial fibrillary acidic protein immunoreaction; OHT, ocular hypertension.

identified in OHT-eyes; and iii) the number of NF-200 nerve-fiber-RGC layer of GFAP+ cells regularly

+RGCs in OHT-eyes. The same correlation was used to distributed throughout the retina from the disc

determine the possible relation between NF-200+RGCs (Figure 3A) to the periphery. This plexus was

and: i) the GFAP-RA in OHT-eyes; and ii) the number of constituted by stellate cells that could be easily

astrocytes in which only primary processes could be iden- distinguished from each other, allowing the

tified in OHT-eyes. possibility of manually counting individual cells
(Figure 3D, G and J). GFAP+ astrocytes had a

Results rounded body from which numerous primary and

Laser-induced ocular hypertension secondary processes extended (Figure 3]). In some

The IOP values of OHT-eyes (29.6 + 4.4 mmHg) signifi- retinal areas, the Miiller cells were GFAP+ and

cantly differed from naive values (16.2+3.1 mmHg; P appeared as punctate structures between the

< 0.001, ANOVA with Bonferroni) and contralateral eyes astrocytes and their radiating processes

(15.4+1.6 mmHg; P<0.001, ANOVA with Bonferroni). (Figure 3D).

No significant differences were found between contralat- ii. Contralateral eyes: astrocytes had a rounded cell

eral and naive eyes. body from which numerous primary and secondary
processes extended. Unlike in naive eyes, astrocytes

Effects of 15 days of OHT in retinal macroglia (GFAP were more robust (Figure 3K) and formed a

expression) honeycomb network (Figure 3B, E and H). Similar to

Morphological description naive eyes, GFAP+ Miiller cells were observed in

some retinal areas (Figure 3E and H).
i. Age-matched control (naive): In naive mice the iii. Treated eyes (OHT-eyes): we found astrocytes in
astrocytes formed a homogeneous plexus on the which primary and secondary processes could be

=
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NAIVE CONTRALATERAL

Figure 3 (See legend on next page.)




Gallego et al. Journal of Neuroinflammation 2012, 9:92
http://www.jneuroinflammation.com/content/9/1/92

Page 8 of 18

(See figure on previous page.)

Figure 3 GFAP immunostaining of equivalent areas of the retinal whole-mounts. Astrocyte morphology and GFAP-IR of macroglial cells in
naive and in contralateral and OHT-eyes after 15 days of laser-induced OHT. A-C: overview of the retinal astrocytes around the optic disc in naive
(A), contralateral (B), and OHT-eyes (C). D-L: images correspond to zone 1 of study. In naive eyes (A, D, G, J), astrocytes formed a homogeneous
plexus on the nerve-fiber-RGC layer of cells regularly distributed throughout the retina. This plexus was constituted by stellate cells that could
easily be distinguished from each other (D, G). Astrocytes had a rounded body from which numerous primary and secondary processes extended
(J) and Mller cells (arrowhead) exhibited punctate GFAP+ structures between the astrocytes (D, Q). In contralateral eyes (B, E, H, K), astrocytes
were more robust (K) than in naive eyes (J) and formed a honeycomb network (E, H, K). GFAP+ Mdiller cells were observed in some retinal areas
(arrowhead) in (E, H). Astrocyte morphology in OHT-eyes (C, F, |, L) was not uniform, with astrocytes in which primary and secondary processes
could be observed (empty arrow) in (I) and astrocytes in which only primary processes could be observed (arrow) in (I and L). GFAP+ Muller cells
(C, F, 1) were visible throughout the retina (arrowhead) in (l). Confocal microscopy (A-l); Fluorescence microscopy (J-L). GFAP-IR, glial fibrillary
acidic protein immunoreaction; OHT, ocular hypertension; RGC, retinal ganglion cells.

observed at 10x (Figure 3I) and others in which only
primary processes could be recognized at this
magnification (Figure 3I and L). GFAP+ Miiller cells
were visible throughout the retina (Figure 3C, F and
D).

Astrocyte number and GFAP-labeled retinal area
(GFAP-RA)

i. Astrocyte number: The astrocyte number did not
differ significantly among the eyes analyzed
(215 +14; 202 £ 19; 208 + 30 for naive, contralateral,
and OHT-eyes, respectively). However, in OHT-eyes
the number of astrocytes in which primary and
secondary processes could be observed at 10x
(129 + 20) were decreased in comparison with naive
eyes (215 + 14) (P < 0.01, unpaired T test). In the six
experimental retinas with OHT included in the
quantitative study, the mean percentage of
astrocytes in which only primary processes could be
detected at 10x was 37.8% (78.6 of 208).

ii. GFAP-RA: The GFAP-RA in OHT-eyes
(51,869 £ 5,461) was reduced in comparison with
contralateral eyes (P < 0.001) and naive eyes
(P <0.001) (ANOVA with Bonferroni test)
(Figure 3A-I). This difference was observed when
the analysis was made both by areas of the retina
(n=13) (Figure 4A) and by concentric zones (n =4)
(Figure 4B). In contrast to OHT-eyes, the
contralateral eyes had significantly more GFAP-RA
(72,783 + 13,061) than naive (67,283 + 16,318)
(P <0.05, unpaired T test) (Figure 3D, E, G, H, ], K).

The analysis of GFAP-RA by zones in each group showed
that the GFAP-RA differed among zones in the three
groups analyzed (naive, contralateral, and OHT-eyes: P
<0.003; P<0.002 and P < 0.000, respectively. ANOVA).
The Bonferroni test showed that the optic disc was the only
retinal zone that contained significantly more GFAP-RA
than the others (P<0.01, P<0.05, P<0.001 for naive,

contralateral and OHT-eyes, respectively). Both in OHT-
eyes and in contralateral eyes the GFAP-RA from the con-
centric zones chosen for study tended to decrease from the
disc to the periphery (Figure 4B).

Intensity of GFAP-IR

The comparison of the mean intensity of GFAP-IR
revealed that the three groups of study eyes differed
from each other (P < 0.01; ANOVA). The Bonferroni test
showed that in OHT-eyes (2,019 +392) it was signifi-
cantly higher than in naive (1,330+162) (P<0.01).
However, when we considered only those retinal areas
with the highest intensities of GFAP-IR, we found that
in contralateral eyes the mean percentage of the retinal
area occupied by GFAP +cells with intensities above
3,000 was higher than in naive eyes (2.0+1.8 and
0.2+0.3, respectively; P=0.05; unpaired T test) but it
did not differ from values for OHT-eyes (5.6+4.3)
(Figure 2).

The analysis of OHT-eyes revealed that the intensity
of GFAP-IR in astrocytes in which primary and second-
ary processes could be observed at 10x (3,021 +534)
(Figure 2C) was significantly higher than those in which
only primary processes could be recognized at the same
magnification (2,073 +497) (P<0.001; paired T test
Figure 2D).

Effects of 15 days of OHT in the retinal ganglion cells (NF-
200 expression)
Morphological description

i. Naive and contralateral eyes: RGC axons were
uniformly labeled with anti-NF-200, and their
morphology was rectilinear. NF-200+RGC staining
was rarely observed in the somas or dendrites of
RGCs (Figure 5A and B).

ii. OHT-eyes: We observed abnormal NF-200
accumulation both in RGC axons (beads on a string
and small varicosities) as well as in the cell bodies
and primary dendrites of some RGCs (Figure 5C
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Figure 4 GFAP-labeled retinal area (GFAP-RA) after 15 days of
laser-induced OHT. Comparison among areas and concentric zones
of the retina analyzed in the three study groups. The GFAP-RA of
the OHT-eyes underwent a statistically significant reduction in
comparison with naive and contralateral eyes. This finding was
observed when the analysis was made both by retinal areas (13
target areas per retina) (A) and by concentric zones of the retina
(disc, central, intermediate, and periphery) (B). Each bar represents
the mean + SD of GFAP-RA. ***P < 0.001 versus naive and
contralateral retinas. ANOVA with Bonferroni test. ANOVA, analysis of
variance; GFAP, glial fibrillary acidic protein; OHT, ocular
hypertension.

and D). NF-200 labeling within the cell soma and
primary dendrites varied from a faint but clear
staining to an intense labeling (Figure 5D).

RGC counting and size
In the six naive retinas used for the quantitative study, the
number of NF-200+RGCs in each was 0, 0, 1, 2, 2, 3,
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respectively, with a mean of 1.3 £ 1.2. Only one of the six
contralateral retinas quantified had one NF-200+RGC.
The retina of one of the six eyes with OHT was not suit-
able for NF-200+RGC counting in the whole retina. In the
remaining five OHT-eyes, the number of NF-200 + RGCs
found was 520, 611, 259, 509, and 616, with a mean of
503 + 145.16. There was a trend (r=-0.47, P < 0.01 Pear-
son’s correlation) for the GFAP-RA to decrease and for
the NF-200+RGC number to increase from the center to
the periphery (Figure 6).

NEF-200+RGC somas size in OHT-eyes ranged from
11 pm to 45 pm. Cells ranging from 17 to 24 pm
accounted for 58.2% of NF-200+RGCs.

Effects of 15 days of OHT in the Iba-1 and MHC-II
expression

Age-matched control (naive)

Retinal microglia from naive eyes stained with anti-Iba-1
exhibited morphological features typical for this cell type
(that is, several thin primary processes emanating from
small cell bodies with a ramification at many branching
points). Microglia cells were distributed in a parallel mosaic
of tiled cells that built networks throughout the entire ret-
ina without overlap between their processes (Figures 7A,
8A).

Weak constitutive MHC-II expression was found in
some microglial cells (Figure 8B and C) and only rarely in
astrocytes (Figure 9B and C) in the naive retina. Only a
small subpopulation of Iba-1+ cells that exhibited dendri-
tiform morphology and that was located in the juxtapapil-
lary area as well as in the marginal region of the retina,
had strong MHC-II immunoreaction (Figure 8B inset and
8C inset). We detected no MHC-II immunostaining in
Miiller cells.

Contralateral eyes

At low magnification (5x), Iba-1+ cells in the contralat-
eral (Figure 7B) retinas formed a denser network than in
naive retinas (Figure 7A). Their morphology differed
with regard to naive in that the somas were larger and
the primary and secondary processes were thicker and
more branched, with fine, finger-like extensions from
the major branches (Figure 8E and H). In comparison to
the naive retina, MHC-II expression in macroglia and
microglia of contralateral retinas was upregulated. Over-
all, Iba-1+ cells were labeled strongly with MHC-II
throughout the contralateral retina (Figure 8F and G).
MHC-II immunostaining of astrocytes was visible
throughout the retina (Figures 9E, F, 10B and C). By
contrast, MHC-II immunoreaction of Miiller cells was
weaker than in astrocytes (Figure 10B and C) and was
restricted to some retinal areas (Figure 9E and F).
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Figure 5 Retinal whole-mount. Double immunostaining for NF-200 and GFAP after 15 days of laser-induced OHT. Axon and RGCs (in

'cc‘)NTRALATER'f;_L

(¥ :

)

red). Macroglia (in green). A-C: Images correspond to area 1 of study. D: image corresponds to area 3 of the study. A-B: NF-200 labelling of RGC
axons was rectilinear and uniform in naive (A) and contralateral eyes (B). NF-200+RGC somas were infrequently observed; C-D: beads on a string-
like immunostaining (arrowhead) and small varicosities (yellow arrow) in NF-200+ axons in OHT-eyes. Abnormal staining of cell bodies and
primary dendrites of RGCs (white arrow) were more frequently found in OHT-eyes (D) than in naive and contralateral eyes. Confocal microscopy.

GFAP, glial fibrillary acidic protein; OHT, ocular hypertension; RGCs, retinal ganglion cells.

Treated eyes (OHT-eyes)

At low magnification (5x) the retinal network formed by
microglial cells was denser (Figure 7C) than in the
contralateral (Figure 7B) and naive eyes (Figure 7A).
These cells had morphological signs of activation, exhi-
biting larger cell bodies and thicker and retracted pro-
cesses (Figure 81 and L) than in contralateral (Figure 8E
and H) and in naive eyes (Figure 8A and D).

Most Iba-1+ microglia showed high MHC-II immu-
noreaction (Figure 8] and K) similar to contralateral
(Figure 8F and G). No MHC-II astrocytes were found.
Miiller cells showed higher immunoreaction for MHC-II
(Figure 9H and I) than contralateral (Figure 9E and F).
MHC-II expression was detected in several groups of
Miiller cells throughout the retina, preferentially located
in the end-foot of the cells (Figure 10E and F). Notably,

GFAP-IR was absent or faint in Miiller cells exhibiting
MHC-II immunostaining (Figure 10D-F).

Discussion
Experimental rodent models have been used to study
glaucomatous neuropathy because they are inexpensive
and easier to handle than other animal models (dog and
rabbit). In comparison with the rat, the mouse has a
major advantage, which is the possibility of being genet-
ically manipulated [44]. In addition, although GFAP+
astrocytes were quantified in rats [45,46], another advan-
tage is that mouse astrocytes are farther apart from each
other, allowing us to identify individual cells and count
them one by one, more accurately than in rats [43].
Findings in mouse retinal glial cells reported here cor-
respond to changes observed 15 days after lasering the
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Figure 6 Correlation of GFAP-labeled retinal area (GFAP-RA)
versus NF-200+RGC number in OHT-eyes after 15 days of laser-
induced OHT. There was a trend for the GFAP-RA to decrease and
for the NF-200+RGC number to increase from the disc to the
periphery in OHT-eyes. Data regarding GFAP-RA are the same as in
Figure 3. OHT, ocular hypertension; RGCs, retinal ganglion cells.

treated eye. In the model of laser-induced OHT used in
the present work, a substantial increase of the IOP was
evident 24 hours after lasering which continued for four
days and then gradually returned to the basal value after
the fifth day, so that by one week after lasering, the IOP
values in the treated animals were comparable for both
eyes [40]. The experimental conditions of the present
study constitute a model for human glaucomatous optic
neuropathy and thus, can be used to investigate OHT-
induced changes undergone by retinal macroglia, micro-
glia, and ganglion cells.

The main reason to use whole-mounted preparations
of the retina was to quantify the population of astrocytes
and NF-200+RGCs in the whole mouse retina and also
to analyze the behavior of glial cells and NF-200+RGCs
in different retinal zones. In addition, whole-mounted
preparations allow the differentiation of astrocytes from
Miiller glial cell end-feet which otherwise are not readily
distinguishable in a sectional profile [47,48], allowing
astrocyte quantification.

The intermediate filament protein GFAP of astrocytes
is considered an early marker for retinal injury and is
commonly used as an index of gliosis-hypertrophy
[21,49,50]. Two relevant morphological alterations in
gliotic Miiller cells are hypertrophy and the expression
of the filament protein GFAP [51].

It has been reported that experimental diabetes in rats
induces a differential GFAP expression pattern in the
macroglial cells of the retina, reduces GFAP-IR in astro-
cytes, and increases GFAP-IR in Miiller cells [47]. Such
opposite reactions in astrocytes and Miller cells in
terms of GFAP-IR has been reported in OHT-eyes of

b conNTRALATERAL L ..

Figure 7 Iba-1+ cells in the retinal whole-mounts after 15 days
of laser-induced OHT. The density of Iba-1+ network was increased
in contralateral (B) and OHT-eyes (C) with respect to naive (A).
Higher magnification of equivalent fields in the retinas correspond
to area 2 (insets). A-C: 5x; Insets: 10x. Fluorescence microscopy. Iba-1,
jonized calcium binding adaptor molecule 1; OHT, ocular

hypertension.

two models of experimental glaucoma in rats [43,45]. In
the present study, a similar behavior took place in the
macroglial of OHT-eyes in mice.
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NAIVE [ CONTRALATERAL || OHT

Figure 8 MHC-II expression of Iba-1+ cells in retinal whole-mounts after 15 days of laser-induced OHT. Double immunofluorescence
staining for Iba-1 (in red) and MHC-II (in green). A-C: in naive retinas, a constitutive weak expression of MHC-II (arrowheads) was observed in
some Iba-1+ cells throughout the retina (B). However, some Iba-1+ cells located in the juxtapapillary area and in the far periphery (A, inset) had a
strong constitutive expression of MHC-II (B, inset). E-H: in contralateral eyes, Iba-1+ microglial cells of the retina had morphological changes (H)
and showed a stronger expression of MHC-Il immunoreaction throughout the retina (F,G) in comparison with naive (B-D). I-L: Iba-1+ cell in OHT-
eyes had a similar up-regulation of MHC-II (J-K) as did contralateral eyes (F-G); however, the cell bodies were larger and the processes thicker and
more retracted (L) than in the contralateral (H) retinas. Fluorescence microscopy and image acquisition using the ApoTome. Iba-1, ionized calcium
binding adaptor molecule 1; MHC, major histocompatibility complex; OHT, ocular hypertension.
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Figure 9 Retinal whole-mount. Double immunostaining for GFAP (red) and MHC-II (in green) after 15 days of laser-induced OHT. A-C:
naive eyes; D-F: contralateral eyes; G-I: OHT-eyes. In contralateral eyes MHC-Il immunoreaction of astrocytes (arrow) and Muller cells (arrowhead)
in (E) was increased with respect to naive eyes (arrow) in (B). In OHT-eyes, MHC-Il immunoreaction of Muller cells (arrowhead) in (H) was notably
upregulated in comparison with contralateral (E). Fluorescence microscopy and image acquisition using the ApoTome. GFAP, glial fibrillary acidic
protein; MHC, major histocompatibility complex; OHT, ocular hypertension.

Numerous in vitro and in vivo studies have shown
GFAP to be essential for several astrocyte functions such
as proliferation, differentiation, extension of processes,
vesicle trafficking, astrocyte-neuron interaction [52],
astrogliosis [53] and protection from cerebral ischemia
[52].

In comparison to the naive group, in some astrocytes
of OHT-eyes the secondary processes could not be iden-
tified at 10x magnification. This difference could have
contributed to the decreased GFAP-RA found in OHT-
retinas. In addition, the intensity of the GFAP-IR in
OHT-eyes was significantly higher than in naive eyes.
Whether or not astrocyte differences in OHT-eyes re-
flect a functional change, that is, preparation for migra-
tion or a switch from neuroprotective functions to
immunogenic functions or astrocyte damage, is un-
known. Astrocyte changes in OHT-eyes could impair

the neurosupportive role of astrocytes [54] and partici-
pate in the death of RGCs reported in a recent parallel
study using a comparable methodology to induce OHT
[40].

It bears noting that the astrocyte number was similar
in the three groups studied (OHT-eyes, contralateral,
and naive eyes). This leads us to postulate that in the
retina of OHT-eyes a reactive, non-proliferative gliotic
response takes place, similar to that reported in mouse
[34,55] and rat [43,55]. It has been suggested that a glio-
tic non-proliferative response is the consequence of slow
degeneration, while rapid degeneration leads to a prolif-
erative gliosis [34,55,56]. However, it should be stressed
that, although the number of astrocytes in OHT eyes did
not differ significantly from naive, 37.8% of the astro-
cytes exhibited morphological changes that could ac-
count for the decrease of GFAP-RA in eyes with OHT.
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Figure 10 Retinal whole-mount. Double immunostaining for GFAP (in red) and MHC-II (in green) after 15 days of laser-induced OHT.
The pressure exerted by the cover glass on the retinal whole-mount, produced a retinal-like section effect in some retinal borders. A-C: in
contralateral eyes (A), the GFAP immunoreaction (IR) of Mller cells was weaker than in OHT-eyes (D). MHC-II expression was greater in astrocytes
(arrow) than in Mdller cells (arrowhead) in (B); D-F: in OHT-eyes, MHC-Il was upregulated in Muller cells (arrowhead) in (E), the intensity of the
staining being greater than in contralateral eyes (arrowhead) in (B). GFAP-IR was absent or faint in those Mdller cells exhibiting MHC-II
immunostaining (D-F). Both in contralateral (B) and OHT-eyes (E), the retinal-like section effect enabled us to determine that MHC-Il upregulation
in Muller cells was preferentially located in the end-foot of the cells. Fluorescence microscopy and image acquisition using the ApoTome. GFAP,
glial fibrillary acidic protein; MHC, major histocompatibility complex; OHT, ocular hypertension.

NF-200 is a component of the neuronal cytoskeleton.
Under normal conditions, anti-NF-200 labels axons of
the RGCs but rarely labels RGC somas [57]. Both stain-
ing patterns were observed in our naive group. It is
known that an elevated IOP has been associated with
the disruption of the axonal transport [58] in different
animal models [2,59-62]. A factor deeply involved in

axonal transport is phosphorylation of the heavy neurofi-
lament subunit (NF-H) [63-65]. In a monkey model of
chronic ocular hypertension [66], most NF-Hs in RGC
axons in the glaucomatous eyes were significantly
dephosphorylated by high IOP, which may be a sign of
damaged axonal transport. In the present study, the
number of NF-200+RGCs was significantly increased in
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OHT-eyes in comparison to naive and contralateral eyes.
These RGCs that had accumulated NF-200 in their cell
bodies, proximal axon, and primary dendrites most
probably represented functionally impaired RGCs as a
consequence of the disruption of the axonal transport.
The possibility that NF-200+RGCs represent damaged
cells is supported by a recent study using comparable
methodology to induce OHT, in which eyes with OHT
had RT97+RGCs showing typical signs of axotomy-
induced neuronal degeneration [40]. Notably, the NF-
200+RGC somas of the OHT-eyes in our study tended
to be more abundant in areas of the retina having less
GFAP-RA. It is possible that an impairment of axonal
support exerted by astrocytes could increase the vulner-
ability of the axon to IOP-induced stress [67]. A possible
explanation could be the observations reported by Dibas
et al. [68] according to which retinas with OHT showed
a downregulation of AQP4 protein and an accumulation
of ubiquitin in astrocytes which might not be appropri-
ately transferred to adjacent RGCs. The attenuation of
ubiquitination in axons may result in the accumulation
of several proapoptotic proteins (that is, caspases, Bax
and Bad) [69] and thus contributes to axonal degener-
ation in glaucoma.

It is known that severe axon insult can result in a
rapid Wallerian degeneration of the distal axon [70]. On
the contrary, milder insults may result in degeneration
via the slower process of axonal dying-back and greater
functional connectivity between the soma, proximal
axon, and the distal axon segments [71-76]. This situ-
ation involving the NF-200+RGCs of the present work,
as reported by Soto et al. [56,77] could represent RGCs
that have suffered an insult but retain their fundamental
homeostatic mechanisms, which might provide an op-
portunity for therapeutic rescue in the human disease.

A striking feature of the contralateral eyes was that
macroglia exhibited morphological signs of reactivity
that differed from naive and OHT-eyes: astrocytes were
more robust, formed a honeycomb-like network, and
had an increase in GFAP-RA. In addition, the percentage
of the retinal area occupied by GFAP+ cells with inten-
sities above 3,000 was higher than in naive eyes but did
not differ from that of OHT-eyes. By contrast, the
contralateral retinas of two experimental models of glau-
coma in rats exhibited a decrease in both the retinal area
occupied by astrocytes [43] and the GFAP-IR in astro-
cytes [43,45]. The different behavior of the retinal
macroglia of the contralateral eyes between mice and
rats could be species related or could depend on the ex-
perimental model such as differences in time to increase
pressure or time to return to normal values, among
others [67].

It has been reported that the glial-activation response
in glaucomatous eyes involves the activation of a glial
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immunoregulatory function and antigen-presenting abil-
ity [10,78]. The expression of MHC-II in glial cells,
required for antigen presentation to T cells, is upregu-
lated in the glaucomatous human retina and optic-nerve
head [10,79,80]. In addition, microglial activation has
been demonstrated in human eyes with glaucoma [81],
in experimental models of OHT [8,80,82,83] and in a
genetic mouse model of glaucoma [34]. Our study con-
firms the microglial activation in eyes with OHT, as evi-
denced by their morphological changes and stronger
expression of MHC-II in most microglial cells compared
to naive eyes. Also, MHC-II immunoreaction in Miiller
cells supports the idea of immune activation in eyes with
OHT.

A lack of relation between immune responses in DBA/
2] mice retina and greater IOP has been reported [84] and
recently corroborated by Bosco et al. [20], who saw no
strict correlation between higher IOP and early microglia
activation. They concluded that a rise in IOP may not be a
contributory factor in these initial changes [20]. It bears
mentioning that most microglial cells of the contralateral
eyes (normal values of IOP) showed morphological
changes and MHC-II upregulation in comparison with
naive eyes. In an experimental model of laser-induced
OHT in rats, the contralateral eyes reportedly had a mar-
ginal increase in OX42 and OX6 (a MHC-II marker) two
hours post-operation before returning to almost normal
or normal, respectively, at three days [82]. The microglia
of the contralateral retinas of the present study exhibited
an upregulation of MHC-II immunoreaction that was
widespread and more persistent than in the study of Wang
et al. [82], given that in our retinas, an intense MHC-II
immunoreaction of the microglia was detected throughout
the retina after 15 days of lasering the treated eye. In
addition, MHC-II upregulation was observed in both
macroglial cell types, preferentially in astrocytes, a fact not
reported by Wang et al. [82]. The MHC-II upregulation
that we detected in the three retinal glial types of our
study, which was not temporarily related to surgical eye-
ball manipulations, led us to postulate that an immuno-
logically mediated process was taking place in
contralateral retinas. This glial response may reflect an at-
tempt to maintain tissue homeostasis, perhaps in an effort
to protect optic axons from a compromised blood—brain
barrier [20,81]. A more sustained insult or prolonged
neuronal stress may lead to glial changes that could po-
tentially contribute to neuronal decline.

In the present experiments, we did not estimate RGCs
survival, but in a recent parallel study using a compar-
able methodology to induce OHT, we documented RGC
loss using a retrograde tracer applied to both superior
colliculi one week prior to animal processing. In that
study, the contralateral retinas showed the typical distri-
bution of RGCs throughout the retina [40]. Based on



Gallego et al. Journal of Neuroinflammation 2012, 9:92
http://www.jneuroinflammation.com/content/9/1/92

this data, macroglial activation as well as MHC-II ex-
pression on astrocytes and Miiller cells of our contralat-
eral eyes could have exerted a neuroprotective effect. It
has been suggested that the expression of modest levels
of MHC-II may inhibit the activation of invading T cell,
whereas overexpression of these molecules may promote
the activation of autoimmune T cells, thereby augment-
ing the inflammatory cascade leading to tissue damage
[10,85]. This could be the case for our OHT-eyes in
which GFAP-IR and MHC-II expression of Miller cells
notably increased in comparison to naive and contralat-
eral eyes.

Another finding supporting the possible contribution
of retinal macroglia to neuronal homeostasis in contra-
lateral eyes and the harmful response of this population
in OHT-eyes could be the difference between the
contralateral and OHT-eyes in the NF-200+RGC count.

No previous studies are available on the expression of
MHC-II on macroglia and microglia in the contralateral
eye of adult Swiss mice after 15 days of laser-induced
OHT. MHC-II upregulation in contralateral eyes could
be secondary to IOP-induced changes in OHT-eyes. Fur-
thermore, the absence of NF-200+RGCs (sign of RGC
degeneration) leads us to postulate that the expression
of modest levels of MHC-II in macroglial cells in contra-
lateral eyes could offer a protective role.

Conclusions

In summary, after 15 days of unilateral laser-induced
OHT, widespread and persistent changes in GFAP and
MHC-II expression took place both in the contralateral
and OHT-eyes of adult Swiss mice. MHC-II upregula-
tion in Iba-1+ retinal cells was similar in both eyes; how-
ever, in the retinal macroglia, MHC-II expression was
preferentially located in astrocytes of the contralateral
eye and appeared to be restricted to Miiller cells in the
OHT-eye. The increased antigen-presenting activity in
macroglial and microglial cells may be key in the role of
the immune system in glaucoma. Knowledge of this role
could lead to the development of more effective neuro-
protective treatments to modulate the immune response
to achieve, on the one hand, tissue repair and neuronal
survival, and on the other, a decrease in the immune-
mediated neurodegenerative damage.

On the basis of the alterations in the contralateral eye,
we conclude that it should not be used as a control eye
in this experimental model of laser-induced OHT. Fur-
ther research is needed to understand the behavior of
contralateral eyes in other models of experimental OHT.
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