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The cytokine tumor necrosis factor-like weak
inducer of apoptosis and its receptor fibroblast
growth factor-inducible 14 have a
neuroprotective effect in the central nervous
system
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Abstract

Background: Cerebral cortical neurons have a high vulnerability to the harmful effects of hypoxia. However, the
brain has the ability to detect and accommodate to hypoxic conditions. This phenomenon, known as
preconditioning, is a natural adaptive process highly preserved among species whereby exposure to sub-lethal
hypoxia promotes the acquisition of tolerance to a subsequent lethal hypoxic injury. The cytokine tumor necrosis
factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are
found in neurons and their expression is induced by exposure to sub-lethal hypoxia. Accordingly, in this work we
tested the hypothesis that the interaction between TWEAK and Fn14 induces tolerance to lethal hypoxic and
ischemic conditions.

Methods: Here we used in vitro and in vivo models of hypoxic and ischemic preconditioning, an animal model of
transient middle cerebral artery occlusion and mice and neurons genetically deficient in TWEAK, Fn14, or tumor
necrosis factor alpha (TNF-a) to investigate whether treatment with recombinant TWEAK or an increase in the
expression of endogenous TWEAK renders neurons tolerant to lethal hypoxia. We used enzyme-linked
immunosorbent assay to study the effect of TWEAK on the expression of neuronal TNF-a, Western blot analysis to
investigate whether the effect of TWEAK was mediated by activation of mitogen-activated protein kinases and
immunohistochemical techniques and quantitative real-time polymerase chain reaction analysis to study the effect
of TWEAK on apoptotic cell death.

Results: We found that either treatment with recombinant TWEAK or an increase in the expression of TWEAK and
Fn14 induce hypoxic and ischemic tolerance in vivo and in vitro. This protective effect is mediated by neuronal
TNF-a and activation of the extracellular signal-regulated kinases 1 and 2 pathway via phosphorylation and
inactivation of the B-cell lymphoma 2-associated death promoter protein.

Conclusions: Our work indicate that the interaction between TWEAK and Fn14 triggers the activation of a cell
signaling pathway that results in the induction of tolerance to lethal hypoxia and ischemia. These data indicate
that TWEAK may be a potential therapeutic strategy to protect the brain from the devastating effects of an
ischemic injury.

Keywords: TWEAK, Cerebral ischemia, Inflammation, Ischemic tolerance, Preconditioning

* Correspondence: myepes@emory.edu
1Department of Neurology and Center for Neurodegenerative Disease,
Emory University School of Medicine, Atlanta, GA, USA
Full list of author information is available at the end of the article

Echeverry et al. Journal of Neuroinflammation 2012, 9:45
http://www.jneuroinflammation.com/content/9/1/45

JOURNAL OF 
NEUROINFLAMMATION

© 2012 Echeverry et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:myepes@emory.edu
http://creativecommons.org/licenses/by/2.0


Background
It has been long recognized that cerebral cortical neu-
rons have a high vulnerability to the deleterious effects
of hypoxia. However, despite its obvious clinical impor-
tance, the development of a successful neuroprotective
strategy to protect the brain from the harmful conse-
quences of an ischemic insult has been largely unsuc-
cessful. Preconditioning is a natural adaptive process
highly preserved among species whereby a sub-lethal
insult (preconditioning event) promotes the acquisition
of tolerance to an otherwise lethal environmental
change [1]. Accordingly, exposure to a sub-lethal injury,
including a short episode of hypoxia and/or ischemia,
renders neurons resistant to a subsequent lethal hypoxic
or ischemic insult [2]. Because ischemic stroke in the
third cause of mortality and a leading cause of disability
in the world [3], understanding the mechanisms under-
lying this phenomenon, known as ‘ischemic tolerance’, is
of the utmost importance for the development of an
effective neuroprotective strategy for the treatment of
acute ischemic stroke patients.
Tumor necrosis factor-like weak inducer of apoptosis

(TWEAK) is a member of the tumor necrosis factor
(TNF) superfamily of cytokines [4] that is found in the
central nervous system in endothelial cells, perivascular
astrocytes, neurons and microglia [5,6]. Fibroblast
growth factor-inducible 14 (Fn14) is the receptor for
TWEAK [7] and binding of TWEAK to Fn14 has been
reported to stimulate cell proliferation [8-10], migration
[9-11] and differentiation [12], as well as the expression
of pro-inflammatory molecules [4,9,13-17].
Experimental work with animal models of cerebral

ischemia [5,18,19] and acute ischemic stroke patients
[20] indicates that the onset of the ischemic insult is fol-
lowed by an increase in the expression of TWEAK and
Fn14 in the ischemic tissue and serum, which has been
deemed to have a negative impact on the final neurolo-
gical outcome. Hence, the interaction between TWEAK
and Fn14 activates a proinflammatory cell signaling
pathway (reviewed in [21]), which has been linked to
cell death during cerebral ischemia [22]. Accordingly, a
genetic deficiency of TWEAK or Fn14 [23], or treatment
with anti-TWEAK neutralizing antibodies [18] or a solu-
ble Fn14-Fc decoy receptor [5] reduces the volume of
the ischemic lesion following the induction of experi-
mental ischemic stroke.
It has been reported that TWEAK induces apoptotic

cell death in neuronal cultures [18,24]. However, it is
known that TWEAK is a poor cytotoxic agent that
induces cell death in conjunction with other sensitizers
(reviewed in [21]) via multiple mechanisms, including
caspase-dependent apoptosis and cathepsin-mediated
necrosis [25]. In contrast with these observations,

experimental work with glial cell tumors indicate that
the interaction between TWEAK and Fn14 has a pro-
survival effect mediated by the induction of B-cell lym-
phoma 2 (Bcl-2) proteins [26].
The cytokine TNF-a is a member of the TNF superfam-

ily of ligands synthesized as a monomeric type-2 trans-
membrane protein that is inserted into the membrane as a
homotrimer and cleaved by the matrix metalloprotease
TNF converting enzyme to a 51-kDa soluble circulating
trimer (soluble TNF-a). Importantly, although it has been
demonstrated that, following the onset of ischemic stroke,
the expression of TNF-a in the peripheral circulation and
central nervous system increases, the effect of TNF-a in
the ischemic brain is as of yet unclear [27]. Accordingly,
some have demonstrated that increased TNF-a has a dele-
terious effect in the acute phases of cerebral ischemia
[28-30] and that TWEAK-induced cell death is mediated
by the interaction between TNF-a and TNF receptor 1
(TNFR1) [31]. In contrast, others have shown that an
increase in circulating TNF-a by treatment with either
TNF-a or lipopolysaccharide before the onset of the ische-
mia has a beneficial effect in the ischemic brain and med-
iates the development of ischemic tolerance [2,32-34].
The extracellular signal-regulated kinases 1 and 2

(ERK 1/2) are members of the family of mitogen-acti-
vated protein kinases that have been associated with
neurodegeneration and ischemic cell death [35]. How-
ever, a growing body of recent evidence indicates that
ERK 1/2 activation has a pro-survival effect in the
ischemic brain [36], mediated by its ability to attenuate
apoptotic cell death [37]. Accordingly, ERK 1/2 mediate
the phosphorylation and inactivation of the Bcl-2-asso-
ciated death promoter protein (BAD). Additionally, ERK
1/2 induce the expression of pro-survival Bcl-2 proteins,
notably Bcl-2 and Bcl-xL [38].
Our work indicates that the interaction between

TWEAK and Fn14 leads to the development of ischemic
tolerance. Indeed, our in vitro and in vivo data show
that either treatment with TWEAK or the induction of
endogenous TWEAK and Fn14 expression by sub-lethal
hypoxia renders neurons tolerant to a lethal hypoxic
and/or ischemic injury. This effect is mediated by TNF-
a and ERK 1/2 activation via phosphorylation of BAD.
Together, our data reveal a novel mechanism for the
development of ischemic tolerance and suggest that
treatment with sub-lethal concentrations of TWEAK
may be an effective strategy to induce tolerance in the
brain of ischemic stroke patients.

Methods
Animals and reagents
Murine strains were TWEAK deficient (TWEAK-/-) and
Fn14 deficient (Fn14-/-; kindly provided by Dr.
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Kyungmin Hahm, Biogen Idec Inc., Cambridge, MA,
USA) mice, and TNF-a deficient (TNF-a-/-) mice and
their wild-type (Wt) littermate controls on a C57BL/6 J
genetic background. Other reagents were recombinant
TWEAK (rTWEAK; R&D Systems, Minneapolis, MN,
USA), the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide (MTT) assay (ATCC, Manassas, VA,
USA) and the lactate dehydrogenase (LDH) release assay
(Roche, Florence, SC, USA), an ELISA kit for TNF-a
(Insight Genomics, Falls Church, VA, USA), antibodies
against TNF-a and TNFR1 (R&D Systems), ERK 1/2
phosphorylated at Thr202/Tyr204 (pERK), total ERK 1/2
and BAD phosphorylated at Ser112 (pBAD)(Cell Signal-
ing, Danvers, MA, USA), b-actin (Sigma Aldrich, St.
Louis, MO, USA), the Mitogen Activated Protein Kinase
(MAPK) extracellular signal-regulated kinase (MEK)
inhibitor SL327 (Tocris Bioscience, Ellisville, MO, USA),
wortmannin, the nuclear markers 4’-6-diamidino-2-phe-
nylindole (DAPI) and triphenyltetrazolium chloride
(TTC; Sigma-Aldrich), and the ApopTag Plus Fluores-
cein In Situ Apoptosis Detection Kit (Chemicon Inter-
national, Billerica, MA, USA).

Animal model of cerebral ischemia, in vivo model of
preconditioning and quantification of the volume of the
ischemic lesion
Transient occlusion of the middle cerebral artery
(tMCAO) was induced in TWEAK-/-, Fn14-/- and TNF-
a-/- mice and their corresponding Wt littermate controls
with a 6-0 silk suture advanced from the external caro-
tid artery into the internal carotid artery until the origin
of the middle cerebral artery (MCA), as described else-
where [39]. Briefly, animals were anesthetized with 4%
chloral hydrate (400 mg/kg intraperitoneal injection)
and a nylon monofilament (6-0, Ethicon, Issy Les Mouli-
neaux, France) coated with silicone was introduced
through the external carotid artery and advanced up to
the origin of the MCA. The suture was withdrawn after
60 minutes of cerebral ischemia. Cerebral perfusion in
the distribution of the MCA was monitored throughout
the surgical procedure and after reperfusion with a laser
Doppler (Perimed Inc., North Royalton, OH, USA), and
only animals with a > 70% decrease in cerebral perfu-
sion after occlusion and complete recovery after suture
withdrawal were included in this study. The rectal and
masseter muscle temperatures were controlled at 37°C
with a homoeothermic blanket. Heart rate, systolic, dia-
stolic and mean arterial blood pressures were controlled
throughout the surgical procedure with an IITC 229
System (IITC-Lice Science, Woodland Hills, CA, USA).
From the total number of mice used in this study (155),
13 (8.3%) were excluded due to incomplete reperfusion
after tMCAO and eight (5.16%) died. To induce
ischemic tolerance, a subgroup of mice were

intraperitoneally injected 24 hours before tMCAO with
0.1 mL of TWEAK (2 mg/mL) alone or in combination
with either the MEK inhibitor SL327 (30 mg/kg) or a
comparable volume of saline solution. To measure the
volume of the ischemic lesion, animals were deeply
anesthetized 24 hours after tMCAO, the brains were
harvested, cut onto 2 μm sections and stained with
TTC. Each section was photographed and the volume of
the ischemic lesion was measured by a blinded investi-
gator with the National Institutes of Health Image Ana-
lyzer System as described elsewhere [5]. Each
observation was repeated ten times. Results are given as
a percentage of the stroke volume in untreated animals.
All procedures were approved by the Emory University
Institutional Animal Care and Use Committee.

Neuronal cultures, determination of cell survival and
death and in vitro model of preconditioning
Cerebral cortical neurons were cultured from E16-18
Wt, TWEAK-/-, Fn14-/- and TNF-a-/- mice as described
elsewhere [40]. Briefly, the cerebral cortex was dissected,
transferred into Hanks’ balanced salt solution containing
100 units/mL penicillin, 100 μg/mL streptomycin, and
10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid, and incubated in trypsin containing 0.02% DNase
at 37°C for 15 min. Tissue was then triturated and the
supernatant was re-suspended in B27-supplemented
neurobasal medium containing 2 mM l-glutamine and
plated onto 0.1 mg/mL poly-l-lysine-coated wells.
To study the effect of TWEAK on neuronal survival,

Wt cerebral cortical neurons were incubated over 1 or
24 hours with 100 ng/mL or 300 ng/mL of rTWEAK or
a comparable volume of vehicle (control), followed 24
hours later by determination of cell survival and/or
death with the MTT and LDH release assays following
manufacturer’s instructions and as described elsewhere
[40]. Results are given as a percentage of cell survival or
LDH release into the media compared to control cul-
tures. Each experiment was performed in cultures from
three different animals and each observation was
repeated 15 times.
For TWEAK-induced preconditioning, Fn14-/-,

TWEAK-/- and Wt cerebral cortical neurons were incu-
bated over 60 minutes with 0 to 300 nM of rTWEAK
alone or in combination with antibodies against either
TNF-a (0.04 μg/mL) or TNFR1 (100 μg/mL) or an
immunoglobulin G isotype control, or with wortmannin
100 nM or SL327 10 μM. Twenty-four hours later, cells
were exposed in an anaerobic chamber (Hypoxygen,
Frederick, MD, USA) to 55 minutes of oxygen-glucose
deprivation (OGD) conditions (< 0.1% oxygen, 94% N2

and 5% CO2 at 37°C) in glucose-free media containing
CaCl2 1.8 mM, MgSO4 0.8 mM, KCl 5.3 mM, NaHCO3

44.05 mM and NaCl 110.34 mM, followed 24 hours
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later by determination of cell survival and/or death with
the MTT and LDH release assays.
To induce hypoxic preconditioning, neurons were

exposed to OGD conditions for 30 minutes. A subset of
TWEAK-/- and Fn14-/- cells was incubated with
rTWEAK 100 ng/mL. The media was then changed to
fresh culture media and the cells were returned to the
incubator for 24 hours. As controls, sister cultures were
kept in OGD media without hypoxia for 30 minutes and
then in fresh culture media for 24 hours. After 24
hours, cells were exposed to 55 minutes of OGD condi-
tions and neuronal survival and/or death was studied 24
hours later with the MTT and LDH release assays. Each
experiment was performed in cultures from three differ-
ent animals and each observation was repeated 12 times.

Quantitative real-time PCR analysis
Wt cerebral cortical neurons were either exposed to 30
minutes of OGD conditions or incubated under nor-
moxic conditions for 60 minutes with TWEAK 100 ng/
mL. In both experimental groups the media was chan-
ged to fresh culture media and cells were harvested 1, 3
or 6 hours later. Total RNA was isolated using the
RNeasy mini kit (Qiagen; Valencia, CA) according to
the manufacturer’s instructions. Equal amounts of RNA
were taken for cDNA synthesis using a High-capacity
cDNA Kit (Applied Biosystems). Briefly, 2 × reverse
transcription master mix was prepared from 10 ×
Reverse Transcription Buffer, 25 × deoxyribonucleotide
triphosphates, 10 × random primers, and MultiScribe
Reverse Transcriptase (Applied Biosystems) and mixed
with equal parts of total RNA. The PCRs were per-
formed using TaqMan Gene Expression Assays (Applied
Biosystems) using forward and reverse primers as well
as internal probes Mm00839900_m1, Mm00489103_m1,
Bcl-w Mm00432054_m1 and BclxL Mm00437783_m1
for TWEAK, Fn14, Bcl-w and Bcl-xL, respectively. The
PCRs were performed using 7500 Fast Real-Time PCR
System (Applied Biosystems) under the following condi-
tions: 50°C for 2 minutes, 95°C for 10 minutes, 40 cycles
at 95°C for 15 seconds and 60°C for 1 minute. Each
experiment was repeated eight times.

Determination of TWEAK and TNF-a concentrations
To determine the effect of hypoxia on the release of
TWEAK from cerebral cortical neurons, we used an
ELISA (Adipobiotech, Santa Clara, CA, USA) to quantify
the concentration of TWEAK in the culture media of
Wt neurons maintained under normoxic conditions or
exposed to 0 to 360 minutes of OGD conditions. Each
observation was repeated eight times. To measure the
effect of TWEAK on the release of neuronal TNF-a, Wt
cerebral cortical neurons were incubated with TWEAK
100 ng/mL or a comparable volume of vehicle (control),

followed at 1, 5, 30 or 60 minutes by quantification of
TNF-a in the culture media with an ELISA kit (Insight
Genomics) following manufacturer’s instructions. Each
experiment was repeated with neurons cultured from
three different animals, and each observation was
repeated eight times.

Western blot analysis
Wt cerebral cortical neurons were incubated for 60 min-
utes with TWEAK 100 ng/mL alone or in combination
with the ERK 1/2 inhibitor 10 μM. After 0 to 180 min-
utes of incubation, cells were homogenized in radioim-
munoprecipitation assay lysis buffer; protein
concentration was determined with the bicinchoninic
acid protein assay (Thermo Scientific; Canton, GA) and
16 μg of total protein were loaded for SDS-PAGE elec-
trophoresis and immunoblotting with antibodies direc-
ted against pERK 1/2, total ERK 1/2, pBAD, total BAD
and b-actin. Each observation was repeated four to six
times.

Immunohistochemistry and determination of apoptotic
cell death
Wt mice received an intraperitoneal injection of 0.1 mL
of TWEAK (2 mg/mL) or a comparable volume of sal-
ine solution followed 24 hours later by tMCAO.
Twenty-four hours after tMCAO, brains were harvested
and 10 μm frozen sections were stained with the Apop-
Tag Plus Fluorecein In Situ Apoptosis Detection Kit fol-
lowing manufacturer’s instructions. Briefly, sections
were fixed in 1% paraformaldehyde in PBS, pH 7.4, for
10 minutes at room temperature, permeabilized in a 2:1
ratio of ethanol-acetic acid solution for 5 minutes at
-20°C, washed twice for 5 minutes and then incubated
in a humidified chamber for 1 hour at 37°C with modi-
fied nucleotides coupled with the enzyme terminal deox-
ynucleotidyl transferase. Samples were then washed,
incubated with anti-digoxigenin conjugate for 30 min-
utes and stained with the nuclear marker DAPI.
To quantify the number of terminal deoxynucleotidyl

transferase mediated dUTP nick end labeling (TUNEL)-
positive cells, each coronal section was divided into 16
square areas (150 mm2 each) that involved the necrotic
core and the area of ischemic penumbra, and compar-
able areas in the non-ischemic hemisphere. Two areas
of interest (AOI) were chosen in the boundaries
between the ischemic penumbra and necrotic core
(AOI-1 that includes the frontoparietal zone and AOI-3
that involves the temporoparietal area), and a third zone
was located in the necrotic core (AOI-2). To determine
the number of TUNEL-positive cells, images were digi-
tized in a Zeiss Axioplan 2 microscope 20 × objective
(Munich, Germany) with a Zeiss AxioCam and imported
into AxioVision, viewed at 150% of the original with
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Image MetaMorph Software and the percentage of
TUNEL-positive cells in relation to the total number of
DAPI-positive cells per AOI recorded. Each observation
was repeated eight times.
To study the effect of TWEAK on pBAD expression,

Wt cerebral cortical neurons were incubated for 60 min-
utes with rTWEAK 100 ng/mL or a comparable volume
of vehicle (control) and fixed and stained 1, 3 or 6
hours later with an antibody against pBAD. Each obser-
vation was repeated four times.

Statistical analyses
Data was analyzed by either a Wilcoxon rank-sum test
or, in cases where more than one group was compared,
by analysis of variance. Statistical significance was deter-
mined by P < 0.05.

Results
The interaction between TWEAK and Fn14 protects
neurons from hypoxia-induced cell death
First we used an ELISA to quantify the concentration of
TWEAK in the culture media of Wt neurons exposed to
OGD conditions for 0 to 6 hours. We found that the
concentration of TWEAK in the culture media increased
from 6 ± 1.3 pg/mL in cells maintained under normoxic
conditions to 10.32 ± 3.64 pg/mL, 14.72 ± 3.47 pg/mL,
13.37 ± 0.7 ng/mL and 6.4 ± 2.5 pg/mL after 30, 60,
180 and 360 minutes of exposure to OGD conditions,
respectively (n = 8 per experimental group; P < 0.05
when cells exposed to 30, 60 and 180 minutes of OGD
were compared to neurons maintained under normoxic
conditions; results were non-significant when cells
exposed to 6 hours of OGD conditions were compared
to control neurons).
Activation of inflammatory pathways by a precondi-

tioning stimulus is thought to reduce the inflammatory
response to a subsequent period of ischemia, leading
to neuroprotection [41], and so we decided to investi-
gate whether the cytokine TWEAK induces hypoxic
tolerance. However, because it has been reported that
24 hours of incubation with TWEAK induces neuronal
death [18,24], first we investigated whether treatment
over a shorter period of time (1 hour) also has an
effect on cell survival. Wt cerebral cortical neurons
were incubated for 1 or 24 hours with 100 or 300 ng/
mL of TWEAK followed by determination of cell sur-
vival with the MTT assay as described in the Methods
section. We found that, as previously described [24],
24 hours of incubation with 100 or 300 ng/mL of
TWEAK is associated with a 25.4% and 37% decrease
in neuronal survival, respectively. In contrast, 1 hour
of incubation with either 100 or 300 mg/dL of
TWEAK did not have an effect on cell survival (Figure
1A; n = 15, P < 0.05).

We then used a previously described in vitro model of
preconditioning [40] to investigate whether treatment
with sub-lethal concentrations of TWEAK renders neu-
rons resistant to a subsequent lethal hypoxic injury. Wt
cerebral cortical neurons were either left untreated or
incubated with TWEAK 0 to 300 ng/mL for 60 minutes
followed 24 hours later by exposure to 55 minutes of
OGD conditions as depicted in Figure 1B (upper panel)
and described in the Methods section. Cell survival was
quantified 24 hours later with an MTT assay. Our
results indicate that exposure to OGD conditions
decreases neuronal survival from 100 ± 0.11% to 46.2 ±
2.8% in non-preconditioned cells. In contrast, cell survi-
val in neurons preconditioned with 30, 100 or 300 ng/
mL of TWEAK 24 hours before exposure to OGD con-
ditions was 79.4 ± 3.1%, 64.9 ± 2.0% and 58.3 ± 4%,
respectively (Figure 1B; n = 20 per experimental condi-
tion; P < 0.05 compared to non-preconditioned cells).
To determine whether the protective effect of precon-

ditioning with TWEAK is also observed at later time-
points, we quantified cell survival 24, 48 and 72 hours
after exposure to 55 minutes of OGD conditions. We
found that cell survival decreased from 100 ± 0.8% in
control neurons to 54.80 ± 2.4% in neurons exposed to
OGD conditions without preconditioning with TWEAK.
In contrast, preconditioning with TWEAK 24 hours
before exposure to OGD conditions increased neuronal
survival to 72.10 ± 1.92%, 77 ± 1.1% and 80 ± 2.0%,
when the MTT assay was performed 24, 48 and 72
hours after exposure to OGD, respectively (Figure 1C; n
= 12 per experimental condition, P < 0.05).
To investigate whether the protective effect of

TWEAK is mediated by its interaction with Fn14, we
quantified cell survival in Wt and Fn14-/- cerebral corti-
cal neurons incubated with TWEAK 100 ng/mL for 1
hour followed 24 hours later by exposure to 55 minutes
of OGD conditions. We found that exposure of non-
preconditioned neurons to OGD conditions decreased
cell survival from 100 ± 0.2% to 50.3 ± 1.2% in Wt neu-
rons and from 100 ± 0.88% to 40.8 ± 2.4% in Fn14-/-

neurons. In contrast, cell survival in Wt and Fn14-/-

neurons preconditioned with TWEAK was 66.13 ± 1.8%
and 41.3 ± 1.8%, respectively (Figure 1D; n = 10; P <
0.05), indicating that genetic deficiency of Fn14 abro-
gates the ability of TWEAK to induce tolerance to the
deleterious effects of OGD.

Endogenous TWEAK mediates the development of
hypoxic and ischemic tolerance
It has been demonstrated that exposure to 30 minutes
of OGD conditions (hypoxic preconditioning) not only
does not induce cell death [42] but instead renders cere-
bral cortical neurons tolerant to a lethal hypoxic injury
applied at later time points (hypoxic tolerance). Based
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on these observations we decided to investigate whether
endogenous TWEAK plays a role in the protective effect
of hypoxic preconditioning. First, we studied the effect
of sub-lethal hypoxia (preconditioning) on TWEAK and
Fn14 expression. Wt cerebral cortical neurons were
exposed to 30 minutes of OGD conditions followed 1, 3
and 6 hours later by quantification of TWEAK and
Fn14 mRNA expression by quantitative RT-PCR analysis
as described in the Methods section. Our results indi-
cate that sub-lethal hypoxia induces a rapid and transi-
ent increase in TWEAK and Fn14 mRNA expression in

cerebral cortical neurons that is maximal at 1 hour for
TWEAK and 3 hours for Fn14 (Figure 2A).
We then quantified cell survival in Wt, TWEAK-/- and

Fn14-/- cerebral cortical neurons exposed to sub-lethal
hypoxia (30 minutes of OGD conditions) followed 24
hours later by lethal hypoxia (55 minutes of OGD con-
ditions). Sister cultures were exposed to lethal hypoxia
without previous preconditioning as controls. A sub-
group of TWEAK-/- and Fn14-/- neurons was incubated
with TWEAK 100 ng/mL during the preconditioning
phase. Our results indicate that hypoxic preconditioning
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Figure 1 The interaction between TWEAK and Fn14 induces hypoxic tolerance. (A) Mean cell survival in Wt cerebral cortical neurons
incubated 1 or 24 hours with TWEAK 100 ng/mL or 300 ng/mL. *P < 0.05 compared to cells incubated for 60 minutes with TWEAK 100 ng/mL.
**P < 0.05 compared to cells incubated for 60 minutes with TWEAK 300 ng/mL. n = 15 per experimental group. Lines denote SD. (B) Mean cell
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induces a 23.44% increase in cell survival in Wt neurons
(Figure 2B; n = 12, P < 0.05) and that this effect is abro-
gated in neurons genetically deficient in either TWEAK
or Fn14 (Figure 2C, D; n = 12). Importantly, incubation
with TWEAK during the preconditioning phase had a

rescue effect in TWEAK-/- (17.5% increase in neuronal
survival) but not in Fn14-/- neurons.
To investigate whether treatment with TWEAK also

has a neuroprotective effect in vivo, we measured the
volume of the ischemic lesion in Wt and Fn14-/- mice
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intraperitoneally injected with either TWEAK or a com-
parable volume of saline solution 24 hours before
tMCAO, as described in the Methods section. We found
that preconditioning with TWEAK decreases the volume
of the ischemic lesion from 69.3 ± 7.2 mm3 to 46.41 ±
3.3 mm3 and 54.31 ± 4.8 mm3 24 and 48 hours after
tMCAO, respectively. In contrast, we failed to observe a
significant decrease in the volume of the ischemic lesion
in Fn14-/- mice preconditioned with TWEAK (Figure 3;
n = 10; P < 0.05 in Wt mice and non-significant in
Fn14-/- animals).

TNF-a mediates the neuroprotective effect of TWEAK
Because it has been reported that TNF-a mediates some
of the biological effects of TWEAK [43], we investigated
whether TNF-a also mediates TWEAK-induced toler-
ance. First, we used an ELISA to study the expression of
TNF-a in the culture media of Wt cerebral cortical neu-
rons incubated for 1 to 60 minutes with TWEAK 100
ng/mL. Our results indicated that TWEAK induces a
rapid increase in the expression of neuronal TNF-a and
that this effect is maximum at 30 minutes of incubation
(Figure 4A; 12,309 ± 526 pg/mL, n = 8, P < 0.05).
We then used the MTT assay to study cell survival in

Wt cerebral cortical neurons incubated for 60 minutes
with TWEAK 100 ng/mL alone or in combination with
neutralizing antibodies against either TNF-a 0.04 μg/mL
or TNFR1 100 μg/mL, or an immunoglobulin G isotype

control, followed 24 hours later by exposure to 55 min-
utes of OGD conditions (lethal hypoxia). We found that,
whereas treatment with TWEAK rendered neurons tol-
erant to a lethal hypoxia insult applied 24 hours later,
this preconditioning effect was abrogated by incubation
with either anti-TNF-a or anti-TNFR1 antibodies (Fig-
ure 4B; n = 12). To further study the role of TNF-a on
TWEAK-induced neuroprotection, we quantified cell
survival in TNF-a-/- cerebral cortical neurons incubated
for 1 hour with TWEAK 0 to 300 ng/mL followed 24
hours later by exposure to 55 minutes of OGD condi-
tions. Our results indicated that TWEAK fails to induce
hypoxic tolerance in TNF-a-/- neurons (Figure 4C: n =
10, non-significant).
To investigate whether TNF-a also mediates the

protective effect of treatment with TWEAK in vivo,
we measured the volume of the ischemic lesion in Wt
and TNF-a-/- mice intraperitoneally injected with
either TWEAK or a comparable volume of saline solu-
tion 24 hours before tMCAO. We found that, whereas
preconditioning with TWEAK decreases the volume of
the ischemic lesion in Wt mice from 70.5 ± 8.2 mm3

to 49.35 ± 4.4 mm3 in Wt mice, this effect is abro-
gated by a genetic deficiency of TNF-a (Figure 4D; n
= 12).

The ability of TWEAK to induce ischemic tolerance is
mediated by activation of the ERK 1/2
Because ERK 1/2 mediates the protective effects of sev-
eral factors that enhance neuronal survival following
exposure to hypoxia/ischemia [35], we investigated
whether ERK 1/2 also mediates the neuroprotective
effect of TWEAK. First, we studied the expression of
pERK 1/2 in Wt cerebral cortical neurons incubated for
0 to180 minutes with TWEAK 100 ng/mL. We found
that TWEAK induces ERK 1/2 activation, and that this
effect is maximal at 5 to 15 minutes of incubation (Fig-
ure 5A).
To investigate whether TWEAK-induced hypoxic tol-

erance is mediated by ERK 1/2 activation, we quantified
cell survival in Wt cerebral cortical neurons exposed to
55 minutes of OGD conditions 24 hours after 1 hour of
incubation with TWEAK 100 ng/mL either alone or in
combination with the ERK 1/2 inhibitor SL327 10 μM.
Our results indicate that the preconditioning effect of
TWEAK is abrogated by ERK 1/2 inhibition (Figure 5B;
n = 12).
Activation of the PI3K/Akt pathway also promotes

survival in neurons exposed to hypoxic conditions [40],
and so we investigated the effect of PI3K inhibition with
wortmannin 20 nM on TWEAK-induced precondition-
ing. We found that inhibition of the PI3K/Akt pathway
does not abrogate the neuroprotective effect of TWEAK
(Figure 5B).
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To determine whether the protective effect observed
following treatment with TWEAK in vivo was also
mediated by ERK 1/2 activation we measured the
volume of the ischemic lesion in Wt mice intraperitone-
ally injected with TWEAK, alone or in combination
with blood-brain barrier-permeable ERK 1/2 inhibitor
SL327, 24 hours before tMCAO. Our results indicate
that the beneficial effect of preconditioning with
TWEAK in vivo is abrogated by ERK 1/2 inhibition (Fig-
ure 5D; n = 8).

Preconditioning with TWEAK attenuates cerebral
ischemia-induced apoptotic cell death
Because experimental work with glial cell tumors indi-
cates that TWEAK induces the expression of the anti-
apoptotic proteins Bcl-xL and Bcl-w, we used RT-PCR
analysis to study Bcl-xL and Bcl-w mRNA expression in
Wt cerebral cortical neurons incubated with TWEAK 1,
3, 6 or 24 hours. Our data indicated that TWEAK does
not induce the expression of Bcl-xL and Bcl-w in neu-
rons (data not shown).
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It has been demonstrated that ERK 1/2 induces the
phosphorylation of BAD at Ser112. Because our data
indicate that the protective effect of TWEAK is
mediated by ERK 1/2 activation, then we investigated
the effect of TWEAK on BAD phosphorylation. To test
this hypothesis we studied the expression of pBAD 1, 3
and 6 hours after 60 minutes of incubation with
TWEAK 100 ng/mL. Our results indicated that TWEAK
induces rapid phosphorylation of BAD in cerebral corti-
cal neurons (Figure 6A).
To further characterize these results, we studied the

expression of pBAD in Wt cerebral cortical neurons
incubated with TWEAK alone or in combination with
SL327. We found that TWEAK induced pBAD expres-
sion in neurons and that this effect is inhibited by co-
treatment with SL327 (Figure 6B).
Because phosphorylation of BAD has an anti-apoptotic

effect, we investigated whether preconditioning with
TWEAK decreases cerebral ischemia-induced apoptotic
cell death. Wt mice were intraperitoneally injected with
TWEAK or a comparable volume of saline solution, fol-
lowed 24 hours later by tMCAO and determination of
apoptotic cell death in the ischemic tissue as described
in the Methods section. We found that preconditioning
with TWEAK decreases the percentage of TUNEL-posi-
tive cells per field in the ischemic area from 14.25 ±
3.9% in saline solution-treated animals to 8.1 ± 2.3% in
animals pre-treated with TWEAK (Figure 6C, D; n = 10,
P < 0.05). Importantly, co-treatment with SL327 not
only abrogated the effect of TWEAK on apoptotic cell

death but also increased the number of apoptotic cells
per field to 23 ± 6% (Figure 6D; n = 10, P < 0.05).

Discussion
Ischemic stroke has a devastating effect on the brain.
Indeed, one minute of cerebral ischemia destroys
approximately 1.9 million neurons and 14 billion
synapses [44]. However, despite this appalling outcome,
the brain has the ability to develop tolerance to a lethal
hypoxic and/or ischemic injury, suggesting the existence
of a mechanism to adapt to hypoxic and ischemic con-
ditions. Thus, elucidating the mechanisms underlying
the development of ischemic tolerance may lead to the
development of an effective neuroprotective tool to pro-
tect the brain from the harmful effects of ischemic
stroke.
Our data indicates that the interaction between the

cytokine TWEAK and its receptor Fn14 renders neurons
tolerant to a lethal hypoxic and/or ischemic injury. This
suggests that, as also described with other signaling
pathways, TWEAK/Fn14 induces the acquisition of
resistance against hypoxic and/or ischemic damage.
Indeed, our data indicate that although TWEAK is able
to induce neuronal death, low level or short exposure to
TWEAK induces ischemic tolerance, as do other nox-
ious stimuli below the threshold of significant tissue
damage.
The onset of cerebral ischemia is followed by an

inflammatory reaction that has been commonly linked
with cell death and poor neurological outcome.
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However, a growing body of evidence indicates that the
development of a proinflammatory status may also have
a beneficial effect in the ischemic brain. Indeed, is now
well recognized that regardless of the preconditioning
stimulus, the development of ischemic tolerance is not
associated with variations in regional tissue perfusion,
but instead with cellular changes triggered by proinflam-
matory cytokines [41]. In agreement with these observa-
tions, our data show that treatment with TWEAK
induces ischemic tolerance in vivo and in vitro and that

a genetic deficiency of either TWEAK or Fn14 abrogates
the beneficial effects of preconditioning with sub-lethal
hypoxia (hypoxic preconditioning).
In apparent contradiction with a neuroprotective role

for TWEAK are the reports that the interaction between
TWEAK and Fn14 induces cell death. Accordingly, ear-
lier studies indicate that a genetic deficiency of TWEAK
or Fn14 [23], or treatment with either monoclonal anti-
bodies against TWEAK [18] or with a soluble Fn14-Fc-
decoy receptor [5] are associated with improved
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neurological outcome following experimental cerebral
ischemia. However, in most of the cases the effect of
TWEAK on cell death is relatively weak and requires
long incubation periods [21]. These observations agree
with our results, which indicate that 24 hours but not 1
hour of incubation with TWEAK induces neuronal
death. Importantly, our data show that sub-lethal
hypoxia (hypoxic preconditioning) has a rapid and tran-
sient effect on TWEAK and Fn14 expression in cerebral
cortical neurons, suggesting that the pro-survival or
death promoting effects of TWEAK are associated with
a transient or sustained increase in the expression of
this cytokine, respectively. Together, these data indicate
that TWEAK and Fn14 have a dual role in the central
nervous system.
A pro-survival effect of TWEAK is supported by work

from other groups with glial cell tumors demonstrating
that TWEAK suppresses apoptotic cell death in glioma
via its ability to induce Bcl-xL and/or Bcl-w expression
[26]. Our data indicate that although TWEAK does not
induce Bcl-xL and/or Bcl-w expression in cerebral corti-
cal neurons, it causes a rapid increase in BAD phosphor-
ylation at Ser112, inhibiting its pro-apoptotic properties.
It has been described that ERK 1/2 mediates BAD

phosphorylation at Ser112 [45]. Our results show that
TWEAK induces ERK 1/2 activation, and that ERK 1/2
inhibition abrogates the beneficial effect of TWEAK.
Importantly, in contrast with the observation that the
pro-survival effect of ERK 1/2 is associated with activa-
tion of the PI3K/Akt pathway [37], our data show that
treatment with wortmannin does not inhibit TWEAK-
induced neuroprotection, suggesting the existence of an
alternative pathway for TWEAK-induced ERK 1/2-
mediated ischemic tolerance.
There are two TNF-a receptors: TNFR1 (p55) and

TNFR2 (p75). TNFR1 has an intracellular death domain
sequence. Accordingly, the interaction between TNF-a
and TNFR1 has been linked with cell death in different in
vivo and in vitro models of neurodegeneration [27]. How-
ever, in apparent discrepancy with these observations, ani-
mals genetically deficient in TNFR1 have a worse
neurological outcome following experimental cerebral
ischemia than their wild-type controls [46]. Additionally,
later studies indicate that the interaction between TNF-a
and TNFR1 induces tolerance in the ischemic brain, and
that this effect is mediated by erythropoietin and vascular
endothelial growth factor [47]. In line with these observa-
tions, our results show that the ability of TWEAK to
induce ischemic tolerance is abrogated by a genetic defi-
ciency of TNF-a or TNFR1 antagonism.

Conclusions
Based on our data, we propose a model where, in
response to sub-lethal hypoxia and/or ischemia, the

interaction between TWEAK and Fn14 promotes the
development of ischemic tolerance via TNF-a and ERK
1/2-mediated inhibition of apoptotic cell death. Our
results also suggest that treatment with TWEAK may be
a therapeutic strategy to protect the brain of patients at
high risk of ischemic stroke.
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