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Abstract

Background: Neuroinflammation is important in the pathogenesis and progression of Alzheimer disease (AD).
Previously, we demonstrated that lipopolysaccharide (LPS)-induced neuroinflammation caused memory
impairments. In the present study, we investigated the possible preventive effects of 4-O-methylhonokiol, a
constituent of Magnolia officinalis, on memory deficiency caused by LPS, along with the underlying mechanisms.

Methods: We investigated whether 4-O-methylhonokiol (0.5 and 1 mg/kg in 0.05% ethanol) prevents memory
dysfunction and amyloidogenesis on AD model mice by intraperitoneal LPS (250 μg/kg daily 7 times) injection. In
addition, LPS-treated cultured astrocytes and microglial BV-2 cells were investigated for anti-neuroinflammatory and
anti-amyloidogenic effect of 4-O-methylhonkiol (0.5, 1 and 2 μM).

Results: Oral administration of 4-O-methylhonokiol ameliorated LPS-induced memory impairment in a dose-
dependent manner. In addition, 4-O-methylhonokiol prevented the LPS-induced expression of inflammatory
proteins; inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as activation of astrocytes
(expression of glial fibrillary acidic protein; GFAP) in the brain. In in vitro study, we also found that 4-O-
methylhonokiol suppressed the expression of iNOS and COX-2 as well as the production of reactive oxygen
species, nitric oxide, prostaglandin E2, tumor necrosis factor-a, and interleukin-1b in the LPS-stimulated cultured
astrocytes. 4-O-methylhonokiol also inhibited transcriptional and DNA binding activity of NF-�B via inhibition of I�B
degradation as well as p50 and p65 translocation into nucleus of the brain and cultured astrocytes. Consistent with
the inhibitory effect on neuroinflammation, 4-O-methylhonokiol inhibited LPS-induced Ab1-42 generation, b- and g-
secretase activities, and expression of amyloid precursor protein (APP), BACE1 and C99 as well as activation of
astrocytes and neuronal cell death in the brain, in cultured astrocytes and in microglial BV-2 cells.

Conclusion: These results suggest that 4-O-methylhonokiol inhibits LPS-induced amyloidogenesis via anti-
inflammatory mechanisms. Thus, 4-O-methylhonokiol can be a useful agent against neuroinflammation-associated
development or the progression of AD.
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Background
Alzheimer’s disease (AD) is the most common cause of
dementia accounting for 50% to 75% of all cases [1,2].
AD is pathologically characterized by the presence of
senile plaques and neurofibrillary tangles in the brain. In
particular, the senile plaques are extracellular aggregates
of the amyloid beta-peptide (Ab) that is cleaved from
the amyloid precursor protein (APP) [3]. Neuropatholo-
gical studies in the human brains have demonstrated
that the activation of glial cells excessively releases pro-
inflammatory mediators and cytokines, which in turn
trigger a neurodegenerative cascades via neuroinflamma-
tion [4-8]. Numerous investigators have reported that
neuroinflammatory processes contribute to the patho-
genesis and progression of AD. In neuroinflammation,
various cytokines, chemokines, oxygen free radicals, and
reactive nitrogen species [9], as well as prostaglandin E2
(PGE2) [10], are important signaling molecules and
components of neuroinflammatory responses [11].
It has also been shown that the inflammatory media-

tors such as Nitric oxide (NO) and prostaglandins (PGs)
as well as cytokines such as interleukin (IL)-1b, IL-6,
tumor necrosis factor-a (TNF-a) and transforming
growth factor-b (TGF-b) can augment APP expression
[12,13] and Ab formation [14]. These inflammatory
mediators and cytokines are able to transcriptionally
upregulate b-secretase mRNA, protein, and enzymatic
activity [15], thus affecting Ab formation [16]. However,
anti-inflammatory compounds decrease memory defi-
ciency and the accumulation of Ab plaques, and elevate
levels of soluble APP-a [17,18]. Moreover, the adminis-
tration of anti-inflammatory agents in AD patients could
reduce amyloidogenesis, suggesting that neuroinflamma-
tion may influence the occurrence and pathogenesis of
AD through anti-amyloidogenesis [19].
Systemic administration of lipopolysaccharides (LPS)

induces cognitive impairment in mice [20,21]. The
administration of LPS also induces the release of the
proinflammatory cytokines such as IL-1b, IL-6, and
TNF-a and these cytokines exert neurobiological effects
[22], suggesting that induction of systemic inflammation
affects the neurobiological condition. There is much evi-
dence illustrating that LPS-induced neuroinflammation
is related to the up-regulation of NF-�B [23-26]. LPS-
induced neuronal damages can be restored via the inhi-
bition of I�B kinase-b [23]. In our previous study, we
showed that intraperitoneal (i.p.) injections of LPS
induced memory impairment and amyloidogenesis in in
vivo, and anti-inflammatory compounds such as (-)-epi-
gallocatechin-3-gallate (EGCG) abolished LPS-induced
amyloidogenesis via inhibiting NF-�B as well as inhibit-
ing b- and g-secretase activities [27,28]. Thus, systemic
administration of LPS could be applicable for the study

of neuroinflammation and neuroinflammation-associated
pathogenesis of AD.
Magnolia bark has been used in traditional medicine

to treat various disorders [29,30]. Several constituents of
the Magnolia such as honokiol, obovatol and magnolol
have been reported to have anti-inflammatory [31-33],
neuroprotective [34-36], and anti-oxidative effects
[37,38]. Recently, we found that 4-O-methylhonokiol
isolated from Magnolia officinalis has anti-oxidative
[39], anti-inflammatory [40] and neurotrophic activities
[41]. It also showed memory-improving effects via the
reduction of Ab accumulation in Ab1-42-injected mice
and memory-deficient transgenic mice via the anti-oxi-
dative and anti-inflammatory effects [42-44]. In this
study, to define the effect of 4-O-methylhonokiol against
Ab accumulation via the prevention of neuroinflamma-
tion, we investigated the effect of 4-O-methylhonokiol
on LPS-induced memory impairments and amyloidogen-
esis via anti-inflammatory reactions in LPS-injected mice
brain, in cultured astrocytes and in microglial BV-2
cells.

Methods
4-O-methylhonokiol
2-[4-Methoxy-3-(2-propenyl)phenyl]-4-(2-propenyl)phe-
nol (4-O-methylhonokiol, Molecular Weight = 280.4,
Molecular Formula = C19H20O2) of chemical structure
shown in Figure 1A was isolated from the bark of Mag-
nolia officinalis as described elsewhere [40,45]. The bark
of Magnolia officinalis was dried in the shade at room
temperature and stored in a dark, cold room until use.
The air-dried bark of Magnolia officinalis (3 kg) was cut
into pieces and extracted twice with 95% (v/v) ethanol
(four times as much as the weight of the dried plants)
for 3 days at room temperature. After filtration through
the 400-mesh filter cloth, the filtrate was re-filtered
through filter paper (Whatman, No. 5) and concentrated
under reduced pressure. The extract (450 g) was then
suspended in distilled water, and the aqueous suspen-
sion was extracted with n-hexane, ethyl acetate, and n-
butanol, respectively. The n-hexane layer was evaporated
to dry, and the residue (70 g) was chromatographed on
silica gel with n-hexane:ethyl acetate (9:1) solution to
extract a crude fraction that included 4-O-methylhono-
kiol. This fraction was repeatedly purified by silica gel
chromatography using n-hexane:ethyl acetate as the elu-
ent to obtain pure 4-O-methylhonokiol (Figure 1A). The
purity was more than 99.5%. 4-O-methylhonokiol was
identified by 1H NMR (400 MHz, CDCl3) I: 3.36 (2H,
d, J = 7 Hz, H-7), 3.44 (2H, d, J = 7 Hz, 7’-H), 3.89 (3H,
s, OMe), 5.05-5.14 (5H, m, H-9, H-9’, OH), 5.93-6.07
(2H, m, H-8, H-8’), 6.92 (1H, d, J = 7 Hz, Ar-H), 6.97
(1H, d, J = 8 Hz, Ar-H), 7.04-7.08 (2H, m, Ar-H), 7.24-
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7.31 (2H, m, Ar-H) and 13 C NMR (100 MHz, CDCl3)
I: 34.5 (C-7), 39.6 (C-7’), 55.8 (OMe), 111.2 (C-3’), 115.7
(C-4’), 115.8 (C-9), 116.1 (C-9’), 128.0 (C-1’), 128.1 (C-
6), 129.0 (C-3), 129.2 (C-1), 130.0 (C-5), 130.4 (C-6’),
130.7 (C-2), 132.4 (C-5’), 136.7 (C-8), 138.0 (C-8’), 151.0
(C-2’), 157.2 (C-4). The ethanol extract of Magnolia offi-
cinalis contained 16.6% 4-O-methylhonokiol followed by
16.5% honokiol and 12.9% magnolol, and 42-45% others.
The information of 4-O-methylhonokiol was previously
reported [40,45]. The result was in agreement with pre-
viously published data [46,47], and this compound may
possibly be the same compound demonstrated by Zhou
et al. [35].
Dosage (0.5 and 1 mg/kg/day) of 4-O-methylhonokiol

in this study was used by referring to our previous stu-
dies [43-45,48]. 4-O-methylhonokiol (15 and 30 μg/
mouse) was added to drinking water (5 ml of average
water consumption of mouse per day) and mice were
allowed access for 3 weeks ad libitum before induction
of memory impairment as shown in Figure 1B.

Lipopolysaccharide-induced memory impairment mouse
model
Five week-old male imprinting control region (ICR)
mice (Samtako, Gyeonggi-do, Korea) were maintained in
accordance with the Institutional Animal Care and Use
Committee (IACUC) of Laboratory Animal Research
Center at Chungbuk National University, Korea
(CBNUA-144-1001-01). All mice were housed in a room
that was automatically maintained at 21-25°C and

relative humidity (45-65%) with a controlled light-dark
cycle. Several researchers reported that repeated i.p.
injection of LPS induced cognitive impairment like AD
in mice [21,49-51]. We therefore used this method as an
AD mice model. The LPS (Sigma, St. Louis, MO. USA,
final concentration of 0.1 mg/ml) was dissolved, and ali-
quots in saline were stored at -20°C until use. The i.p.
injection (250 μg/kg) of LPS or control (saline) was daily
administered for 7 days. Subsequently, the behavioral
tests of learning and memory capacity were assessed
using two separate tests (water maze and passive avoid-
ance test). One day interval was given between tests for
adaptation of new circumstances as shown in Figure 1B.

Water maze test
The water maze test is also a widely accepted method
for memory test, and we performed this test as
described by Morris et al. [52]. Maze testing was per-
formed by the SMART-CS (Panlab, Barcelona, Spain)
program and equipment. A circular plastic pool (height:
35 cm, diameter: 100 cm) was filled with milky water
kept at 22-25°C. An escape platform (height: 14.5 cm,
diameter: 4.5 cm) was submerged 0.5-1 cm below the
surface of the water in position. On training trials, the
mice were placed in a pool of water and allowed to
remain on the platform for 10 s and were then returned
to the home cage during the second-trial interval. The
mice that did not find the platform within 60 s were
placed on the platform for 10 s at the end of trial. They
were allowed to swim until they sought the escape

Figure 1 Chemical structure of 4-O-methylhonokiol (A) and experimental scheme (B).
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platform. These trials were performed in single platform
and in three starting positions of rotational starting.
Escape latency, escape distance, swimming speed and
swimming pattern of each mouse was monitored by a
camera above the center of the pool connected to a
SMART-LD program (Panlab, Barcelona, Spain).

Probe test
A probe trial in order to assess memory consolidation
was performed 24 h after the 5-day acquisition tests. In
this trial, the platform was removed from the tank, and
the mice were allowed to swim freely. For these tests,
the percentage time in the target quadrant and target
site crossings within 60 s was recorded. The time spent
in the target quadrant is taken to indicate the degree of
memory consolidation that has taken place after learn-
ing. The time spent in the target quadrant was used as a
measure of spatial memory. Swimming pattern of each
mouse was monitored by a camera above the center of
the pool connected to a SMART-LD program described
above.

Passive avoidance performance test
The passive avoidance test is widely accepted as a sim-
ple and rapid method for memory test. The passive
avoidance response was determined using a “step-
through” apparatus (Med Associates Inc, Vermont,
USA) that is consisted of an illuminated and a dark
compartment (each 20.3 × 15.9 × 21.3 cm) adjoining
each other through a small gate with a grid floor, 3.175
mm stainless steel rod set 8 mm apart. Two days after
the water maze test, the ICR mice were placed in the
illuminated compartment facing away from the dark
compartment for the training trial. When the mice
moved completely into the dark compartment, it
received an electric shock (2 mA, 3 s duration). Then
the mice were returned to their home case. 24 h later,
the mice were placed in the illuminated compartment
and the latency period to enter the dark compartment
defined as “retention” was measured. The time when the
mice entered in the dark compartment was recorded
and described as step-through latency. The retention
trials were set at a limit of 180 s of cutoff time.

Astrocytes and microglial BV-2 cells culture
As described elsewhere [53,54], 2-day-olds rat pups were
ice-anesthetized and decapitated. After the skull was cut
and the skin was opened, the brain was released from
the skull cavity. After washing with PBS, the cerebrum
was separated from the cerebellum and brain stem, and
the cerebral hemispheres were separated from each
other by gently teasing along the midline fissure with
the sharp edge of forceps. The meninges were gently

peeled from the individual cortical lobes and the cor-
tices were dissociated by mechanical digestion [using
the cell strainer (BD Bioscience, Franklin Lakes, NJ,
USA)] with Dulbecco’s modified Eagle’s medium
(DMEM) containing F12 nutrient mixture (Invitrogen,
Carlsbad, CA). The resulting cells were centrifuged
(1,500 rpm, 5 min), resuspended in serum-supplemented
culture media, and plated into 100 mm dishes. Serum-
supplemented culture media was composed of DMEM
supplemented with F12, FBS (5%), NaHCO3 (40 mM),
penicillin (100 units/ml), and streptomycin (100 μg/ml).
The cells were incubated in the culture medium in a
humidified incubator at 37°C and 5% CO2 for 9 days. At
confluence (9 days), the flask was subjected to shaking
for 16-18 h at 37°C. The cultures were treated for 48 h
with cytosine arabinoside and the medium was replaced
with DMEM/F12HAM containing 10% FBS. The mono-
layer was treated with 1.25% trypsin-EDTA for a short
duration after which the cells were dissociated and pla-
ted into uncoated glass coverslips. The astrocyte cul-
tures formed a layer of process-bearing, glial fibrillary
acidic protein (GFAP)-positive cells. The purity of astro-
cyte cultures was assessed by GFAP-immunostaining.
Under these conditions, we can assume that over 95% of
the cells were astrocytes. Microglial BV-2 cells were
maintained with serum-supplemented culture media of
DMEM supplemented with FBS (5%), NaHCO3 (40
mM), penicillin (100 units/ml), and streptomycin (100
μg/ml). The BV-2 cells were incubated in the culture
medium in a humidified incubator at 37°C and 5% CO2.
The cultured cells were treated simultaneously with LPS
(1 μg/ml) and several concentrations (0.5, 1, 2 μM) of 4-
O-methylhonokiol dissolved in 0.05% ethanol, and the
cells were harvested after 24 h. Western blotting was
performed, and Ab level and secretases activities were
determined.

Nitric oxide and PGE2 determination
Astrocytes were grown in 96-well plates and then incu-
bated with or without LPS (1 μg/ml) in the absence or
presence of various concentrations of 4-O-methylhono-
kiol for 24 h. The nitrite accumulation in the superna-
tant was assessed by Griess reaction [55]. Each 50 μl of
culture supernatant was mixed with an equal volume of
Griess reagent [0.1% N-(1-naphthyl)-ethylenediamine,
1% sulfanilamide in 5% phosphoric acid] and incubated
at room temperature for 10 min. The absorbance at 540
nm was measured in a microplate absorbance reader,
and a series of known concentrations of sodium nitrite
was used as a standard. In the cultured supernatant of
astrocytes, PGE2 concentration was determined using a
PGE2 Enzyme Immunometric Assay (EIA) kit (R&D sys-
tems), according to the manufacturer’s instructions.
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Reactive oxygen species (ROS) generation
To monitor intracellular accumulation of ROS in cul-
tured astrocytes, the fluorescent probe 2’,7’-dichloro-
fluorescein diacetate (DCF-DA) was used. Following
treatment with LPS (1 μg/ml) for 24 h in the presence
or absence of 4-O-methylhonokiol (0.5, 1, 2 μM), the
cells were washed in modified Kreb’s buffer containing
145 mM NaCl, 5 mM potassium chloride (KCl), 1 mM
magnesium chloride (MgCl2), 1 mM calcium chloride
(CaCl2), 4 mM sodium hydrogen carbonate (NaHCO3),
5.5 mM glucose, 10 mM HEPES, pH 7.4. The cell sus-
pension was transferred into plastic tubes. Measurement
was started by an injection of 5 μM DCF-DA in the
dark. After 30 min of incubation at 37°C, generation
was determined by Fluorometer (fmax, Molecular
devices corp., Sandiego, CA, USA) at Ex = 485 and
Em = 538 nm.

Measurement of Ab1-42 and Ab1-40 level
Lysates of brain tissue, astrocytes and microglial BV-2
cells were obtained through protein extraction buffer
containing protease inhibitor. Ab1-42 levels were deter-
mined using a specific ELISA Kit (Immuno-Biological
Laboratories Co., Ltd., Takasaki-Shi, Gunma, Japan). In
brief, 100 μl of sample was added into the pre-coated
plate and was incubated overnight at 4°C. After washing
each well of the precoated plate with washing buffer,
100 μl of labeled antibody solution was added and the
mixture was incubated for 1 h at 4°C in the dark. After
washing, chromogen was added and the mixture was
incubated for 30 min at room temperature in the dark.
Finally, the resulting color was assayed at 450 nm using
a microplate absorbance reader (SunriseTM, TECAN,
Switzerland) after adding stop solution.

b- and g-secretase assay
The total activities of b- and g-secretase in the brains
and astrocytes were measured using a commercially
available b-secretase (BACE1) fluorescence resonance
energy transfer assay kit (PANVERA, Madison, USA)
and g-secretase activity kit (R&D Systems, Wiesbaden,
Germany) according to the manufacturers’ protocols
and as described elsewhere [28]. The brains and astro-
cytes were homogenized in cold 1× cell extraction buffer
(ready for use in the kit) to yield a final protein concen-
tration of 1 mg/ml.
To determine b-secretase activity, 10 μl of lysate was

mixed with 10 μl of BACE1 substrate (Rh-EVNL-
DAEFK-Quencher), and then the reaction mixture was
incubated for 1 h at room temperature in the 96 well
flat bottom microtitre plate. The reaction was stopped
by the addition of 10 μl of BACE1 stop buffer (2.5 M
sodium acetate). The formation of fluorescence was read
with Fluostar galaxy fluorometer (excitation at 545 nm

and emission at 590 nm) with Felix software (BMG Lab-
technologies, Offenburg, Germany). The enzyme activity
was linearly related to the increase in fluorescence. The
enzyme activity was expressed as nM produced sub-
strate which was determined by the formation of fluor-
escence per mg protein per min. All controls, blanks
and samples were run in triplicate.
To determine g-secretase activity, 50 μl of lysate was

mixed with 50 μl of reaction buffer. The reaction mix-
ture was then incubated for 1 h in the dark at 37°C fol-
lowed by the addition of 5 μl of substrate. Cleaved
substrate by g-secretase was conjugated to the reporter
molecules EDANS and DABCYL, and released fluores-
cent signal. This formation of fluorescence was read
with Fluostar galaxy fluorometer (excitation at 355 nm
and emission at 510 nm) with Felix software (BMG
Labtechnologies, Offenburg, Germany). The level of
g-secretase enzymatic activity is proportional to the
fluorometric reaction, and the g-secretase activity was
expressed as the produced fluoresce unit.

Nuclear extraction and gel mobility shift assay
Gel mobility shift assay was conducted using a slight
modification of a previously described method [44]. In
brief, 10 μg of nuclear protein of astrocytes was incu-
bated in 25 μL of total volume of incubation buffer (10
mmol/L Tris, pH 7.5, 100 mmol/L NaCl, 1 mmol/L
dithiothreitol, 4% glycerol, 80 mg/L salmon sperm
DNA) at 4°C for 15 min followed by another 20 min
incubation with 9.25 mBq [g-32P] ATP-labeled oligonu-
cleotide containing the NF-�B binding site at room tem-
perature. The DNA-protein binding complex was
electrophoretically resolved on a 6% nondenatured poly-
acrylamide gel at 150 volts for 2 h. The gels were dried
and autoradiographed using Kodak MR film at -80°C
overnight.

Quantitative real-time PCR
For mRNA quantification, total RNA was extracted using
the RNAqueous kit (Applied Biosystems, Foster city, CA).
The cDNA was synthesized using High Capacity RNA-
to-cDNA kit (Applied Biosystems, Foster city, CA)
according to the manufacturer’s protocol. Briefly, 1 μg of
total RNA was used for cDNA preparation. Quantitative
real-time PCR was performed on cDNA using TaqMan
Gene Expression Assays (Applied Biosystems, Foster City,
CA) specific for glyceraldehyde-3-phosphate dehydro-
genase (GAPDH; assay no. Mm99999915_g1), TNF-a
(Mm00443258_m1) and IL-1b (Mm00434228_m1). All
reverse transcription reactions were run in a 7500 Real-
Time PCR System (Applied Biosystems, Foster city, CA)
using the universal cycling parameters (20 s 95°C, 60
cycles of 3 s 95°C, 30 s 60°C). The values obtained for
the target gene expression were normalized to GAPDH
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and quantified relative to the expression in control sam-
ples. For the calculation of relative quantification, the 2-
△△CT formula was used, where:

−��CT = (CT,target−CT,GAPDH) experimental sample−(CT,target−CT,GAPDH) control sample.

Western blotting
An equal amount of total protein (40 μg) was resolved on
an SDS/10 or 15% polyacrylamide gel and then trans-
ferred to a polyvinylidene difluoride membrane (GE
Water and Process Technologies, Trevose, PA, USA).
The membrane was incubated at room temperature with
specific antibodies. To detect target proteins, specific
antibodies against BACE1 (1:500, Sigma, St. Louis, MO,
USA), C99, APP (1:500, ABR-affinity Bioreagents, Golden,
CO, USA), Ab (1:500, 4G8, Covance, Berlely, CA, USA),
cleaved caspase-3 (1:200, Cell Signaling Technology, Inc.,
Beverly, MA, USA), COX-2 (1:1000, Cayman Chemical,
Ann Arbor, MI, USA), iNOS (1:1000, Abcam), p65, I�B,
pI�B (1:500, Santa Cruz Biotechnology Inc. Santa Cruz,
CA, USA) and p50 (1:500, Santa Cruz Biotechnology Inc.
Santa Cruz, CA, USA) were used. The blot was then
incubated with the corresponding conjugated anti-mouse
IgG-horseradish peroxidase (1:4000, Santa Cruz Biotech-
nology Inc. Santa Cruz, CA, USA). Immunoreactive pro-
teins were detected with an enhanced chemiluminescence
western blotting detection system. The relative density of
the protein bands was scanned by densitometry using
MyImage (SLB, Seoul, Korea), and quantified by Lab-
works 4.0 software (UVP Inc., Upland, CA, USA).

Immunohistochemistry and immunofluorescence
Brains were fixed in formalin and paraffin-enclosed for
examination. Five-micrometer-thick tissue sections were
used with immunohistochemistry. Paraffin-embedded
sections were deparaffinized and rehydrated, washed in
distilled water, and then subjected to heat-mediated
antigen retrieval treatment. Endogenous peroxidase
activity was quenched by incubation in 2% hydrogen
peroxide in methanol for 15 min and then cleared in
PBS for 5 min. The sections were blocked for 30 min
with 3% normal horse serum diluted in PBS. These sec-
tions were incubated for overnight with appropriate
antibodies; Ab1-42 (1:2000, Clone No. 4 G8, Covance,
Berkeley, CA, USA), GFAP (1:5000, Abcam, Inc, Cam-
bridge, MA, USA), COX-2 (1:100, Cayman Chemical,
Ann Arbor, MI, USA), iNOS (1:100, Abcam) and
cleaved caspase-3 (1:200, Cell Signaling Technology,
Inc.). After the incubation, sections were washed in PBS
and incubated with the biotinylated secondary antibo-
dies (ABC kit, Vector Laboratories, Burlingame, CA) for
1 h. The sections were washed with PBS, incubated with

the avidin-biotin complex (Vector Laboratories) for 30
min, and visualized by chromogen DAB (Vector Labora-
tories) reaction. It was then counterstained by a hema-
toxylin. Finally, sections were dehydrated in ethanol,
cleared in xylene, and mounted with Permount (Fisher
Scientific, Hampton, NH), and evaluated on a light
microscopy (Olympus, Tokyo, Japan). To determine the
expression of iNOS, BACE, GFAP and cleaved caspase-
3, the stained cells by each antibody were counted. The
six sections with three different animal brains were ana-
lyzed, and cells at three randomly selected areas (100 ×
100 μm) in each section were assessed. The immunor-
eactive cells by anti-iNOS, BACE, GFAP and cleaved
caspase-3 antibody were counted, and expressed as per-
centage of stained cells. The quantity of reactive cells
was expressed as the average number of reactive cells
per high power field (visible reactive cells/HPF). To
simultaneously determine level of GFAP and Ab, we
performed immunofluorescence assay in paraffin section
of brain. The sections were then incubated to primary
rabbit polyclonal antibody for GFAP (1:1000, Abcam,
Inc, Cambridge, MA, USA) and mouse monoclonal anti-
body for Ab1-42 (1:2000, Clone No. 4 G8, Covance, Ber-
keley, CA, USA) overnight at 4°C. After washes with
ice-cold PBS, followed by treatment with an anti-rabbit
secondary antibody labeled with Alexa Fluor 568 and
anti-mouse secondary antibody labeled with Alexa Flour
488 (1:100 dilution, Molecular Probes, Inc., Eugene, OR)
for 2 hr at room temperature, immunofluorescence
images were acquired using a confocal laser scanning
microscope (TCS SP2, Leica Microsystems AG, Wetzlar,
Germany). Areas of amyloid deposition in mice brain
were identified by staining of 0.2% congo-red (Sigma)
solution or 0.2% thioflavine S (Sigma) as described in
detail in Wilcock et al. [56] and microscopic evaluation.
For quantification of congophilic plaque load, digital
images were captured at 10 × magnification on an
Olympus IX70 Imaging System using a single exposure
setting as follows: the entire hippocampus (2 images);
the visual (1 image), somatosensory (1 image) and soma-
tomotor (1 image) cortex. Images were converted to
gray scale and the threshold intensity was set to the
intensity observed in areas without tissue. Plaque load
was defined as the% area, i.e. the positive area/total
area × 100. The data were expressed as the mean ±
SEM (n = 6 for each group).

Measurement of apoptotic cells
The terminal deoxynucleotidyltransferase (TdT)-
mediated dUTP-biotin nick end-labeling (TUNEL)
assays were performed by using the in situ cell death
detection kit (Roche Diagnostics GmbH, Mannheim,
Germany) according to the manufacturer’s protocol.
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TUNEL mixture was added onto tissue sections and
incubated in a humidified chamber for 60 min at 37°C.
After each step, the tissue sections were rinsed twice
with a phosphate-buffered saline (PBS, pH 7.4). For
DAPI staining, brains were incubated for 30 min at
room temperature in the dark. The cells were then
observed through a fluorescence microscope (Leica
Microsystems AG, Wetzlar, Germany). Total number of
cells in given area was determined by using DAPI
nuclear staining. The apoptotic bodies (TUNEL-stained
cells) were identified under a fluorescencemicroscope
(x200) containing green colored nuclei. The quantity of
apoptotic bodies was expressed as the average number
of apoptotic cells per high power field (visible apoptotic
cells/HPF).

Measurement of TNF-a and IL-1b
TNF-a and IL-1b concentrations were measured in
supernatant of astrocytes using ELISAs specific for rat
TNF-a, and IL-1b (Assay Designs, Ann Arbor, Michi-
gan), respectively, according to the manufacturer’s
instructions. After samples and standards were added to
wells, plates were incubated for 1 h at 37°C. Wells were
washed 7 times with wash solution, at which point anti-
body was added to each well and incubated for 30 min
at 4°C. After two additional wash procedures, substrate
solution was added to each well, and plates were further
incubated for 30 min at room temperature in the dark,
at which point stop solution was added to all wells.
Finally, the resulting color was assayed at 450 nm using
a microplate absorbance reader (SunriseTM, TECAN,
Switzerland).

Statistical analysis
Statistical analysis of the data was carried out using ana-
lysis of variance (ANOVA) for repeated measures fol-
lowed by Dunnette’s post-hoc analysis using GraphPad
Prism 4 software (Version 4.03, GraphPad software, Inc.,
La Jolla, USA).

Results
Effect of 4-O-methylhonokiol on LPS-induced memory
impairment
To investigate the memory-improving effects by 4-
O-methylhonokiol on the LPS-induced memory impair-
ment model, mice were continuously administered 4-O-
methylhonokiol at a dose of 0.5 or 1 mg/kg/day daily
for 3 weeks (from day 1 to day 28), and then by i.p.
injection with 250 μg/kg/day LPS daily for 1 week (from
day 22 to day 28) as shown in Figure 1B. The mice were
trained in the Morris water maze test of 15 times train-
ing (3 times per day for 5 days). After training, LPS-
treated mice slowly arrived at the location of the plat-
form, thus demonstrating memory impairments

compared to the control group, but 4-O-methylhonokiol
significantly ameliorated these memory-impaired effects
of LPS-injected mice on escape latencies (in both cm
and s) (Figure 2A and 2B). Swimming speed did not dif-
fer among the groups (data not shown). The mice
exhibited shorter and shorter escape latencies at the end
of the training trial, and the average swimming distance
and escape latency at the end of training to the platform
were about 664.7 ± 133.2 cm and 26.4 ± 2.6 s after 15
times training trial in the control (saline) group. LPS-
injected mice exhibited average swimming distance and
escape latency to the platform about 1125.2 ± 211.4 cm
and 40.2 ± 4.0 s (Figure 2A and 2B). However, the mice
that were given 0.5 and 1 mg/kg of 4-O-methylhonokiol
at day 5 showed a significant and dose-dependent
decrease to 669.9 ± 200.6 cm and 26.6 ± 6.9 s, and
473.5 ± 114.2 cm and 20.4 ± 3.7 s, respectively.
One day after the water maze test, we performed a

probe trial to measure the maintenance of memory
function. During this trial, the average time spent on the
target quadrant was decreased in the LPS-injected mice
(21.57 ± 2.57%) compared to the control mice (32.13 ±
3.60%), but administration of 4-O-methylhonokiol (0.5
or 1 mg/kg/day) in the memory impaired mice signifi-
cantly increased average time spent to 32.36 ± 4.27%
and 34.62 ± 2.40% (Figure 2C). one day after the probe
trial, a step-through test was performed. Treatment with
LPS (250 μg/kg i.p.) significantly decreased the step-
through latency (as determined by passive-avoidance
performance in comparison to the control group); how-
ever, 4-O-methylhonokiol significantly prevented this
decreased step-through latency (Figure 1D). The control
group exhibited an average step-through latency of 93.6
± 33.3 s in the illuminated compartment, whereas that
of the LPS-treated group decreased to 24.8 ± 11.5 s.
4-O-methylhonokiol-treated mice were recovered to
62.1 ± 31.9 s and 138.4 ± 29.7 s from the LPS-induced
step-through latency in a dose-dependent manner
(Figure 2D).

4-O-methylhonokiol inhibits LPS-induced iNOS and
COX-2 expression
To investigate the inhibitory effect of 4-O-methylhono-
kiol on memory impairment via inhibition of neuroin-
flammation, the expression of iNOS was determined by
immunohistochemical analysis. Upon LPS treatment, the
number of brown-colored (iNOS-labeled) cells in both
the cortex and hippocampus of LPS-injected mice was
significantly higher than those in control mice, but 4-O-
methylhonokiol treatment lowered this number (Figure
3A and 3B). Paralleled with the expression level of iNOS
detected by immunohistochemical analysis, western blot
analysis showed that iNOS expression was significantly
increased by LPS injection in mice brain while
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densitometry data showed that LPS-induced iNOS
expression was significantly inhibited by 4-O-methylho-
nokiol (Figure 3C). Since NO can induce COX-2 expres-
sion, and COX-2 is also an enzyme that regulates
inflammation, we investigated the expression of COX-2
and found that 4-O-methylhonokiol also inhibited the
LPS-induced COX-2 expression (Figure 3C).

Effect of 4-O-methylhonokiol against the Ab1-42
accumulation in LPS-injected mice brain
We determined the effect of 4-O-methylhonokiol on the
levels of Ab1-42 in the cerebral cortex and hippocampus
of LPS-injected mice, since the accumulation of Ab1-42
has been implicated in memory dysfunction. We found
that, similar to previous data [42], the number of brown
colored (Ab1-42-labeled) cells in both the cortex and hip-
pocampus of LPS-injected mice was significantly higher
than that in control mice, but 4-O-methylhonokiol treat-
ment lowered the increased number of Ab1-42-labeled
cells (Figure 4A). In addition, these results could con-
firm the LPS-induced increase of amyloid plaque using

congo red and thioflavin S, and confirm that 4-O-
methylhonokiol decreases amyloid plaque (Figure 4B
and 4C). Paralleled with the reduced Ab1-42 reactive cell
number, the level of Ab1-42 (Figure 4D) and the activity
of b- and g-secretases (Figure 4E) were also significantly
reduced in 4-O-methylhonokiol-treated whole brains of
LPS-injected mice. Moreover, the expression of the neu-
ronal BACE1 as well as reactive cell number of BACE1
was significantly reduced by the treatment of 4-O-
methylhonokiol (Figure 5A and 5B). To confirm these
results, we investigated the levels of APP, C99, and
BACE1 proteins using western blot analysis. Both the
expression level of APP and C99 increased in the brains
of LPS-injected mice, and these elevations were reduced
by the treatment of 4-O-methylhonokiol (Figure 5C).

Effect of 4-O-methylhonokiol on the activation of
astrocytes and microglia in LPS-injected mice brain
Activation of neuroglia has also been implicated in amy-
loidogenesis and neuronal cell death during the develop-
ment of AD [57]. To investigate the protective effect of

Figure 2 Effect of 4-O-methylhonokiol in LPS-induced memory impairment. To investigate effect of 4-O-methylhonokiol in LPS-induced
memory impairment, we performed water maze test (A, B), probe test (C) and step-through type passive avoidance test (D). Memory function
was determined by the escape latencies (A, sec) and distance (B, cm) for 5 days, and time spent in target quadrant (C,%) in probe test after
administration of LPS. Each value is mean ± S.E. from 10 mice. #, Significantly different from control group (p < 0.05). *, Significantly different
from LPS-treated group (p < 0.05). Control, saline-treated group. LPS, lipopolysaccharide. MH, 4-O-methylhonokiol.
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4-O-methlyhonokiol on activation of astrocytes and
microglia, we performed an immunohistochemical ana-
lysis of GFAP- and Iba1-reactive cells in the brain. In
the LPS-injected mice, GFAP- and Iba1-reactive cell
numbers were significantly higher whereas the treatment
of 4-O-methlylhonokiol reduced the number of GFAP
reactive cells in the cortex and hippocampus (Figure 6A
and 6B). Paralleled with the immunohistochemical
results, western blot analysis also showed that GFAP
and Iba1 levels were increased in the brains of LPS-
injected mice, and these levels were then reduced by the
treatment of 4-O-methylhonokiol (Figure 6C). To
demonstrate more clearly that the activation of astro-
cytes could cause Ab generation, co-immunoreactive
cells against GFAP and Ab1-42 were identified by means
of double immunofluorescence method (Figure 6D). The
co-reactive cell number for both markers was signifi-
cantly increased by LPS, but was lowered by 4-O-
methylhonokiol treatment.

Next, to investigate both the consequence of neuroglia
activation and amyloidogenesis by LPS and the protec-
tive effect of 4-O-methylhonokiol, cell death was investi-
gated by determining the expression levels of the pro-
apoptotic protein, cleavage caspase-3. LPS-injection
induced higher expressions of cleavage caspase-3, but
treatment with 4-O-methylhonokiol decreased this
expression as determined by immunohistochemical
(Figure 7A) and western blot analysis (Figure 7C). In
addition, to confirm LPS-induced neuronal cell death,
we performed TUNEL assay. Paralleled with results of
cleavage caspase-3, LPS-injection increased number of
apoptotic neuronal cells, and treatment with 4-O-
methylhonokiol decreased number of apoptotic cells.

Effect of 4-O-methylhonokiol on LPS-induced release of
NO, PGE2, ROS, TNF-a and IL-1b in cultured astrocytes
To further investigate the anti-neuroinflammatory and
anti-amyloidogenesis effects of 4-O-methylhonokiol in

Figure 3 Inhibitory effects of 4-O-methylhonokiol on the LPS-induced expression of inflammatory proteins. (A) Immunoreactive cells of
iNOS antibody were detected in the cortex and hippocampus. 5 μm-thick sections of brains from mice were incubated with anti-iNOS
antibodies and the biotinylated secondary antibody. It was then counterstained by hematoxylin. The resulting tissue was viewed with a
microscope. (B) The present figure is representative for three different experiments with different animal brains. (C) The expression of iNOS and
COX-2 were detected by western blotting using specific antibodies. b-Actin protein was used here as an internal control. The values in the
western blot band indicate average density over b-actin from 5 animals. #, Significantly different from control group (p < 0.05). *, Significantly
different from LPS-treated group (p < 0.05). Control, saline-treated group. LPS, lipopolysaccharide. MH, 4-O-methylhonokiol.
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cultured astrocytes, which are responsible for neuroin-
flammation and amyloidogenesis in the brain, we exam-
ined the inhibitory effect of 4-O-methylhonokiol on the
LPS (1 μg/ml)-induced NO and PGE2 production as well
as expression of iNOS and COX-2 in cultured astrocytes.
After co-treatment with LPS and 4-O-methylhonokiol
(0.5, 1 and 2 μM) for 24 h, LPS-induced nitrate concentra-
tions in the medium were decreased remarkably in a con-
centration-dependent manner (Figure 8A). We further
investigated the effects of 4-O-methylhonokiol on the
LPS-induced synthesis of PGE2, the major product of
COX-2 enzymatic activity. While LPS induced a marked
synthesis of PGE2, 4-O-methylhonokiol blocked LPS-

induced PGE2 synthesis (Figure 8B). To study the protec-
tive effect of 4-O-methylhonokiol against the LPS-induced
activation of astrocytes, we investigated the release of
ROS, TNF-a and IL-1b was determined as indicators of
astrocytes activation as well as inflammatory responses.
We found that treatment of 4-O-methylhonokiol reduced
LPS-induced ROS generation (Figure 8C). LPS-induced
TNF-a and IL-1b release in cultured astrocytes was
also reduced by 4-O-methylhonokiol in a concentration-
dependent manner (Figure 8D, E, F, G and 8H).
Effect of 4-O-methylhonokiol on LPS-induced NF-�B

transcriptional and DNA-binding activity as well as
iNOS and COX-2 expression in cultured astrocytes

Figure 4 Effect of 4-O-methylhonokiol on Ab accumulation in the cortex and hippocampus. (A) Immunoreactive protein of anti-Ab1-42
antibody was investigated in the cortex and hippocampus. 6 μm-thick sections of brains from mice were incubated with anti-Ab1-42 antibody
and counterstained with hematoxylin. Arrow indicates Ab1-42 accumulation which is clearly higher in the cerebral cortex and hippocampus of
LPS-injected mouse. Amyloid plaque detection via congo red staining (B) and thioflavin S (C) was performed in the cortex and hippocampus. 6
μm-thick sections of brains were incubated with 0.2% congo red solution or thioflavin S solution for 20 min and counterstained with
hematoxylin. Arrow indicates amyloid plaque which is clearly higher in the cerebral cortex and hippocampus of LPS-injected mouse. The
histograms depict the mean congophilic plaque load ± SEM in mice brain. (D) The levels of Ab1-42 and Ab1-40 were assessed by using a specific
Ab ELISA as described in Methods. (E) The activity of b- and g-secretase was investigated by using each assay kit as described in Methods. Values
measured from each group of mice were calibrated by amount of protein and expressed as mean ± S.E. (n = 5). The values in the western blot
band indicate average density over b-actin from three animals. #, Significantly different from control group (p < 0.05). *, Significantly different
from LPS-treated group (p < 0.05). Control, saline-treated group. LPS, lipopolysaccharide. MH, 4-O-methylhonokiol.
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It has been demonstrated that LPS activates transcrip-
tion factor NF-�B leading to the increased expression of
many immediate-early genes, including the amyloidogen-
esis-related enzymes, such as BACE1. Thus, our next
step was to investigate NF-�B DNA-binding activity.
LPS-induced NF-�B DNA binding activity in cultured
astrocytes was decreased by 4-O-methylhonokiol in a
concentration-dependent manner (Figure 9A). This
DNA-binding activity of NF-�B was confirmed by super
shift assays. In the presence of a p50 antibody, the DNA-
binding activities of NF-�B showed a super shift. However,
in the presence of a p65 antibody, the DNA-binding activ-
ity of NF-�B was decreased without a super shift, suggest-
ing that p50 might be a target of 4-O-methylhonokiol,
interfering with the DNA-binding activity of NF-�B (Fig-
ure 9B). To clarify the action mechanism of 4-O-methyl-
honokiol on NF-�B activity, the nuclear translocation
of p50 and p65 was examined. In the presence of 4-O-

methylhonokiol, LPS-induced nuclear translocation of
p50 and p65 in astrocytes was inhibited in a concentra-
tion-dependent manner (Figure 9C). Moreover, 4-O-
methylhonokiol inhibited LPS-induced degradation of
I�Ba via inhibition of I�Ba phosphorylation (Figure 9C).
To examine the consequence of the inhibitory effects of 4-
O-methylhonokiol on NF-�B activity, expression of the
NF-�B-derived inflammatory genes, iNOS and COX-2,
was investigated. As shown in Figure 9D, the cells
expressed extremely low levels of iNOS in the unstimu-
lated condition. However, iNOS expression was markedly
increased in response to LPS after 24 h. Treatment with 4-
O-methylhonokiol (0.5, 1 and 2 μM) concentration-depen-
dently decreased LPS-induced expression of iNOS in cul-
tured astrocytes. These results indicate that 4-O-
methylhonokiol may inhibit the LPS-induced activation of
NF-�B via inhibition of I�Ba degradation, as well as via
the translocation of p50 and p65 into the nucleus, and this

Figure 5 Effect of 4-O-methylhonokiol on expression of amyloidogenic proteins. (A) Immunoreactive cells of anti-BACE1 antibody were
investigated in the cortex and hippocampus. (B) The present figure is representative for three different experiments with different animal brains.
(C) The expression of APP, C99 and BACE1 were detected by western blotting using specific antibodies in mice brain. b-Actin protein was used
as an internal control. Each blot is representative for three experiments. The values in the western blot band indicate average density over b-
actin from 5 animals. #, Significantly different from control group (p < 0.05). *, Significantly different from LPS-treated group (p < 0.05). Control,
saline-treated group. LPS, lipopolysaccharide. MH, 4-O-methylhonokiol.
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effect may result in the inhibition of LPS-induced expres-
sion of iNOS and COX-2.

Effect of 4-O-methylhonokiol on LPS-induced
amyloidogenesis in cultured astrocytes and
microglial BV-2 cells
It is known that the activation of microglia and astrocytes
are major sources of neuro-inflammation. Increasing evi-
dence indicates that inflammatory stimuli concomitantly
increase amyloidogenesis in astrocytes. Thus, we investi-
gated whether 4-O-methylhonokiol prevented LPS-
induced amyloidogenesis. Low levels of APP, BACE and
C99 protein were found in the unstimulated control con-
dition, whereas the expression of BACE, APP and C99
proteins increased in response to LPS (1 μg/ml) after 24
h. Treatment with 4-O-methylhonokiol (0.5, 1 and 2 μM)
caused a concentration-dependent inhibition in LPS-

induced BACE, C99 and APP expression in astrocytes
and in microglial BV-2 cells (Figure 9D and 9H). We also
determined the effect of 4-O-methylhonokiol on the
levels of Ab1-42 in the LPS-stimulated astrocytes and
microglial BV-2 cells, and found a significantly higher
level of Ab1-42 in the LPS group compared to levels in
control cells. 4-O-methylhonokiol treatment, however,
lowered this increased level of Ab1-42 (Figure 9E and 9I).
Paralleled with the reduced level of Ab1-42, activity of b-
and g-secretase were also significantly reduced by 4-O-
methylhonokiol in LPS-stimulated astrocytes (Figure 9F
and 9G).

Discussion
The most important finding of this study is that 4-O-
methylhonokiol, a lignan compound isolated from Mag-
nolia officinalis, suppressed amyloidogenesis via its anti-

Figure 6 Effect of 4-O-methylhonokiol on the LPS-induced neuroinflammation. (A) Immunoreactive cells of anti-GFAP antibody were
investigated in the cortex and hippocampus. (B) Immunoreactive cells of anti-Iba1 antibody were investigated in the cortex and hippocampus.
The present figure is representative for three different experiments with different animal brains. (C) The level of GFAP and Iba1 was detected by
western blotting using specific antibodies in mice brain. b-Actin protein was used as an internal control. Each blot is representative for 3
experiments. The values in the western blot band indicate average density over actin from 5 animals. (D) Co-immunoreactivity against anti-GFAP
antibody (red label) and anti-Ab antibody (green label) was investigated. The figure representative of three experiments from different mice
brain. #, Significantly different from control group (p < 0.05). *, Significantly different from LPS-treated group (p < 0.05). Control, saline-treated
group. LPS, lipopolysaccharide. MH, 4-O-methylhonokiol.
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neuroinflammatory properties in LPS-induced in vivo
and in vitro model, and ameliorated memory impair-
ment. Accumulating epidemiological evidence has sug-
gested that neuroinflammation may contribute to the
occurrence and progression of AD [8,9,58-60], as brains
of AD patients appear to display hallmarks of neuroin-
flammation, including marked astrogliosis, elevated
release of proinflammatory mediators and cytokines, and
microglial activation [61,62]. Recently, several research-
ers were reported that systemic administration of LPS
induces release of proinflammatory mediators and cyto-
kines such as TNF-a, IL-1b, iNOS, COX-2, cytosolic
group IV phospholipase A2, 5-lipoxygenase and toll-like
receptor-4 [49,50,63], indicating that systemic inflamma-
tion induces neuroinflammation. Moreover, systemic
administration of LPS has been reported to result in
increased APP processing and intracellular accumulation

of Ab as well as memory deficiency with concomitant
increased neuroinflammation [27,28,64,65]. In particular,
Jaeger et al. [51] reported that repeated systemic injec-
tions (3 times) of LPS increased Ab accumulation in the
brain through increased influx of blood Ab contributed
to alteration of LRP-1 in mice brain although it is differ-
ent with our mechanism of amyloid deposition, and it
supports our LPS-induced AD model. Administration of
non-steroidal anti-inflammatory drugs (NSAIDs) could
reduce the risk and delay the onset of AD [25,60,66].
Thus, anti-inflammatory agents could decrease amyloi-
dogenesis and memory deficiency via the prevention of
neuroinflammation.
The results of our previous studies [27,28] and the

present one showed that inflammatory and amyloido-
genic genes were concomitantly increased by treatment
with LPS. However, 4-O-methylhonokiol has resulted in

Figure 7 Effect of 4-O-methylhonokiol on the LPS-induced neuronal cellular damage. (A) Immunoreactive cells of anti-cleaved caspase-3
antibody were investigated in the cortex and hippocampus. The present figure is representative for 3 different experiments with different animal
brains. (B) Apoptotic cell death was determined by DAPI staining and TUNEL assay as described in Methods. Each panel represents 6 animals. (C)
The levels of cleaved caspase-3 and caspase-3 were detected by western blotting using specific antibodies in mice brain. b-Actin protein was
used as an internal control. The values in the western blot band indicate average density over b-actin from 5 animals. #, Significantly different
from control group (p < 0.05). *, Significantly different from LPS-treated group (p < 0.05). Control, saline-treated group. LPS, lipopolysaccharide.
MH, 4-O-methylhonokiol.
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the inhibition of the expression of the NF-�B and NF-
�B-mediated expression of inflammatory proteins; COX-
2 and iNOS as well as ROS, NO, PGE2, TNF-a and IL-
1b levels in the brain and in cultured astrocytes. These
inhibitory effects are in agreement with the inhibitory
effects on the expression of proteins involved in amyloi-
dogenesis, such as BACE1 and C99, a product of
BACE1. 4-O-methylhonokiol also inhibited the proteoly-
tic cleavage of APP via the inhibition of b- or g-secre-
tase activity, resulting in the reduction of Ab generation.
Activation of astrocytes has been known to increase b-
secretase activity, thereby increase Ab generation
[67-69]. In fact, we found that GFAP (activation of
astrocytes) was co-localized with Ab, and this co-

stimulation was increased by LPS, but was prevented by
4-O-methylhonokiol. BACE1 expression was detectable
as early as the morphological features of reactive astro-
cytes. The astrocytic expression of BACE1 after induc-
tion of chronic gliosis was not only limited to
experimental animals but also included astrocytes in
close proximity to b-amyloid plaques in the brains of
AD patients [70]. Thus, the present data indicated that
the anti-inflammatory properties of 4-O-methylhonon-
kiol could be associated with anti-amyloidogenesis.
It is not clear how 4-O-methylhonokiol concomitantly

reduces neuroinflammation and amyloidogenesis. How-
ever, it is noteworthy that ROS and NO have been
implicated in the activation of BACE1 expression as well

Figure 8 Effect of 4-O-methylhonokiol on LPS-induced ROS, NO, PGE2, TNF-a and IL-1b generation in cultured astrocytes. Astrocytes
were treated with LPS (1 μM) and 4-O-methylhonokiol (0.5-2 μM). (A) NO level was determined in the supernatant of astrocytes by Griess
reaction as described in Methods. (B) PGE2 level was determined in the supernatant of astrocytes by PGE2 EIA kit. (C) Intracellular ROS levels were
determined by measuring DCF fluorescence. (D), (E) and (F) mRNA levels of TNF-a and IL-1b were determined by real time PCR as described in
Methods. (G) and (H) protein levels of TNF-a and IL-1b were determined by specific ELISA kits as described in Methods. The data indicated in
the each band are means ± S.D. from 5 mice brains. Values represent means ± S.D. of three independent experiments performed in triplicate. #,
Significantly different from control group (p < 0.05). *, Significantly different from LPS-treated group (p < 0.05). Control, saline-treated group. LPS,
lipopolysaccharide. MH, 4-O-methylhonokiol.
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as in the activity of b- and g-secretases [71,72]. In a
recent study, the role of ROS release by the mitochon-
drial electron chain in response to hypoxia was deter-
mined to foster amyloidogenic APP processing via the
up-regulation of b-secretase activity [72]. Additionally,
we previously found that compounds having antioxidant
properties such as EGCG and L-theanine showed anti-
neuroinflammatory responses and anti-amyloidogenesis
activity via anti-oxidant mechanisms [27,73]. Anti-oxi-
dants such as superoxide dismutase [74], a-lipoic acid
[75], S-nitrosoglutathione [76], curcumin and docosa-
hexaenoic acid [77], also prevented cognitive deficits,
oxidative damage and amyloidogenesis in AD models.
Inflammatory reactions have also been known to directly

regulate amyloidogenesis via the modification of b-secre-
tase activity [78]. LPS-treated mice exhibited increases in
both the levels of inflammatory products and amyloid
formation as well as in secretases activity in the neurons
of the mouse brain [64]. We also found that 4-O-methyl-
honokiol prevented the activation of astrocytes in culture
or in the brain of AD-model mice such as Ab-injected or
PS2 mutant transgenic mice [43,44,48]. Moreover, several
anti-inflammatory agents have been reported to have
anti-amyloidogenic effects. The administration of minocy-
cline in 8-month-old 3xTg-AD mice was also shown to
prevent cognitive deficits and to decrease insoluble Ab
and soluble fibrils via the reduction of inflammatory
agents such as GFAP, TNF-a and IL-6 [79]. Furthermore,

Figure 9 Effect of 4-O-methylhonokiol on LPS-induced iNOS, COX-2, APP, C99, Ab, BACE generation, NF-�B activity, b- and g-secretase
activity in cultured astrocytes and in microglial BV-2 cells. Astrocytes and microglial BV-2 cells were treated with LPS (1 μM) and 4-O-
methylhonokiol (0.5-2 μM). (A) NF-�B activity in astrocytes was determined by EMSA as described in Methods. (B) For supershift assays, nuclear
extracts from cultured astrocytes treated with LPS (1 μg/ml) were incubated for 1 h before EMSA with specific antibodies against the p50 and
p65 NF-�B isoforms. (C) Phosphorylation of I�B, and p50 and p65 translocation in the astrocytes. (D) Immunoblots of lysates from astrocytes
were probed with iNOS, COX-2, APP, C99, Ab and BACE antibodies, respectively. (E) The amounts of Ab1-42 were assessed by using a specific
Ab1-42 ELISA kit as described in the Methods. (F) and (G) b- and g-secretase activity in the astrocytes were determined as described in Methods.
(H) Immunoblots of lysates from microglial BV-2 cells were probed with iNOS, COX-2, APP, C99 and BACE antibodies, respectively. (I) The
amounts of Ab1-42 were assessed by using a specific Ab1-42 ELISA kit as described in the Methods. Values represent means ± S.D. of three
independent experiments performed in triplicate. The values in the western blot band indicate average density over b-actin from three animals.
#, Significantly different from control group (p < 0.05). *, Significantly different from LPS-treated group (p < 0.05). Control, saline-treated group.
LPS, lipopolysaccharide. MH, 4-O-methylhonokiol.
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ibuprofen was reported to reduce Ab1-42 production via
the inhibition of g-secretase [80] and the reduction of
neuroinflammation via COX inhibition [81]. Ibuprofen
also decreased b-secretase activity via inhibition of per-
oxisome proliferator-activated receptor gamma [82], cyto-
kines, a-1-antichymotrypsin [83] and the Rho cascade
[84,85]. Thus, anti-oxidative and anti-inflammatory prop-
erties of 4-O-methylhonokiol could be significant for
anti-amyloidogenesis.
The generation of Ab requires the proteolytic cleavage

of APP by an aspartyl protease named BACE1 [86].
A number of transcriptional factors as well as post-
transcriptional modifications and intracellular signaling
molecule activation, regulate BACE1 expression in the
brain [87]. The expression of endogenous BACE1 pro-
teins in differentiated PC12 cells was decreased by the
pharmacological inhibition of NF-�B activation via
(R)-flurbiprofen and by treatment with decoy oligonu-
cleotides that were specific for the BACE1 protein pro-
moter NF-�B site [87,88]. NF-�B has also been well
documented in decreasing transcription factors regulating
b-secretase in activated astrocytes [89,90]. The promoters
of APP [91], presenilin and BACE1 [92] contain NF-�B
sites, which derive transcription. Some NSAIDs such as
flurbiprofen and indomethacin, which target NF-�B, have
been shown to be effective at decreasing amyloid load in
vitro and also in APP transgenic mice [93-95]. In addi-
tion, numerous factors were reported to inhibit amyloido-
genesis via suppression of NF-�B such as sorafenib [96],
L-theanine [73], and tripchlorolide [97]. We previously
found that activation of NF-�B contributes to the
increase in b-secretase in neuronal cells expressing
mutant PS2 [44], and also demonstrated that EGCG, as a
well known anti-oxidant and anti-inflammatory agent,
inhibits b- and g-secretases activity via inhibition of NF-
�B pathways in PS2 mice [42]. It was also illustrated that
4-O-methylhonokiol had an anti-inflammatory effect in
LPS-induced RAW 264.7 cells via inhibition of NF-�B
pathway activation [35]. In this study, 4-O-methylhono-
kiol inhibited dose-dependent LPS-induced activation of
the NF-�B pathway in astrocytes, and this inhibition of
NF-�B pathway resulted in a dose-dependent decrease in
the nuclear translocation of the p50 and p65 subunits,
and it also decreased phosphorylation of I�B in astro-
cytes. Thus, inactivation of NF-�B signaling pathways in
the control of b- and g-secretase by 4-O-methylhonokiol
could be critical in the reduction of these secretases, and
thus the inhibition of Ab generation.
We previously performed the pharmacokinetic study

in ICR mice. We treated by direct compulsory oral
administration (10 mg/kg). We found that oral treat-
ment of 4-O-methylhonokiol rapidly disappears from
the blood and is distributed into brain rapidly (less than
1 hr after treatment) (unpublished data). The blood

concentration of 4-O-methylhonokiol gets platue after 2
hr treatment which is similar level with the concentra-
tion by intravenous injection. The effective dose of
blood may be about 20 ng/ml. The tissue concentration
pharmacokinetic profile showed that the 4-O-methylho-
nokiol could be accumulated into brain, and about 50-
100 ng/ml may be effective dose in the brain. Moreover,
oral administration of 4-O-methylhonokiol of as much
as 80 mg/kg for 4 weeks did not cause weight loss or
other toxicities in a repeated-dose toxicity study (unpub-
lished data). 4-O-methylhonokiol was also evaluated as
noncarcinogenic in rodents (data not shown). These
data suggest that it could be safe and effective in a clini-
cal application.

Conclusion
Our data show that 4-O-methylhonokiol has ameliorated
LPS-induced memory deficiencies via the inhibition of
Ab1-42 generation, by inactivating b- and g-secretases
and astrocytes via the inactivation of NF-�B pathways.
This study therefore suggests that 4-O-methylhonokiol
may be a useful agent for preventing the development
or progression of AD.
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