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Abstract

Background: Transforming growth factor-31 (TGF-31) is an important regulator of cell migration and plays a role in
the scarring response in injured brain. It is also reported that 5-lipoxygenase (5-LOX) and its products, cysteinyl
leukotrienes (CysLTs, namely LTC,, LTD4 and LTE,), as well as cysteinyl leukotriene receptor 1 (CysLT,R) are closely
associated with astrocyte proliferation and glial scar formation after brain injury. However, how these molecules act
on astrocyte migration, an initial step of the scarring response, is unknown. To clarify this, we determined the roles
of 5-LOX and CysLT;R in TGF-B1-induced astrocyte migration.

Methods: In primary cultures of rat astrocytes, the effects of TGF-31 and CysLT receptor agonists on migration and
proliferation were assayed, and the expression of 5-LOX, CysLT receptors and TGF-31 was detected. 5-LOX
activation was analyzed by measuring its products (CysLTs) and applying its inhibitor. The role of CysLT;R was
investigated by applying CysLT receptor antagonists and CysLT,R knockdown by small interfering RNA (siRNA).
TGF-B1 release was assayed as well.

Results: TGF-B1-induced astrocyte migration was potentiated by LTD,, but attenuated by the 5-LOX inhibitor
zileuton and the CysLT;R antagonist montelukast. The non-selective agonist LTD,4 at 0.1 to 10 nM also induced a
mild migration; however, the selective agonist N-methyl-LTC, and the selective antagonist Bay cysLT2 for CysLT,R
had no effects. Moreover, CysLT;R siRNA inhibited TGF-31- and LTD4-induced astrocyte migration by down-
regulating the expression of this receptor. However, TGF-31 and LTD, at various concentrations did not affect
astrocyte proliferation 24 h after exposure. On the other hand, TGF-B1 increased 5-LOX expression and the
production of CysLTs, and up-regulated CysLT;R (not CysLT,R), while LTD, and N-methyl-LTC, did not affect
TGF-B1 expression and release.

Conclusions: TGF-B1-induced astrocyte migration is, at least in part, mediated by enhanced endogenous CysLTs
through activating CysLT;R. These findings indicate that the interaction between the cytokine TGF-31 and the
pro-inflammatory mediators CysLTs in the regulation of astrocyte function is relevant to glial scar formation.
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Background

Glial scar formation is a critical event in repair responses
after injury of the central nervous system (CNS) [1,2].
The glial scar is a complex of cellular components and
mainly consists of reactive astrocytes (undergoing prolif-
eration and morphological changes). Following focal
CNS injury, reactive astrocytes migrate towards the le-
sion and then organize into a densely packed glial scar
[1,2]. As the key step of glial scar formation, astrocyte
migration is regulated by various factors [3-5], among
which transforming growth factor-B (TGF-P) is known
as an important regulator [5,6].

TGE-pB, a family of multifunctional cytokines, regulates
a broad diversity of physiological and pathological pro-
cesses, including wound healing, inflammation, cell pro-
liferation, differentiation, migration and extracellular
matrix synthesis [7-10]. TGF-P1 is an important medi-
ator in the pathogenesis of several disorders in the CNS,
such as in the organization of a glial scar in response to
injury and in several neurodegenerative disorders
[7,11,12]. After CNS injury, elevated TGF-$ levels in
astrocytes have been shown to induce astrocytic scar for-
mation [13], and are also associated with ischemic brain
injury [14,15].

On the other hand, cysteinyl leukotrienes (CysLTs,
namely LTC,, LTD,, and LTE,), the 5-lipoxygenase (5-
LOX, EC 1.13.11.34) metabolites of arachidonic acid
[16], are bioactive lipid mediators that modulate im-
mune and inflammatory responses [16-19] through acti-
vating their receptors, CysLT R and CysLT,R [17,20,21].
In the rat brain, 5-LOX is activated and the production
of CysLTs is enhanced after focal cerebral ischemia,
resulting in neuronal injury and astrocyte proliferation
(astrocytosis). This post-ischemic astrocytosis is asso-
ciated with up-regulated CysLT R and CysLT,R [22-26].
The CysLT;R antagonist pranlukast attenuates post-
ischemic astrocytosis and glial scar formation in the
chronic phases of focal cerebral ischemia in mice and
rats [25,27,28]. This effect suggests that CysLT;R med-
iates CysLT-induced astrocytosis and glial scar formation
in response to in vivo ischemic injury. In primary astro-
cyte cultures, CysLTs are released after oxygen-glucose
deprivation-induced ischemic injury, and the resultant
activation of CysLT R mediates astrocyte proliferation
[29,30]. These findings imply that the endogenously
released CysLTs might play an autocrine role in the in-
duction of astrocytosis and resultant glial scar formation
through activating CysLTR.

However, whether CysLT R mediates astrocyte migra-
tion in the process of glial scar formation needs investi-
gation. In the periphery, CysLT;R mediates migration in
many types of cells, such as monocytes [31], dendritic
cells [32], monocyte-derived dendritic cells [33], vascular
smooth muscle cells [34], intestinal epithelial cells [35]
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and endothelial cells [31,34-36]. Therefore, CysLT R
may also be an inducer of astrocyte migration, but many
other factors have been reported to be potent inducers,
such as TGF-B1 [37,38]. Thus, there may be interactions
between CysLT;R and other regulators (for example,
TGEF-B1). TGF-B1 up-regulates CysLT R expression and
increases the production of CysLTs in several cell types
such as hepatic stellate cells [39] and bronchial smooth
muscle cells [37]. Based on these findings, it is possible
that the regulatory role of TGF-B1 in astrocyte migration
may be mediated by enhanced production of CysLTs via
CysLT|R activation. To clarify this possibility, in the
present study, we investigated the interactions between
TGEF-B1 and 5-LOX/CysLT4R in astrocyte migration.

Methods

Primary cultures of rat astrocytes

Primary astrocytes were isolated from the cerebral
cortex of newborn Sprague—Dawley rats within 24 h
as described previously [30,40]. In brief, the cortices
were digested with 0.25% trypsin and plated into
poly-L-lysine-coated flasks. Cells were cultured in high-
glucose DMEM (Gibco, Grand Island, NY, USA) sup-
plemented with 10% fetal bovine serum (FBS), 2 mM
glutamine, 100 units/mL penicillin and 100 pg/mL
streptomycin at 37°C in a humidified atmosphere of 95%
air/5% CO,. After incubation for 11 to 14 days, the con-
fluent cultures were shaken overnight at 260 rpm at 37°
C, and the adherent cells were trypsinized and re-seeded
in the growth medium. More than 95% of the cells were
astrocytes as confirmed by immunofluorescence staining
for glial fibrillary acidic protein (GFAP).

All animal experiments were carried out in accordance
with the National Institutes of Heath Guide for the Care
and Use of Laboratory Animals. We made every effort to
minimize the number of animals used and their suffer-
ing. The experimental protocols were approved by the
Ethics Committee of Laboratory Animal Care and Wel-
fare, School of Medicine, Zhejiang University.

Cell migration (wound healing) assay

Astrocytes were grown to confluence in 24-well plates
and starved in serum-free DMEM for 24 h. The mono-
layer cells were manually scratched with a 20-ul pipette
tip to create an extended and definite scratch in the cen-
ter of the dish with a bright and clear field. The
detached cells were removed by washing with
phosphate-buffered saline (PBS). DMEM containing 1%
FBS with or without TGF-f1 (PeproTech Inc, Rocky
Hill, NJ, USA) was added to each dish. In some experi-
ments, 1 ng/ml TGF-B1 was added to each dish for 30
minutes before treatment with LTD, (Sigma-Aldrich
Co., St Louis, MO, USA) or N-methyl LTC, (NMLTC,, a
metabolically stable LTC, mimetic; Cayman Chemical
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Co., Ann Arbor, MI, USA). Cells were pretreated with
the following inhibitor and antagonists: zileuton (0.01 to
5 uM, a 5-LOX inhibitor; Gaomeng Pharmaceutical Co.,
Beijing, China), montelukast (0.01 to 5 uM, a selective
CysLT R antagonist; Merck & Co., Inc., Whitehouse Sta-
tion, NJ, USA), and Bay cysLT2 (0.01 to 5 pM, a select-
ive CysLT,R antagonist; a kind gift from Dr. T. Jon
Seiders of Amira Pharmaceuticals, Inc., San Diego, CA,
USA) for 30 minutes, and then incubated with TGF-$1
for 24 h. Images of migratory cells from the scratch
boundary were acquired at 0 and 24 h under a light
microscope with a digital camera.

To continuously monitor migration time-course in live
astrocytes, astrocytes were plated in 35-mm dishes and
grown to confluence, and then the cells were scratched
and treated with LTD, or/and TGF-B1 as described
above. The movements of live astrocytes was traced
under an inverse videomicroscope (Olympus IX81,
Olympus Corp., Tokyo, Japan), and the wound was
photographed at 0, 6, 12, 18 and 24 h.

The wounded areas were analyzed with ImageTool 2.0
software (University of Texas Health Science Center, San
Antonio, TX, USA). The wound healing effect is deter-
mined as the initial scratch area (0 h) after wounding
minus the scratch area after treatment for 24 h, or 6, 12,
18 and 24 h (live astrocytes), and reported as percen-
tages of control values. Moreover, some astrocyte sam-
ples seeded on coverslips were visualized by GFAP
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immunofluorescence staining 24 h after scratching as
the typical images.

Cell proliferation assay

To measure astrocyte proliferation, carboxyfluorescein
diacetate succinimidyl ester (CFSE) green fluorescent
dye (Invitrogen Corp., Carlsbad, CA, USA) dilution assay
was performed according to the manufacturer’s instruc-
tions and the reported method [41-43]. Briefly, astro-
cytes were grown to confluence in six-well plates and
starved in serum-free DMEM for 24 h, then the cells
were washed twice with PBS and incubated in 5 pM
CESE in PBS for 15 minutes at 37°C, and subsequently
washed twice with PBS. Then DMEM containing 1%
EBS with or without TGF-B1 or LTD, was added to each
plate. In some experiments, 1 ng/ml TGF-1 was added
to each plate for 30 minutes before treatment with
LTD,. The cells were harvested at 24 h, and subjected to
fluorescence activated cell sorting using the FC500MCL
flow cytometer (Beckman Coulter, Inc., Brea, CA, USA).
Proliferation was measured by loss of CFSE dye.

CysLT, receptor knockdown by small interfering RNA
(siRNA)

RNA duplexes of 21 nucleotides specific for rat CysLT R
sequences were chemically synthesized, together with a
non-silencing negative control siRNA. The CysLT;R
siRNA sense sequence was: 5'-CAG CCU UCC AAG
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Figure 1 Effect of TGF-B1 on astrocyte migration and proliferation. (A) Photomicrographs showing migration after treatment with TGF-31
(0.1 to 10 ng/ml) for 24 h. Scale bar, 400 um. (B, C) Fluorescence intensity was determined by fluorescence activated cell sorting after CFSE
labeling at O (baseline) and 24 h. Mean fluorescence intensity (MFI) at 24 h reduced compared with baseline (B), but did not change 24 h after
treatment with TGF-31 (0.1, 1 and 10 ng/ml, C). Data are reported as mean + SEM,; n=8 (A), 3 (B) or 9 (C); **P <0.01 compared with control.
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Figure 2 Effect of LTD, on astrocyte migration and TGF-B1-induced migration and proliferation. (A, B), Photomicrographs showing
astrocyte migration 24 h after treatment with LTD, (0.01 to 100 nmol/L) in the absence (A) or presence of TGF-31 (1 ng/ml, B). Scale bars,

400 um. (C) Data are reported as mean + SEM,; n=8; *P <0.05 and **P <0.01 compared with control, P <005 and #P <0.01 compared with
TGF-B1 alone (LTD4 0). (D, E) MFI at 24 h was no significant change 24 h after treatment with LTD,4 (0.01 to 100 nM, D) alone or combined with

TGF-B1 1 ng/ml (E) (=29 for each group, P >0.05).

UAU ACA UTT-3" and anti-sense: 5'-AUG UAU ACU
UGG AAG GCU GTT-3'; the non-silencing control
siRNA sense: 5'-UUC UCC GAA CGU GUC ACG
UTT-3" and anti-sense: 5'-ACG UGA CAC GUU CGG
AGA ATT-3" (GenePharma Co., Shanghai, China).
Transfection of siRNA duplexes was performed accord-
ing to the manufacturer’s instructions. Briefly, astrocytes
were seeded on the day before transfection using an ap-
propriate medium with 10% FBS without antibiotics.
They were transiently transfected with CysLT ;R siRNA
or negative control siRNA (100 nM) for 6 h using Lipo-
fectamine™ 2000 (Invitrogen, USA). After the transfected
cells were incubated for 48 h, they were treated with
LTD, or TGF-P1 for cell migration assay.

Reverse transcription-polymerase chain reaction (RT-PCR)
At the end of the experiments, total RNA was extracted
from the cultured astrocytes using Trizol reagent

(Invitrogen, USA) according to the manufacturer’s
instructions. The cDNA synthesis and PCR reactions
were performed as reported previously [29,30]. The PCR
primers were: 5-LOX forward 5'-AAA GAA CTG GAA
ACA GCT CAG AAA-3' and reverse 5'-AAC TGG
TGT GTA CAG GGG TCA GTT-3’; CysLT R, forward
5'- ATG TTC ACA AAG GCA AGT GG -3’ and re-
verse 5'-TGC ATC CTA AGG ACA GAG TCA -3
CysLT,R, forward 5'- ACC CCT TCC AGA TGC TCC
A -3’ and reverse 5'- CGT GCT TTG AAA TTC TCT
CCA -3’; P-actin, forward 5'-AAC CCT AAG GCC
AACCGT GAA-3’ and reverse 5'-TCA TGA GGT AGT
CTG TCA GGT C-3’; TGF-B1, forward 5'- GAC CGC
AAC AAC GCA ATC TA -3’ and reverse 5'- AGG
TGT TGA GCC CTT TCC AG -3".

For c¢cDNA synthesis, 2 pg total RNA was mixed
with 1 mM deoxynucleotide triphosphate, 0.2 pg ran-
dom primer, 20 U RNasin and 200 U M-MuLV reverse
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Figure 3 Effect of NMLTC, on astrocyte migration. (A)
Photomicrographs showing astrocyte migration 24 h after treatment
with NMLTC,4 (0.01 to 100 nmol/L). (B) Data are reported as mean +
SEM, n=8. Scale bar, 400 um.

transcriptase in 20 pl reverse reaction buffer. The mix-
ture was incubated at 42°C for 60 minutes, and then
heated at 72°C for 10 minutes to inactivate the reverse
transcriptase.

PCR was performed on an Eppendorf Master Cycler
(Eppendorf Scientific, Inc., Westbury, NY, USA) as fol-
lows: 1 ul cDNA mixture was reacted in 20 pl reaction
buffer containing 1.5 mM MgCl,, 0.2 mM deoxynucleo-
tide triphosphate, 20 pM primer and 1 U Taq DNA
polymerase. The reaction mixtures were initially heated
at 94°C for 2 minutes, then at 94°C for 60 sec, 56°C for
60 sec, and 72°C for 60 sec for 35 cycles and finally
stopped at 72°C for 10 minutes. With the exception of
TGE-B1, the reaction mixtures were initially heated at
94°C for 2 minutes, then at 94°C for 30 sec, 54°C for
30 sec, and 72°C for 60 sec for 28 cycles and finally
stopped at 72°C for 10 minutes. PCR products of 20 pl
were separated by 2% agarose gel electrophoresis and
visualized by ethidium bromide staining. The density of
each band was measured by a UVP gel analysis system
(Bio-Rad Laboratories, Hercules, CA, USA). The results
are expressed as the ratios to B-actin.

Western blotting analysis
Astrocytes were washed twice with ice-cold PBS and then
lysed for 30 minutes on ice in Cell and Tissue Protein
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Extraction Solution (Kangcheng Biotechnology Inc.,
Shanghai, China). The homogenate was centrifuged at
12,000 g for 30 minutes at 4°C, and the supernatant was
used. The protein samples (100 pg) were separated by 10%
SDS-polyacrylamide gels and then transferred to nitrocel-
lulose membranes (Invitrogen). The membranes were
blocked by 10% fat-free milk, and sequentially incubated
with the following antibodies: rabbit polyclonal antibody
against CysLT R (1:200) [44], CysLT,R (1:200) [26,45] or
5-LOX (1:300, (Chemicon International Inc. Temecula,
CA, USA) and mouse monoclonal antibody against glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) (1:5,000,
Kangcheng Biotechnology Inc., Shanghai, China) at 4°C
overnight. After repeated wash, the membranes were in-
cubated with anti-rabbit IRDye700DX®-conjugated anti-
body or anti-mouse IRDye800DX®-conjugated antibody
(1:5,000, Rockland Immunochemicals, Inc., Gilbertsville,
PA, USA). The immunoblot was analyzed by the Odyssey
Fluorescence Scanner (LI-COR Bioscience, Inc., Lincoln,
NE, USA). The protein bands were quantified using
BIORAD Quantity One software (Bio-Rad, USA). The
results are expressed as the ratios to GAPDH.

Immunofluorescence staining

Astrocytes seeded on coverslips were fixed in cold
methanol for 5 minutes, and incubated in 10% normal
goat serum for 2 h to block non-specific binding of IgG.
Then the cells were reacted with a mouse monoclonal
antibody against GFAP (1:500, Millipore Corp., Bedford,
MA, USA) and a rabbit polyclonal antibody against
CysLT R (1:200, Chemicon, USA) at 4°C overnight. After
washing in PBS, astrocytes were incubated with FITC-
conjugated goat anti-mouse or Cy3-conjugated goat
anti-rabbit antibody (1:200, Millipore, USA) for 2 h at
room temperature. Finally, the stained cells were
observed under a fluorescence microscope (Olympus
BX51, Olympus Corp., Tokyo, Japan). Control coverslips
were treated with normal goat serum instead of the pri-
mary antibody, and did not show positive immunostain-
ing (data not shown).

5-LOX immunocytochemistry

Astrocytes cultured on coverslips were fixed in cold
methanol (-20°C) for 5 minutes and incubated for 30
minutes in PBS containing 3% H,O, to eliminate en-
dogenous peroxidase activity. Then, cells were incubated
for 2 h in PBS containing 10% normal goat serum and
incubated at 4°C overnight with rabbit polyclonal anti-
body against 5-LOX (1:200, Chemicon, USA) as the pri-
mary antibody. After three washes with PBS, cells were
incubated for 2 h with biotin-conjugated goat anti-rabbit
IgG antiserum (1:200) as a second antibody, followed by
incubation with avidin-biotin-HRP complex. Finally, the
cells were visualized with 0.01% 3, 3’-diaminobenzidine
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Figure 4 Time-dependent migration of live astrocytes after exposure to TGF-1 and LTD,. Live astrocytes were continuously monitored
under a videomicroscope after exposure to TGF-B1 or/and LTD,. (A) Representative images showing astrocyte migration traced by
videomicroscopy at 6, 12, 18 and 24 h after scratching. Scale bar, 200 um. (B) TGF-B1 and LTD, concentration- and time-dependently accelerated
migration. When TGF-B1 (1 ng/ml) combined with LTD, (0.1 nM), the effect at 24 h was more potent than that of TGF-31 or LTD, alone. Data are
reported as mean = S.EM,; n=3; *P <0.05 and **P <0.01 compared with corresponding time-points of the control; *P <0.01 compared with

and 0.005% H,O, in 50 mM Tris—HCI, pH 7.6. Control
coverslips were treated with normal goat serum instead
of the primary antibody and they did not show positive
immunostaining (data not shown). Then, the cells were
examined under the Olympus microscope.

Measurement of extracellular cysteinyl leukotrienes and
TGF-B1

According to the reported method [29,30], astrocytes
were seeded into six-well culture plates at 5x 10° cells/
well in 2 ml standard culture medium for 24 h. After
culture in DMEM without serum for another 24 h,
astrocytes were cultured in DMEM with 1% FBS and sti-
mulated with TGF-f1 (10 ng/mL), various concentra-
tions of LTD, or NMLTC,, or vehicle for the designated
times. Then, cell-free supernatants were stored at —80°C.
The CysLTs (LTC,, LTD, and LTE,) in astrocyte super-
natants were assayed using a commercial CysLT ELISA
kit (Cayman Chemical Co., Ann Arbor, MI, USA)
according to the manufacturer’s instructions and

calculated as pg/mg protein. The TGF-fB1 in the super-
natants was assayed using a commercial TGF-1 ELISA
kit (Wuhan Boster Biological Technology Co., Ltd,
Wuhan, China) according to the manufacturer’s instruc-
tions, and calculated as pg/ml.

Statistical analysis

Data are reported as mean+S.E.M. Student’s t-test and
one-way analysis of variance were used to determine the
statistical significance of differences between groups. A
value of P <0.05 was considered statistically significant.

Results

TGF-B1- and LTD,-induced astrocyte migration

First, we confirmed the effect of TGF-B1 on astrocyte mi-
gration. TGF-f1 (1 and 10 ng/ml for 24 h) significantly
accelerated the migration of astrocytes from the wound
edge into the central area in a concentration-dependent
manner (Figure 1A). To distinguish the effects on migra-
tion and proliferation, we determined whether TGF-p1
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Figure 5 Effects of a 5-LOX inhibitor and CysLT receptor antagonists on TGF-B1-induced migration in astrocytes. (A) Photomicrographs
showing TGF-B1 (10 ng/ml)-induced astrocyte migration 24 h after treatment with the 5-LOX inhibitor zileuton, the CysLT;R antagonist
montelukast and the CysLT,R antagonist Bay cysLT2 (1 uM). Scale bar, 400 um. (B-D) TGF-31-induced migration inhibited by 0.01 to 5 uM zileuton
(B) and montelukast (C), but not Bay cysLT2 (D). Data are reported as mean + SEM,; n=8; *P <0.05 and **P <0.01 compared with control;
P <0.05 compared with TGF-B1 alone.

affects astrocyte proliferation. The results of CESE fluores-
cence intensity showed that astrocyte proliferation did not
differ from control level 24 h after exposure to TGF-1
(0.1, 1 and 10 ng/ml) (Figure 1C) although the assay con-
firmed astrocyte proliferation at 24 h compared with 0 h
(baseline) (Figure 1B).

Next, we determined whether the non-selective agon-
ist LTD, and the CysLT,R agonist NMLTC, [46] induce
astrocyte migration, and LTD, potentiates the TGF-p1
effect. The results showed that LTD, significantly stimu-
lated the migration of astrocytes at 0.1 to 10 nM but not
at 0.01 and 100 nM; the maximum migration
(141.7 £5.0%) was induced by 1 nM LTD, (Figure 2A,
C). LTD, (0.01 to 1 nM) also potentiated the effect of
the lower concentration of TGF-B1 (1 ng/ml); the migra-
tion rates after treatment with 1 ng/ml TGE-B1 were
increased from 110.3+54% to 175.3+4.8% with 0.01
nM, from 123.5+4.0% to 203.5+5.3% with 0.1 nM, and
from 141.7+5.0% to 193.8+29% with 1 nM LTD,
(Figure 2B, C). LTDy (0.01 to 100 nM) alone (Figure 2D)
or combined with TGF-f1 1 ng/ml (Figure 2E) did not
affect astrocyte proliferation at 24 h. However, NMLTC,
(0.01 to 100 nM for 24 h) did not have any signifi-
cant effect on astrocyte migration (Figure 3). In addition,
to confirm the migration and determine its temporal
property, we continuously monitored migration of live
astrocytes during 24 h after exposure to LTD, or/and
TGE-B1. We found that TGF-f1 (1 and 10 ng/ml) and
LTD, (1 nM) gradually accelerated migration during 24 h
in a concentration-dependent manner. When TGF-f1
(1 ng/ml) combined with LTD, (0.1 nM), the effect at

24 h was more potent than that of TGF-B1 or LTD, alone
(Figure 4).

To confirm the roles of endogenous CysLTs and
CysLT R in TGF-Bl-induced migration, we examined
the effects of the 5-LOX inhibitor zileuton, the CysLT;R
antagonist montelukast, and the CysLT,R antagonist Bay
cysLT2 as well as CysLT;R siRNA. We found that the ef-
fect of 10 ng/ml TGF-P1 was attenuated by zileuton (1
and 5 pM, Figure 5A, B) and montelukast (1 and 5 pM,
Figure 5A, C), but not by Bay cysLT2 (0.01 to 5 uM,
Figure 5A, D). These results indicated that endogenously
released CysLTs might activate CysLT;R, but not
CysLT,R, to induce astrocyte migration and potentiate
TGF-fl-induced migration. The involvement of
CysLT R was further confirmed by RNA silencing by
transient transfection of CysLT ;R siRNA into astrocytes.
The siRNA (100 nM) significantly reduced the expres-
sion of CysLT;R mRNA (Figure 6A) and protein
(Figure 6B, C), but the non-silencing negative control
siRNA had no effect. CysLT R siRNA significantly atte-
nuated the effects of LTD, (1 and 10 nM) and TGF-f1
(1 and 10 ng/ml) on astrocyte migration (Figure 6D, E).
These results suggest that CysLT;R may be associated
with LTD,4- and TGF-B1-induced astrocyte migration.

TGF-B1-Induced Activation of 5-LOX in astrocytes

To investigate the role of endogenous CysLTs, the 5-
LOX metabolites, in TGF-Bl-induced astrocyte migra-
tion, we determined 5-LOX expression in astrocytes.
We found that TGF-B1 10 ng/ml significantly increased
5-LOX mRNA (Figure 7A) and protein expression
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(Figure 7B) 24 h after exposure. Immunocytochemical
results showed that 5-LOX was translocated from the
cytosol to the nuclear envelope 6 and 12 h after expos-
ure to 10 ng/ml TGF-P1, and then recovered at 24 h
(Figure 7C). We further determined the changes in en-
zymatic activity of 5-LOX by measuring its metabolites,
CysLTs, in the culture medium. The levels of CysLTs
increased from 1.5 h, peaked at 12 h, and were sustained
over 24 h after exposure to 10 ng/ml TGF-p1 (Figure 7D).
These findings revealed the involvement of 5-LOX and its
metabolite CysLTs in the responses to TGF-1.

TGF-B1-regulated expression of CysLT receptor in
astrocytes

Finally, we determined whether TGF-f1 regulates the
expression of CysLT R and CysLT,R mRNA and protein
in astrocytes, and whether LTD, regulates TGF-B1 ex-
pression and release. RT-PCR and Western blot showed
weak expression of CysLT;R and CysLT,R in control
astrocytes. Exposure to 10 ng/ml TGEF-Bfl for 24 h

induced about three-fold increase in the mRNA
(Figure 8A) and protein expression (Figure 8B) of
CysLT R, but did not significantly change the expression
of CysLT,R. Immunofluorescence staining confirmed the
enhancement of CysLT;R by TGF-f1 (Figure 8C). On
the other hand, treatment with various concentrations of
LTD, or NMLTC, for 24 h did not affect the TGF-p1
mRNA expression in astrocytes (Figure 9A) and its con-
tent in the culture medium (Figure 9B). Thus, TGF-1
might up-regulate CysLT;R but is not regulated by
LTD,.

Discussion

In the present study, we revealed that TGF-B1-induced
astrocyte migration is, at least in part, mediated by
enhanced endogenous CysLTs through activation of
CysLT R. The evidence is that TGF-f1-induced astro-
cyte migration was potentiated by LTD, but attenuated
by a 5-LOX inhibitor and a CysLT;R antagonist, and
TGF-P1 activated 5-LOX and increased CysLT;R
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expression. Our observations have confirmed the TGF-
B1-induced migration of rat astrocytes as reported [6],
and indicated another mechanism underlying TGF-1-
induced astrocyte migration in addition to the pathways
through activation of the Smad family [47,48] or the
ROS-dependent ERK/JNK-NF-kB pathway [6]. In
addition, we found that both TGF-f1 and LTD, did not
alter astrocyte proliferation during 24 h. It has been
reported that TGEF-B1 inhibits astrocyte proliferation
[47,49,50] and LTD, induces the proliferation via acti-
vating CysLT ;R [30]. This difference between these
reported results and ours may result from different as-
sessment timing [30] and methods [47,49,50]. However,
in our experimental conditions, TGF-f1 and LTD, regu-
late astrocyte migration rather than proliferation.
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Figure 8 Effect of TGF-B1 on expression of CysLT receptors in
astrocytes. (A, B) RT-PCR and Western blotting results showing that
the mRNA (A) and protein expression (B) of CysLT;R, but not

CysLT,R, in astrocytes increased after exposure to 10 ng/ml TGF-31

for 24 h. Data are reported as mean + SEM,; n=4; **P <0.01
compared with control. Results are expressed as the ratios to (-actin
(A) or GAPDH (B). C, control; T, TGF-31. (C) Double
immunofluorescence staining showing that TGF-31 increased the
expression of CysLTR in GFAP-positive astrocytes. Scale bar, 100 pm. )

TGEF-P1-induced astrocyte migration might be mediated
by the CysLT signal pathway in at least two ways, that is,
TGF-B1 potentiates the activity of both 5-LOX and
CysLT;R. On one hand, TGF-B1 increased 5-LOX ex-
pression and induced its translocation to the nuclear en-
velope (Figure 7C), a key step for 5-LOX activation [51-
53] and, thereby, increased the production of endogenous
CysLTs (Figure 7D). Consistent with this, it has been
reported that TGF-B1 induces 5-LOX expression in mye-
loid cell lines [54-58]. The notion is also supported by the
finding that the TGF-P1 effect was inhibited by the 5-
LOX inhibitor zileuton (Figure 5A). On the other hand,
TGE-P1 potentiates the expression of CysLTR, enhan-
cing the activity of endogenously-produced or exogenous
CysLTs as previously reported [37,39]. Therefore, one of
the mechanisms underlying TGF-Bl-induced astrocyte
migration may be activation of endogenous 5-LOX
/CysLT R signals.

Here, we demonstrated that the receptor subtype that
mediated the TGF-P1 effect was CysLT R. The evidence
was from the different effects of agonists and antago-
nists, and the effect of RNA interference. The non-
selective agonist LTD, induced a moderate migration of
astrocytes at lower concentrations (0.1 to 10 nM), but
not at the higher concentrations 100 nM (Figure 2A, C)
and 1,000 nM (data not shown). This concentration-
response relationship indicated that CysLT;R might
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mediate the effect of LTD,, because CysLT R is activated
at 1 to 10 nM while CysLT,R is activated at 100 to 1,000
nM in astrocytes [30]. This is also supported by the find-
ing that the selective CysLT,R agonist NMLTC, [46] had
no effect on astrocyte migration (Figure 3). With regard

TGF-p1

N
up-regulating Montelukast

Zileuton —]| 5-LOX CysLT,R siRNA

L @

(
CysLTs T — CysLT,R I

(+)
(+): activating
e Astrocyte
: increased migration

Figure 10 Diagram showing the roles of TGF-B1 and 5-LOX/
CysLT4R in induction of astrocyte migration. TGF-31 activates
5-LOX to produce CysLTs; the latter activates CysLT;R. Meanwhile, it
also up-regulates CysLT;R expression, which enhances the activity of
CysLT;R. The activated CysLT;R mediates TGF-B1-induced astrocyte
migration.
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to receptor antagonism, the effect of TGF-p1 was atte-
nuated by the CysLT R antagonist montelukast but not
by the CysLT,R antagonist Bay cysLT2. Bay cysLT2 is at
least 100- to 500-fold more selective for CysLT,R versus
CysLTR; its pA, value indicates that at least 5 uM
would act on the CysLTR [59,60]. Thus, lacking the ef-
fect of 5 uM Bay ctsLT2 in our study may be due to
cell specificity and response difference. On the other
hand, interference with CysLT;R siRNA inhibited both
TGF-B1- and LTDg4-induced astrocyte migration by
down-regulating the expression of this receptor (Fig-
ure 6). These findings are consistent with reports that
CysLT R mediates the migration of other types of cells
[31-36]. Therefore, CysLT;R is an important regulator
of astrocyte migration in addition to its regulation of
astrocyte proliferation [29,30].

The interaction between TGF-B1 and CysLTs was also
investigated by determining the action of LTD, or
NMLTC, on TGF-B1 expression and release. Unlike the
action of TGF-B1 on the production of CysLTs and
LTD, effects, LTD, or NMLTC, affected neither TGF-1
expression nor its release in astrocytes (Figure 9). This
may depend on specific cell types because LTD, induces
TGF-Bf1 mRNA expression in human bronchial epithelial
cells [61,62] and in fibroblasts from asthmatics [63], and
LTC, induces TGF-P1 production in airway epithelium
[62] in a CysLT;R-dependent manner. Anyway, the effect
of LTD, on TGEF-P1 in astrocytes remains to be further
investigated, especially in animal models of chronic brain
injury. Since both levels of TGF-f1 and CysLTs are
increased after brain injury [24,64,65] and involved in
glial scar formation [25,65,66]; which of them is deter-
minant in glial scar formation should be clarified for
their therapeutic implications. Herein, our results sug-
gest that activation of the endogenous 5-LOX/CysLT R
signals might be an intermediate event in TGF-f1-
regulated astrocyte migration, but not the initial event.
Since TGE-P1 signaling is mainly modulated by Smad-
dependent [67-75] and Smad-independent pathways
[6,76-81], whether the regulation mode is mediated by
the Smad or other pathways requires investigation.

Astrocyte migration is a critical step in the formation
of a densely-packed glial scar [1,2], and TGEF-P1 is
closely associated with glial scar formation [64,66,82-84].
Thus, CysLT receptor antagonists or 5-LOX inhibitors
may be beneficial in the prevention and attenuation of
glial scar formation after brain injury. Actually, we have
reported that the CysLT;R antagonist pranlukast attenu-
ates glial scar formation in the chronic phase of focal
cerebral ischemia in mice [28] and rats [25], and the 5-
LOX inhibitor caffeic acid has this effect in rats with
focal cerebral ischemia [85] and in mice with brain
cryoinjury [86]. Moreover, montelukast inhibits the
astrocyte proliferation induced by mild ischemia-like
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injury and low concentrations of LTD, [30]. The present
study highlights the previous findings and clarifies the
mode of action of endogenous CysLTs/CysLT R in the
critical step of glial scar formation.

In conclusion, in the present study we found that
TGEF-B1-induced astrocyte migration is, at least in part,
mediated by enhanced endogenous CysLTs through acti-
vating up-regulated CysLT R (Figure 10). These findings
indicate that the interaction between the cytokine TGEF-
B1 and pro-inflammatory mediators (CysLTs) are involved
in the regulation of astrocyte function relevant to glial scar
formation. However, the detailed mechanisms underlying
this interaction need investigation.
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