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Abstract

healthy control subjects.

absent in BD.

Background: Immune dysfunction, including monocytosis and increased blood levels of interleukin-1, interleukin-6
and tumour necrosis factor a has been observed during acute episodes of major depression. These peripheral
immune processes may be accompanied by microglial activation in subregions of the anterior cingulate cortex
where depression-associated alterations of glutamatergic neurotransmission have been described.

Methods: Microglial immunoreactivity of the N-methyl-D-aspartate (NMDA) glutamate receptor agonist quinolinic
acid (QUIN) in the subgenual anterior cingulate cortex (SACC), anterior midcingulate cortex (aMCC) and pregenual
anterior cingulate cortex (pACC) of 12 acutely depressed suicidal patients (major depressive disorder/MDD, n = 7;
bipolar disorder/BD, n = 5) was analyzed using immunohistochemistry and compared with its expression in 10

Results: Depressed patients had a significantly increased density of QUIN-positive cells in the SACC (P = 0.003) and
the aMCC (P = 0.015) compared to controls. In contrast, counts of QUIN-positive cells in the pACC did not differ
between the groups (P = 0.558). Post-hoc tests showed that significant findings were attributed to MDD and were

Conclusions: These results add a novel link to the immune hypothesis of depression by providing evidence for an
upregulation of microglial QUIN in brain regions known to be responsive to infusion of NMDA antagonists such as
ketamine. Further work in this area could lead to a greater understanding of the pathophysiology of depressive
disorders and pave the way for novel NMDA receptor therapies or immune-modulating strategies.

Background

Recent studies have focused on the role of immune dys-
function in depression, and analogies to “cytokine-
induced sickness behavior” have been established [1].
Sickness behavior is a coordinated set of adaptive beha-
vioral changes that develop in affected individuals during
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the course of an infection. Disease symptoms include
lethargy, depression, failure to concentrate, anorexia,
sleep disturbances, reduction in personal hygiene or
social withdrawal, and are mediated by proinflammatory
cytokines, such as interleukin-1 (IL-1), interleukin-6 (IL-
6) and tumor necrosis factor a. (TNFa) [1].

Previous research has suggested that these specific
monocyte-derived cytokines are increased in the periph-
eral blood of acutely depressed patients [2-7] along with
elevated monocyte counts [8,9]. Furthermore,
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lymphocyte and natural killer cell abnormalities have
been described [10-12]. It is not yet clear, whether these
changes in the peripheral blood are associated with cor-
responding neuroinflammatory responses and alterations
in neurotransmission. Peripheral immune processes may
be mirrored in the brains of patients with acute depres-
sion by microglial cells which represent the brain’s
mononuclear phagocyte system (MPS) [2,13]. Indeed, an
increased density of microglia expressing human leuko-
cyte antigen (HLA)-DR has recently been observed in
the anterior midcingulate cortex (aMCC), the dorsolat-
eral prefrontal cortex and the mediodorsal thalamus of
suicidal patients with affective disorders [14]. However,
this study of the surface marker HLA-DR did not sug-
gest a mechanism of how modulation of neurotransmis-
sion is accomplished.

Quinolinic acid (QUIN), an endogenous modulator
with agonistic properties on N-methyl-D-aspartate
(NMDA), which is produced by microglial cells, may
serve as a potential candidate for such a link between
immune and neurotransmitter changes in depression
[13]. This hypothesis is based on the observation that
the above mentioned proinflammatory cytokines induce
a shift from serotonin synthesis to tryptophan
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metabolism via the kynurenine pathway in glial cells
[1,15-17], which may ultimately lead to serotonin deple-
tion and particularly an increased production of the
metabolite QUIN (Figure 1). MPS cells, such as micro-
glia, macrophages and monocytes, mainly produce the
NMDA receptor agonist QUIN, while astrocytes synthe-
size the NMDA receptor antagonist kynurenic acid
(KYNA) because they lack the enzyme kynurenine
monoxygenase (KMO) [18-20]. Analyses of blood and
cerebrospinal fluid revealed elevated QUIN levels in
cytokine-induced depression and major depressive disor-
der (MDD) [1,21,22], while an increase in KYNA pro-
duction was related to schizophrenia [23-25].

These findings may connect immune pathologies to
MPS activation in MDD. In addition to serotonin deple-
tion, a direct glutamatergic mechanism has been sug-
gested, which has recently been identified as an
important target of antidepressant treatment [26]. In
this context, the anterior cingulate cortex (ACC), with
its region-specific NMDA and a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) glutamate
receptor profiles that cover functionally segregated
areas, represents an important target region in the cen-
tral nervous system, although investigations must
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Figure 1 modified from [13]: Tryptophan is an essential amino acid and a precursor for the synthesis of serotonin. Alternatively,
tryptophan can be metabolized in glial cells via the kynurenine pathway to create kynurenic acid (synthesized by kynurenine aminotransferase,
KAT) or quinolinic acid (QUIN). These substances are endogenous modulators of NMDA glutamate receptors. A key enzyme of the kynurenine
pathway, indoleamine 2,3-dioxygenase (IDO), and the enzyme that catalyses the production of 3-OH-kynurenine, kynurenine monoxygenase
(KMO), are activated by proinflammatory cytokines, including interleukin-1 and -6 (IL-1, IL-6), tumor necrosis factor a (TNFa), or interferon g (IFNg).
These enzymes are inhibited by anti-inflammatory cytokines, including IL-4. Serotonin is normally broken down into 5-hydroxyindoleacetic acid
(5-HIAA), but the indole ring of serotonin can also be cleaved by IDO to form formyl-5-hydroxykynurenamine (f-5-KYM). Annotation: grey arrows:
activation; dotted grey lines with bar at the end: inhibition; black font: potentially neurotoxic; purple font: neutral or not known; bright blue:
potentially neuroprotective.
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account for the histo-architectural diversity of this
region [27]. The importance of the pregenual anterior
cingulate cortex (pACC) in MDD is supported by the
pronounced effects of the glutamate modulating NMDA
antagonist ketamine on the improvement of clinical
symptoms in treatment-resistant MDD patients [28], in
which ketamine leads to an increase in glutamate con-
centration precisely in this region [29].

Therefore, we hypothesized that brain region-specific
QUIN synthesis increases in depression and investigated
this idea by analyzing the cellular and regional focus of
QUIN immunoreactivity in the ACC of depressed suici-
dal MDD and bipolar disorder (BD) patients. An upre-
gulated production of QUIN by microglia in regions
with specific susceptibility to abnormal NMDA through-
put would support the hypothesis of an upregulated
MPS, and would close the gap between neurochemical
imbalances and regional as well as functional in vivo
imaging findings in depression. Only acutely ill patients
were selected for the study, as previous studies of
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peripheral blood indicate that MPS activation and
kynurenine pathway imbalances are associated with
acute disease phases. In a postmortem study of chroni-
cally stable patients with MDD or BD, transient micro-
glial changes may be missed.

Methods

Human brain tissue

Postmortem brains were obtained from the Magdeburg
brain bank in accordance with the Declaration of Hel-
sinki and the local institutional review board. Written
consent was obtained from the next of kin. The donors
were acutely depressed patients (n = 12) who had com-
mitted suicide (mean age 51 years; 6 males, 6 females)
and controls (n = 10) with no neuropsychiatric illness
(mean age 56 years; 5 males, 5 females). The cases were
matched with respect to age, gender, duration of disease
and autolysis time (Table 1). Patients had been diag-
nosed with either major depressive disorder (MDD; n =
7) or bipolar disorder (BD; n = 5).

Table 1 Demographic data of patients with depression (n = 12) and healthy control subjects (n = 10)

Case No. Diagnosis (DSM-1V) Gender Age (y) Autolysis time (h)  Cause of death
1 Depression, MDD F 53 47 Suicide by electrocution
2 Depression, MDD F 46 48 Suicide by hanging
3 Depression, MDD F 53 46 Suicide by hanging
4 Depression, MDD F 60 24 Suicide by hanging
5 Depression, MDD F 68 78 Suicide by intoxication
6 Depression, MDD M 35 15 Suicide by wrist cutting
7 Depression, MDD M 36 42 Suicide by hanging
8 Depression, BD F 46 4 Suicide by intoxication
9 Depression, BD M 47 24 Suicide by wrist cutting
10 Depression, BD M 57 48 Suicide by strangulation
11 Depression, BD M 60 24 Suicide by hanging
12 Depression, BD M 53 24 Suicide by hanging
Depression (ratio/mean + SD) 6F/6M 51+9 35+ 24
MDD (ratio/mean =+ SD) 5F/2M 50 + 12 45 + 25
BD (ratio/mean + SD) 1F/AMF 53+6 19+ 10
13 Control F 48 48 Status asthmaticus
14 Control F 50 72 Ruptured aortic aneurysm
15 Control F 61 8 Sudden death (reason unknown)
16 Control F 61 24 Heart failure (coronary heart disease)
17 Control F 63 24 Myocardial infarction
18 Control M 56 48 Retroperitoneal haemorrhage
19 Control M 47 24 Acute respiratory failure (aspiration)
20 Control M 54 35 Ruptured aortic aneurysm
21 Control M 63 48 Heart failure (after heart surgery)
22 Control M 54 24 Pulmonary embolism
Controls (ratio/mean + SD) 5F/5M 56+ 6 35+ 18
Statistic (P value) 1.000° 0.200° 0.954° Control vs. Depression
Statistic (P value) 0214° 0422° 0272° Control vs. MDD vs. BD

Abbreviations: BD bipolar disorder, MDD major depressive disorder, F female, M male, SD standard deviation, ®chi-square test, Pt-test (Control vs. Depression) and
“ANOVA (Control vs. MDD vs. BD).
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The information used for clinical diagnoses was
obtained by carefully studying the patients’ clinical
records and by structured interviews with physicians
involved in patient treatment and with persons who
either lived with or had frequent contact with the sub-
jects before death. The DSM-IV axis I diagnosis of MDD
and BD was established in consensus meetings of two
psychiatrists (JS and HB) using all available information
from interviews and clinical records [30]. Brains with life-
time reports of substance abuse, dementia, neurological
illness, severe trauma, or chronic terminal diseases
known to affect the brain were excluded. Additionally,
neuropathological changes due to neurodegenerative dis-
orders, tumors, inflammatory, vascular, or traumatic pro-
cesses identified by an experienced neuropathologist
(CM) were excluded. The determination of suicide was
made by a forensic pathologist (TG) and was verified
based on the individual records. As summarized in Table
2 the mean daily doses of psychotropic medication taken
by patients during the last 90 lifetime days were estab-
lished according to the clinical files [31-33].

Tissue preparation was performed as described pre-
viously [14,34]. Briefly, brains were fixed in 8% phosphate-
buffered formaldehyde (pH 7.0) for three months. Subse-
quently, after separation of the brainstem and the cerebel-
lum, the hemispheres were divided by coronal cuts into
three bi-hemispherical coronal blocks comprising the
frontal lobe anterior to the genu of the corpus callosum
("anterior” block), the fronto-temporo-parietal lobe
extending the entire length of the corpus callosum ("mid-
dle” block) and the occipital lobe ("posterior” block). After
embedding the brains in paraffin, serial coronal whole
brain sections were cut 20 um in width and mounted.

Region selection
Sections for QUIN immunohistochemistry were anato-
mically selected corresponding to Brodmann’s area (BA)
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24’ (anterior midcingulate cortex, aMCC), BA 25 (sub-
genual anterior cingulate cortex, sSACC) and BA 24/32
(pregenual anterior cingulate cortex, pACC) for QUIN
immunohistochemistry (Figure 2) [27,35]. We were able
to study both subgenual and supracallosal areas in the
same section. These two regions have similar receptor
architectonics, in contrast to a more pregenual region of
the ACC, which was covered by a second section. This
method was possible given the suitable angulation of the
coronal whole brain sections available in the Magdeburg
brain bank.

The exact thickness of each section was determined by
focusing on the upper and lower surfaces of the section
and subtracting the z-axis coordinate of the lower sur-
face from that of the upper surface. The movements in
the z-axis were measured with a microcator, part of the
Leica DM RB microscope (Leica, Gieflen, Germany).
The section thickness after histological procedures was
18.7 £ 1.1 pm (mean + SD).

Immunohistochemistry

Formalin-fixed tissue sections were deparaffinized, and
antigen demasking was performed by boiling the sec-
tions for 4 min in 10 mM citrate buffer (pH 6.0). Prein-
cubation with 1.5% H,0O, for 10 min to block
endogenous peroxidase activity was followed by blocking
non-specific binding sites with 10% normal goat serum
for 60 min and repeated washings with PBS. Next, a
polyclonal rabbit QUIN antibody was used (ab37106,
Abcam, Cambridge, UK) at a dilution of 1:150 for 72 h
at 4°C. Sections were then incubated with a biotinylated
goat anti-rabbit secondary antibody (Amersham, Little
Chalford, UK) for the streptavidin-biotin technique.
Chromogen 3,3’-diaminobenzidine (DAB) and ammo-
nium nickel sulfate were used to visualize the reaction
product [36]. The specificity of the polyclonal rabbit pri-
mary antibody was confirmed by a loss of signal after

Table 2 Mean daily doses of psychotropic medication taken by patients during the last 90 lifetime days

Case No. Antidepressants Neuroleptics Benzodiazepines Carbamazepine Lithium
(amitriptyline equivalents, mg) (chlorpromazine equivalents, mg) (diazepam equivalents, mg) (mg) (mg)
1 67 0 0 0 0
2 124 109 0 0 0
3 0 0 0 0 0
4 100 400 0 0 0
5 100 50 7.5 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 133 327 3 0 558
9 20 0 0 0 0
10 na. na. n.a. na n.a.
Il 0 125 10 0 750
12 150 200 0 200 0

Annotations: none of these patients was treated with valproate or lamotrigine; n.a. not available.
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Major depression

granular structure processes. Annotation: Scale bars represent 20 pm.

Figure 2 lllustrations of QUIN-immunoreactive cells from the left SACC of a depressed suicidal patient and a control case and the
locations of the analyzed regions of interest (SACC, aMCC and pACC). Depressed patients showed microglial formations with numerous

preabsorption of 2 ml of the primary antibody solution
(dilution 1:150) with 1 mg QUIN (Sigma-Aldrich,
Munich, Germany) for 24 h and by the supplier’s ELISA
competition experiments with QUIN, kynurenic acid
and phenylalanine.

Quantification

Immunopositive cells were counted in the delineated
brain regions listed above at 200x magnification (Olym-
pus BH2, Olympus, Hamburg, Germany) by experimen-
ters blind to the donors’ diagnoses (TG and LMS).
Evaluations were performed in two coronal sections per
brain region of interest. The counting area was mea-
sured with the graphical analysis software Digitrace v.
2.10a (Imatec, Miesbach, Germany) using a SZX12
stereomicroscope (Olympus, Hamburg, Germany). The
cytological classification of immunopositive cells as
microglia, astrocytes, oligodendrocytes or neurons was
performed according to established cytomorphological
criteria [37]. Cells visibly located inside vessels were
classified as monocytes; only cells that were clearly out-
side the vessels and situated in tissue were evaluated.
Cell densities were calculated by dividing the cell num-
ber by the counting area multiplied by the section thick-
ness [cells/mm?].

Statistical analysis

Statistical analyses were performed with the SPSS 15.0
program (Statistical Product and Service Solutions, Chi-
cago, IL, USA). Demographic data were compared by
the chi-square test, t-test and analysis of variance
(ANOVA). QUIN data were not normally distributed, as
indicated by the Kolmogorov-Smirnov test. Therefore,
Spearman’s rank correlation coefficient, the Kruskal-
Wallis H test and the Mann-Whitney U test were
employed. These non-parametric tests were further used
to explore potential confounds due to age, gender, dura-
tion of disease, method of suicide, autolysis or fixation
time, and medication dosage.

Results

Qualitative evaluation

Strong QUIN immunoreactivity was found exclusively in
vascular monocytes and microglial cells. In contrast,
faint staining was only occasionally observed in fibers
and other cell types, such as pyramidal neurons and
astroglia. The immunoreactive microglia revealed differ-
ent morphological features in healthy controls versus
patients. In control subjects, we found mostly a smooth,
ovoid or elongated cell form (Figure 2). In contrast, par-
ticularly in the aMCC and the sACC, the cortical grey
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matter of depressed patients revealed microglial forms
with numerous granular structure processes (Figure 2),
as previously demonstrated by Guillemin et al. in
human tissue [38].

Quantitative evaluation

Comparing QUIN-immunopositive microglia between
depressed patients and healthy controls revealed a
region-specific pattern with group effects only in the
aMCC and the sACC. Depressed patients had signifi-
cantly increased QUIN-positive cells in the sACC (P =
0.003) and the aMCC (P = 0.015). In contrast, cell
counts in the pACC did not differ between groups (P =
0.558) (Figure 3a).

Post-hoc tests of diagnostic subgroups identified
increased cell counts only for MDD patients. In these
patients, QUIN-immunopositive microglia was increased
compared to controls (sACC P = 0.003, aMCC P =
0.015) and compared to the subgroup of bipolar
depressed cases (sSACC P = 0.042, aMCC P = 0.028)
(Figure 3b). Notably, no significant increase was found
in the pACC in either comparison. Diagnostic specificity
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Figure 3 lllustration of QUIN-immunopositive cell densities. a)
Depressed patients had increased QUIN-immunopositive cell
densities in the sACC and the aMCC but not in the pACC. b) MDD
patients showed the highest QUIN-immunoreactive cell counts in
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diagnostic subgroup-dependent differences were observed in the
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of the increases in MDD was further supported by the
lack of any significant increase or decrease in QUIN-
immunopositive microglia cell counts in bipolar
depressed patients when compared to healthy controls.

The reported effects were controlled for the potential
confounding factors of age, gender, duration of disease,
method of suicide, autolysis or fixation time, and medi-
cation dosage.

Discussion

To our knowledge, this is the first report of microglial
QUIN expression in human brain during acute depres-
sive episodes. An increase in QUIN-immunopositive
microglia was specific to cingulate subregions with high
NMDA receptor densities, like the sACC and the
aMCC, but not the pACC, which shows a lower NMDA
receptor expression. This increase in QUIN-immunor-
eactive microglial cell densities was found particularly in
unipolar patients. With regard to BD less clear state-
ments can be given. We observed a significant difference
between MDD and BD, yet the BD group is also higher
than the controls, though this is apparently not signifi-
cant (Figure 3b). This could be due to the small number
of specimens studied. The numeric increase in QUIN-
immunopositive cell counts was paralleled by the pre-
sence of microglial forms that displayed numerous gran-
ular structure processes in the proximity of neurons in
the depressed group, supporting an interaction of
inflammatory mechanisms and neurotransmission at the
time of acute depressive episodes. These findings thus
corroborate evidence for acute inflammatory microglial
activation in depression, leading to increased levels of
the NMDA receptor agonist QUIN in regions with cor-
responding receptor profiles that have been previously
revealed as key structures in non-invasive imaging
studies.

Increased levels of QUIN, which is also produced by
macrophages and monocytes, have already been found
in the blood and cerebrospinal fluid of subjects with
cytokine-induced depression or MDD [1,21,22]. Thus,
our result of increased microglial QUIN expression in
suicidal MDD patients is in line with the hypothesis of a
systemic MPS activation during acute disease phases of
depression [2-9,14]. Due to the excitotoxic properties of
QUIN, our findings are also supporting the neurodegen-
eration hypothesis of depression [15]. Therefore, our
study provides insight into why immune- and gluta-
mate-modulating therapies may be helpful for acutely ill
suicidal patients suffering from depression. Potential
candidate drugs include the tetracycline antibiotic mino-
cycline, which inhibits microglial activation by blocking
NE-kappa B nuclear translocation [39-42] or anti-
inflammatory inhibitors of cyclooxygenase-2 [43,44].
Furthermore, severely depressed suicidal patients may
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benefit from the administration of glutamate-modulating
drugs, such as the NMDA receptor antagonist ketamine
[28,45,46].

It should be mentioned that Laugeray and colleagues
observed reduced levels of the QUIN precursor 3-OH-
kynurenine (3HK) in the cingulate cortex and increased
levels of 3HK in the striatum and the amygdala of mice
using an unpredictable chronic mild-stress model for
the induction of depressive-like symptoms [47]. The
observation of reduced 3HK could be due to either
reduced formation of 3HK or increased degradation of
3HK to QUIN, which would result in reduced 3HK
level. Since QUIN was not directly measured in this
study, a translational validation of these converging
results remains subject to future studies. A general
drawback of animal studies is that it is unclear if animal
models adequately reflect the pathophysiology of human
MDD or BD. Moreover, an analysis of ACC subregions
was not undertaken in this study, and direct correspon-
dence of subregions in primates and humans differ con-
siderably to those found in rodents. Therefore, the
implications on regional glutamatergic throughput in
depression, as a function of local NMDA and AMPA
receptor profiles, remain difficult to interpret in animal
studies.

We have shown that abnormal NMDA receptor func-
tion related to microglial activation is highly dependent
on the location in the ACC in humans. Non-invasive
studies have led to similar distinctions of abnormal cin-
gulate cortex activation in MDD. While sACC hyperac-
tivity has been postulated in a number of studies, the
pACC has been less consistently characterized. Grimm
et al. [48] found a reduced deactivation during a task
study, reflected in smaller negative BOLD responses in a
sample of severely depressed patients; this functional
deficit was accompanied by decreased pACC glutamate
and glutamine levels, which are correlated with the
severity of clinical depressive symptoms [49-51]. More-
over, these glutamatergic deficits have been related to
anhedonia and abnormal functional activations in the
pACC in humans [52]. Our finding of relatively
increased QUIN immunoreactivity, which is potentially
associated with serotonin depletion due to changes in
the kynurenine pathway, would thus be consistent with
the relative hyperactivation in the SACC. The sACC is
also a putative target of deep brain stimulation. Impor-
tantly, the metabolic activity after deep brain stimulation
in the sACC, as measured by positron emission tomo-
graphy, shows a reduction in hyperactivity similar to a
region bordering the aMCC and the pACC [53].

Specifically increased concentrations of the NMDA
receptor agonist QUIN in the aMCC and the sACC may
also directly contribute to the disturbed balance in glu-
tamatergic throughput, which could explain the rapid
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onset of antidepressant effects after ketamine [28,46].
According to Salvadore et al. [54], activity bordering the
PACC does indeed predict the responsiveness towards
ketamine treatment; therefore, our finding may repre-
sent a histopathological surrogate. As shown by Vollen-
weider and Kometer [55], similar metabolic changes can
be found in the sACC and aMCC upon acute ketamine
administration. Therefore, the anatomical patterns of
such pharmacological challenges fit the observed pattern
of microglial histopathology.

The present study has certain limitations that need to
be considered: (1) our findings are based on a relatively
small number of MDD and BD cases and must be con-
firmed in a larger sample size; (2) it was not possible to
track data on drug exposure or the history of inflamma-
tion and infection across the patients’ entire life spans,
as we could only collect data on psychotropic medica-
tion in the three months prior to death; (3) the present
study enables us to draw conclusions about the cellular
QUIN content, but not released or secreted QUIN in
the extracellular space, which potentially interferes with
glutamatergic neurotransmission; (4) it remains unclear
if increased QUIN immunoreactivity in microglial cells
is caused by increased synthesis or reduced degradation
of QUIN. Future studies in frozen tissue may address
this question by measuring different kynurenine pathway
metabolites using high-performance liquid chromatogra-
phy (HPLC) or mass spectrometry (MS). (5) It is cur-
rently uncertain if drugs like glibenclamide, nifedipine,
metoprolol, or theophylline which have been applied in
five of the control subjects may influence microglial
QUIN expression.

Conclusion

Here we present the first study providing evidence that
supports a disease-related upregulation of microglial
QUIN in depressive disorders, particularly in brain
regions known to be responsive to infusion of NMDA
antagonists such as ketamine [55]. These results add a
novel link to the immune [1,26] and neurodegeneration
[15] hypotheses of depression. Further work in this area
could lead to a greater understanding of the pathophy-
siology of depressive disorders and pave the way for
identification of novel biomarkers and therapeutic stra-
tegies targeting specific disease subtypes.
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