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PSAPP mice exhibit regionally selective
reductions in gliosis and plaque deposition in
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Abstract
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Background: Numerous studies have reported that increased expression of S100B, an intracellular Ca”* receptor
protein and secreted neuropeptide, exacerbates Alzheimer's disease (AD) pathology. However, the ability of S100B
inhibitors to prevent/reverse AD histopathology remains controversial. This study examines the effect of S100B
ablation on in vivo plaque load, gliosis and dystrophic neurons.

Methods: Because S100B-specific inhibitors are not available, genetic ablation was used to inhibit ST00B function
in the PSAPP AD mouse model. The PSAPP/S100B” line was generated by crossing PSAPP double transgenic
males with S100B”" females and maintained as PSAPP/S100B* crosses. Congo red staining was used to quantify
plaque load, plaque number and plaque size in 6 month old PSAPP and PSAPP/S100B” littermates. The microglial
marker Ibal and astrocytic marker glial fibrillary acidic protein (GFAP) were used to quantify gliosis. Dystrophic
neurons were detected with the phospho-tau antibody AT8. STO0B immunohistochemistry was used to assess the

Results: PSAPP/S100B”" mice exhibited a regionally selective decrease in cortical but not hippocampal plaque load
when compared to PSAPP littermates. This regionally selective reduction in plaque load was accompanied by
decreases in plague number, GFAP-positive astrocytes, Ibal-positive microglia and phospho-tau positive dystrophic
neurons. These effects were not attributable to regional variability in the distribution of S100B. Hippocampal and
cortical ST00B immunoreactivity in PSAPP mice was associated with plaques and co-localized with astrocytes and

Conclusions: Collectively, these data support ST00B inhibition as a novel strategy for reducing cortical plaque load,
gliosis and neuronal dysfunction in AD and suggest that both extracellular as well as intracellular ST00B contribute

Background

S100B, a member of the S100 protein family, is
expressed predominantly in astrocytes and functions as
both an intracellular Ca** receptor and an extracellular
neuropeptide [1-3]. The term S100 to refers to the solu-
bility of these 10,000 molecular weight proteins in satu-
rated ammonium sulfate [4]. S100 proteins are
distinguished from other members of the S100/calmo-
dulin/troponin superfamily of EF-hand Ca** binding
proteins by their 3 D structure and highly conserved 14
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amino acid Ca®* binding loop [5]. Upon binding Ca**,
$100 proteins undergo a conformational change which
exposes a hydrophobic patch necessary for interacting
with numerous intra- and extracellular protein targets
and subsequent exertion of their biological effects [5,6].
Over 20 intracellular targets have been reported for
S100B suggesting that it regulates a large number of
diverse cellular processes, including energy metabolism,
cell proliferation, cytoskeletal organization, Ca®>* home-
ostasis and signal transduction pathways. The extracellu-
lar effects of S100B are concentration dependent;
nanomolar S100B levels beneficially promote neuronal
survival while micromolar levels detrimentally promote
apoptosis [7-9]. S100B’s extracellular effects are thought
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to be mediated by the receptor for advanced glycation
end products (RAGE) [7,8]. S100B release/secretion is
regulated by forskolin, lysophosphatidic acid, serotonin,
glutamate, IL-6f3, metabolites and the neurotoxic Af
peptide [10-14] as well as being gender- and age-depen-
dent [15]. Increased S100B levels are associated with a
variety of neurological disorders including Alzheimer’s
disease (AD), multiple sclerosis, amyotrophic lateral
sclerosis, schizophrenia, epilepsy, alcoholism, drug
abuse, hypoxia and traumatic brain injury [1-3,16,17].

Altered S100B function is associated with AD patho-
biology. The clinical presentation and pathology of
early- and late-onset AD include early disturbances in
Ca®* homeostasis followed by inflammation, neurode-
generation, senile plaques comprised of aggregated amy-
loid B (AB) peptide, intracellular neurofibrillary tangles
comprised of aggregated hyperphosphorylated tau, and
ultimately cognitive dysfunction [18-21]. In human
autopsy specimens, the highest levels of S100B expres-
sion are observed in the most severely affected regions
and S100B associates with plaques [3,22,23]. Serum/CSF
S100B levels inversely correlate with cognitive function,
i.e patients with lower S100B levels exhibit lower Clini-
cal Dementia Rating scores and higher Mini-Mental
State Examination scores [24]. In addition, the
rs2300403 single nucleotide polymorphism (SNP) in the
S100B gene is associated with low cognitive perfor-
mance, dementia and AD [25]. While the cellular
events/molecular mechanisms whereby S100B contri-
butes to AD pathobiology have not yet been elucidated,
S100B has been reported to regulate AB biogenesis,
amyloid precursor protein expression/processing and
tau hyperphosphorylation [26-28]. In turn, the Ap pep-
tide increases S100B levels [29] resulting in a positive
feedback loop. Thus, S100B may be a key contributor to
a detrimental “cytokine cycle” that drives the progres-
sion of AD [2,3,8,16,30].

In vivo studies in genetically modified mouse models
have yielded conflicting results regarding the contribu-
tion of increased S100B expression to AD pathology.
Transgenic TghuS100B mice express 4-5 fold more
S100B protein [31] and exhibit increased hippocampal
gliosis with no change in plaque load upon hippocampal
AP infusion when compared to non-transgenic controls
[32]. However, TghuS100B/Tg2576 mice exhibit
increased plaque load/gliosis in the hippocampus as well
as the cortex when compared to Tg2576 mice [26]. The
mechanism(s) responsible for the differential effects of
increased S100B expression on hippocampal pathology
in the two AD models have not been elucidated. Phar-
macological inhibition and genetic ablation have also
produced contradictory results. Treatment of Tg2576
mice with arundic acid, an inhibitor of S100B expression
(40-45% decrease), reduces plaque load/gliosis in the
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hippocampus and cortex [33]. Surprisingly, S100B abla-
tion has no effect on hippocampal plaque load, gliosis
or dystrophic neurons in an AP infusion model [32].
Thus, the ability of S100B inhibitors to prevent/reverse
AD histopathology is not completely understood.

While specific inhibitors that block the interaction of
S100B with its target proteins are under development,
currently available compounds do not cross the blood-
brain barrier and cannot be used to inhibit CNS S100B
[34]. Therefore, this study uses an in vivo genetic
approach which recapitulates the entire spectrum of
S$100 function (detrimental, beneficial, intracellular, and
extracellular) to ascertain the net effect of S100B ablation
on AD histopathology in the PSAPP AD mouse line.
Although no AD mouse model exhibits all aspects of the
human disease, the PSAPP double transgenic
(APPye70nme71L/PS-1Mm1461) line has a rapid disease onset
and mimics many facets of the human disease including
plaque deposition, dystrophic neurites, glial activation,
and memory deficits [35-38]. PSAPP/S100B knockout
mice exhibited a regionally selective decrease in cortical
but not hippocampal plaque load. Reductions in plaque
load were accompanied by decreases in plaque number,
GFAP-positive astrocytes, Ibal-positive microglia and
phospho-tau positive neurons. Finally, SI00B immunor-
eactivity in cortex and hippocampus of PSAPP mice was
plaque associated and co-localized with astrocytes/micro-
glia. These results suggest that secreted and intracellular
forms of S100B contribute to AD pathology and that
pharmacological strategies which selectively block S100B
action in the CNS may be effective in treating AD.

Methods

PSAPP X S100B Knockout Mice

The PSAPP double transgenic line was generated by
crossing the Tg2576 line ("Swedish” APPxg7on/Me71L
mutation) with the 6.2 line (PS-1p1461) [35-38]. The
S100B”" line has been described previously [39]. The
PSAPP/S100B”" line was generated by crossing PSAPP
double transgenic males with S100B”~ females and sub-
sequent interbreeding of the PSAPP/S100B*" heterozy-
gous offspring (PSAPP/S100B*~ X PSAPP/S100B*). To
control for changes in genetic background, all experi-
ments used PSAPP/S100B"* and PSAPP/S100B™" litter-
mates. Procedures involving animals were approved by
the Texas A & M University Institutional Animal Care
and Use Committee and comply with the NIH Guide for
the Care and Use of Laboratory Animals.

For genotyping, amplification of a 500 bp product
using PCR primers for the mouse -casein gene (for-
ward primer 5° GAT GTG CTC CAG GCT AAA GTT
3’ and reverse primer 5° AGA AAC GGA ATG TTG
TGG AGT 3’) was used to assess genomic DNA quality.
The PS-1 and APP transgenes were detected as
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previously described [36]. Amplification of 250 bp band
(forward primer 5° GCA AAG AAC AGG GTA GAA
AAC ATG AAA AAC G 3’; reverse primer 5 GCC
ATT CAA ACT AAT ATC CAG AAG CAA CCC 3))
was used to detect the wild-type S100B allele. PCR pro-
grams contained a 5 minute denaturation step at 95°C;
followed by thirty cycles consisting 1 minute at 94°C, 2
minutes at 60°C, and 3 minutes at 72°C; as well as a
final 7 minute extension step at 72°C.

Sample Acquisition/Processing

Brains were removed from anesthetized animals, rinsed
in phosphate buffered saline (PBS) and fixed in 4% (wt/
vol) paraformaldehyde in PBS for 30 minutes. Sagittal
slices, 2 mm in thickness, were prepared using an acrylic
brain matrix (Ted Pella, Redding CA) and post-fixed for
an additional 30 minutes. Slices were then permeabilized
in 2 mM MgCl,, 0.01% (wt/vol) sodium deoxycholate,
0.02% (vol/vol) Nonidet P-40 in 100 mM sodium phos-
phate buffer pH 7.5 for 36-48 hours. After post-fixation
in 10% buffered formalin for 16 hours, tissues were
embedded in paraffin and 5 micron sagittal sections
were mounted on glass slides for subsequent staining.
This processing procedure, originally developed for
visualization of $-galactosidase reporter gene activity in
transgenic mouse tissues, provides optimum S100B anti-
body specificity/sensitivity without compromising the
detection of other antigens.

Immunohistochemical and Congo red staining

To minimize variability, sections from experimental and
control groups were processed simultaneously. Consecu-
tive slides (2/animal) each containing sections at Allen
Brain Atlas Sagittal Levels 8 and 17 were depariffinized
and rehydrated to distilled water. For Congo red staining,
slides were incubated in 0.02 M NaOH in 80% ethanol
saturated with NaCl for 20 minutes followed by a 30
minute incubation in 0.2% (wt/vol) Congo Red (Cat.
150711, MP Biomedicals, LLC, Solon, OH) in 0.02 M
NaOH in 80% ethanol saturated with NaCl, dehydration
and mounting. Immunostaining was performed on a
DAKO autostainer (Dako, Carpinteria, CA) using a bio-
tin-free polymer detection kit (MACH 2, Biocare Medi-
cal, Walnut Creek, CA) and conditions recommended by
the primary antibody manufacturer. Primary antibodies
for immunohistochemistry included a mouse monoclonal
S100B antibody (1-1000 dilution of Z0311 Dako); rabbit
polyclonal GFAP antibody (1-1000 dilution of Z0334,
Dako); mouse monoclonal Ibalantibody (1-300 dilution
of SC-32725, Santa Cruz Biotechnology, Santa Cruz, CA);
and mouse monoclonal Ser202/Thr205 phosphorylated
tau antibody (1-20 dilution of MN1020, Pierce Chemical
Co., Rockford, IL). For immunofluorescence microscopy,
the anti-Ibal antibody was diluted 1-10, the anti-GFAP
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antibody 1-100, and the anti-S100B antibody 1-50
(612377 from BD Transduction Laboratories, San Jose,
CA). Secondary antibodies included an Alexa Fluor 546
donkey anti-rabbit (1-200 dilution of A10040, Molecular
Probes, Carlsbad, CA); Alexa Fluor 488 rabbit anti-
mouse (1-200 dilution of A11059, Molecular Probes);
and Alexa Fluor 546 donkey anti-mouse (1-200 dilution
of A10036, Molecular Probes).

For quantification, digital images were captured at 10x
magnification on an Olympus IX70 Imaging System
using a single exposure setting as follows: the entire hip-
pocampus (2 images); the visual (1 image), somatosen-
sory (1 image) and somatomotor (1 image) cortex as
well as representative areas of the cerebellum and olfac-
tory bulb. Images were converted to gray scale and the
threshold intensity was set to the intensity observed in
areas without tissue. Image ] software (NIH Image,
Bethesda, MD) was used to quantify positive pixels, pla-
que size, plaque number and total area. Plaque load and
immunoreactivity were defined as the % area, i.e. the
area of positive pixels/total pixels x 100. The data were
expressed as the mean + SEM (n = 8 for PSAPP and n
= 6 for PSAPP/S100B”"). An independent samples t-test
(SPSS Inc., Chicago, IL) was used to determine the sig-
nificance (p < 0.05) of measured differences between the
two genotypes. Pearson’s Correlation Coefficient and
scatter plots of the mean hippocampal and cortical
GFAP/Ibal burden versus plaque load for each animal
were used to determine the relationship between plaque
load and astrocytosis/microgliosis.

Images for colocalization experiments were obtained
on a Zeiss 510 META NLO laser scanning microscope.
The following settings were used for fluorophore detec-
tion: DAPI excitation G 365, Dichroic FT 395, BP 445/
50; for Alexa 488, exciter BP470/20, Dichroic FT 493,
Emission BP 505-530; and Alexa 568, Exciter BP560/40,
Dichroic FT 585, Emission BP 630/75. Images were
collected, corrected for background and bleedthrough
(reference images) and colocalization (overlap coeffi-
cient) of GFAP/S100B and Ibal/S100B determined using
the LSM software.

Results

S100B ablation reduces cortical but not hippocampal
plaque load

To determine if S100B ablation altered amyloidogenesis,
plaque load was quantified in PSAPP/S100B knockout
and PSAPP mice. Congo red stained fibrillar plaques
were observed in the hippocampus and cortex of
6 month old PSAPP/S100B”~ and PSAPP mice
(Figure 1A). In fact, congophilic plaque load in the
control PSAPP littermates was indistinguishable from
previous reports [35-38]. Furthermore, hippocampal pla-
que load in the two genotypes was indistinguishable:
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Figure 1 S100B ablation reduces cortical, but not hippocampal plaque load. Panel A contains representative micrographs of parasagittal
cortical/hippocampal sections from 6 month old PSAPP and PSAPP/S100B” mice stained with Congo red (pink) and hematoxylin (blue) to
visualize plaques and nuclei, respectively (bars = 50 um). The histograms depict the mean congophilic plaque load (Panel B), plaque number
(Panel ©), and plaque size (Panel D) + SEM in PSAPP (black bars, n = 8), and PSAPP/S100B”" (red bars, n = 6) mice. Asterisks denote p < 0.05
when compared to the PSAPP group.

0.070 = 0.020 and 0.075 + 0.022 percent area in the
PSAPP/S100B”" and PSAPP controls, respectively (Fig-
ure 1B). Hippocampal plaque size and number were also
similar in the two genotypes (Figure 1C and 1D). In
contrast, there was a 3-fold reduction in cortical plaque
load in PSAPP/S100B”'~ mice (0.050 + 0.016 percent

area) when compared to PSAPP mice (0.168 + 0.016
percent area) (Figure 1B). This decrease in cortical pla-
que load was accompanied by an 5-fold reduction in
plaque number (47.78 + 9.42 vs 8.78 + 2.07) and a slight
increase in plaque size (1162 + 141 vs 1955 + 196 um?)
(Figure 1C and 1D). In summary, this is the first
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demonstration that S100B ablation selectively reduces
cortical plaque load.

S100B ablation decreases cortical, but not hippocampal,
gliosis

S100B’s deleterious effects in the central nervous system
have been attributed to reactive gliosis (astrocytosis and
microgliosis) [23,26,32,33]. The microglial marker Ibal
and astrocytic marker GFAP were used to determine if
S100B ablation in PSAPP mice also reduced gliosis. Pla-
que-associated Ibal staining of small cell bodies and
long processes was observed in the cortex and hippo-
campus of PSAPP and PSAPP/S100B”~ mice (Figure 2A
and 2B). This staining pattern was similar to previous
reports for AD mouse models (Tg2576) [26,33]. Hippo-
campal Ibal burden in the two genotypes was similar
(0.51 + 0.12 vs. 0.51 + 0.10 percent area) (Figure 2C).
However, cortical Ibal burden was 4-fold less (0.45 +
0.09 vs 1.69 + 0.49 percent area) in PSAPP/S100B™
mice when compared to PSAPP control mice (Figure
2C). In both genotypes, the Ibal burden was similar in
non-plaque containing regions such as the cerebellum
(Figure 2A) and olfactory bulb (data not shown).
Furthermore, there was a direct correlation between
Ibal burden and plaque load (Pearson’s Correlation
Coefficient 0.654, p < 0.0005) (Figure 2D). Hippocam-
pal/cortical plaque-associated GFAP positive astrocytes
were also observed in both genotypes (Figure 3A and
3B) and the staining pattern (somata and processes) was
indistinguishable from previous reports for AD mouse
models [26,33]. Hippocampal GFAP burden was similar
(4.53 + 0.67 vs. 5.52 + 1.35 percent area) while cortical
GFAP burden was 2-fold less (3.56 + 0.92 vs. 7.26 +
1.40 percent area) in PSAPP/S100B”" mice when com-
pared to PSAPP control mice (Figure 3C). In addition,
GFAP burden in non-plaque containing regions such as
the cerebellum (Figure 3A) and olfactory bulb (data not
shown) was similar in the two genotypes. Like Ibal,
there was a direct correlation between GFAP burden
and plaque load (Pearson’s Correlation Coefficient 0.722
p < 0.0005) (Figure 3D). Collectively, these findings
demonstrate that S100B ablation results in regionally
selective decreases in microgliosis and astrocytosis that
directly correlate with plaque load.

Effects of S100B ablation on dystrophic neurons

Although the correlation between plaque load and cog-
nitive function remains controversial, decreases in pla-
que load are commonly accompanied by reductions in
dystrophic neurons/neurites and improvements in cog-
nitive function. In fact, changes in phospho-tau levels/
staining are used to detect dystrophic neurons in PSAPP
and Tg2576 mice despite the fact that these models do
not develop tangles [40-42]. Therefore, the ATS8
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phospho-tau antibody, which detects phospho-Ser202/
Thr205, was used to ascertain the effect of S100B abla-
tion on dystrophic neurons. The hippocampal and corti-
cal phospho-tau staining patterns in both genotypes was
indistinguishable from previous reports: punctate pla-
que-associated staining (Figure 4). These results demon-
strate that S100B ablation does not prevent the
development of plaque-associated dystrophic neurons.
However, as predicted by the plaque load results,
PSAPP/S100B”" mice exhibited fewer cortical but simi-
lar numbers of hippocampal phospho-tau foci/plaques
when compared to PSAPP mice (Figure 4).

S100B colocalizes with hippocampal as well as cortical
astrocytes, microglia, and plaques

In human autopsy specimens and the Tg2576 mouse
model, S100B staining is associated with astrocytes and
plaques [22,23,26]. In addition, in human AD the highest
levels of S100B are observed in the most severely affected
regions [23]. Therefore, SI00B immunohistochemistry
was used to determine if differences in S100B distribu-
tion were responsible for the regionally selective effects
of S100B ablation on histopathology in PSAPP mice. In
nontransgenic mice, intense staining of astrocytic cell
bodies/processes and diffuse cytoplasmic/extracellular
S100B staining was observed in the hippocampus and
cortex (Figure 5). PSAPP mice exhibited a similar stain-
ing pattern as well as punctate plaque-associated staining
(Figure 5). The increased staining intensity in PSAPP
mice when compared to nontransgenic mice is consistent
with previous reports of increased S100B expression in
AD [1-3]. Sections from PSAPP/S100B”~ mice exhibited
no detectable staining (Figure 5) indicating that plaque-
associated and diffuse cytoplasmic/extracellular staining
were not attributable to non-specific antibody binding
and/or high background. The S100B staining pattern
observed in PSAPP mice was similar to staining patterns
observed in the Tg2576 AD mouse model [33] and
human autopsy specimens [43]. The cellular distribution
of S100B in PSAPP mice was confirmed by double
immunofluorescence staining with astrocytic (GFAP,
overlap coefficient 0.8083 + 0.0149) and microglial (Ibal,
overlap coefficient 0.8476 + 0.0356) markers (Figure 6).
Collectively, these findings suggest that both intracellular
and extracellular forms of S100B may contribute to AD
histopathology. In conclusion, the regionally selective
effects of S100B ablation on histopathology are most
likely attributable to regional differences in the cellular
processes that are regulated by S100B and not differences
in S100B expression/distribution.

Discussion
This study definitively demonstrates that S100B abla-
tion/inhibition reduces AD pathology. PSAPP/S100B
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Figure 2 S100B ablation reduces cortical microgliosis. Panel A contains representative photomicrographs of parasagittal cortical/hippocampal
sections from 6 month old PSAPP and PSAPP/S100B™" mice stained with the microglial marker Ibal. Panel B contains high magnification images
from consecutive sections co-stained Ibal (brown) and Congo red (pink). Scale bars = 50 um. The histograms in Panel C depict the mean Ibal
positive area + SEM in PSAPP (black bars, n = 8), and PSAPP/ST00B” (red bars, n = 6), mice. Asterisks denote p < 0.05 when compared to the

PSAPP group. Panel D is a scatter plot of the mean Ibal burden versus plaque load for each animal (cortex and hippocampus).

knockout mice exhibited a regionally selective decrease
in cortical but not hippocampal plaque load that was
accompanied by reductions in astrocytosis, microgliosis
and dystrophic neurons. These regionally selective
effects were not attributable to variations in the S100B
distribution; cortical and hippocampal S100B staining
patterns were indistinguishable in PSAPP mice. Finally,
in PSAPP mice S100B immunoreactivity was associated
with plaques and colocalized with astrocytes as well as
microglia suggesting that both intracellular and

extracellular S100B contribute to AD histopathology.
Interestingly, other studies have reported regionally
selectively effects of S100B ablation on Ca** handling,
synaptic plasticity, kainate-induced gamma amplitudes
and BDNF (brain-derived neurotrophic factor) levels
[44-47]. Ascertaining the molecular mechanisms respon-
sible for S100B’s selective effects on AD histopathology
and other processes may provide new insights regarding
the events that contribute to the non-uniform progres-
sion of AD [48-50].
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magnification images from consecutive sections co-stained Ibal (brown) and Congo red (pink). Scale bars = 50 um. The histogram in Panel C
illustrates the mean GFAP positive area + SEM in PSAPP (black bars, n = 8), and PSAPP/S100B”" (red bars, n = 6) mice. Asterisks denote p < 005
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These findings clarify inconsistencies in the literature
regarding S100B’s contribution to AD histopathology.
Genetic ablation (this study), pharmacological inhibition
[33] and genetic overexpression [26] approaches consis-
tently indicate that decreases in S100B reduce AD histo-
pathology in the cortex. The larger effects observed with
genetic ablation may be due to maximal inhibition;
pharmacological inhibition reduces S100B levels by 40-

50% and genetic overexpression increases S100B levels
by 30% [26,33]. In all S100B”~ mice hippocampal plaque
load remains unchanged regardless of the mechanism
used to induce plaque deposition, i.e. AB infusion [32]
or overexpression of mutant proteins (APP and PS-1) in
transgenic mice (this study). However, pharmacological
inhibition of S100B synthesis with arundic acid in mice
that overexpress mutant APP (TG2576 line) reduces
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Figure 4 Phospho-tau staining in PSAPP and PSAPP/S100B™ mice. Representative photomicrographs of parasagittal cortical and
hippocampal sections from 6 month old PSAPP and PSAPP/S100B”" mice co-stained with the AT8 antibody which recognizes tau
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hippocampal plaque load/gliosis [33] and overexpression
of S100B in the same model increases hippocampal pla-
que load/gliosis [26]. These differential effects may be
due to alternative mechanisms of action for arundic acid
[51], upregulation of compensatory mechanisms in
knockout models, gain of function in overexpression
models, differences in the AD mouse models and/or
variations the ages of the animals.

A consistent finding in this and previous studies is a
direct correlation between changes in plaque load and
gliosis/inflammation in response to alterations in S100B
expression. It is unclear, however, whether changes in
plaque load are the cause or the result of changes in
gliosis. Furthermore, it is unclear how these histopatho-
logical changes impact cognitive function. Microglia are
an essential component of the inflammatory response
and exist in many forms [52,53]. They beneficially pha-
gocytose plaques and suppress inflammation as well as
detrimentally promote inflammation and neuronal cell
death [54-56]. Detailed analyses of microglial/glial phe-
notypes in PSAPP/S100B™~ mice will be instrumental in
identifying S100B-regulated events that contribute to
AD pathology and in discerning the relationship
between plaques and inflammation. Behavioral data are
not available for any of the S100B/AD mouse models.

Strengthened synaptic plasticity and enhanced spatial
memory in S100B™”~ mice [44] suggest that PSAPP/
S100B”~ mice will exhibit improved cognitive function.
This hypothesis is supported by the inverse correlation
of serum/CSF S100B levels and direct correlation of the
rs2300403 SNP in the S100B gene with low cognitive
performance, dementia and AD [24,25]. Experiments are
underway to determine if pharmacological inhibition of
S100B expression and/or interaction of S100B with its
target proteins will improve cognitive function in AD
and/or other neurological disorders.

S100B’s plaque association and co-localization with
cells (microglia/astrocytes) in this and previous studies
[22,23,33] suggest that both intracellular and extracellu-
lar S100B contribute to AD pathology. Inhibition of
intracellular S100B would be predicted to reduce AB-
induced spontaneous calcium transients [29], decrease
inflammatory cytokine release [2,3,30] and prevent Af-
induced increases in S100B levels [10]. Inhibition of
extracellular S100B would be predicted to alter Ca**
handling, synaptic plasticity long-term potentiation, neu-
ronal apoptosis and/or BDNF levels [39,43-47,57,58].
Decreased extracellular S100B-RAGE/scavenger receptor
signaling in glia, neurons and/or endothelial cells
[7,9,59-64] could also impact APP synthesis, APP
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Figure 5 S100B distribution in the PSAPP AD mouse model. Representative photomicrographs of parasagittal cortical and hippocampal
sections from 6 month old PSAPP, non-transgenic littermates or ST100B”" mice stained with an S100B antibody (brown). Sections from PSAPP
mice were co-stained with Congo red (pink) which is visible in the high magnification insets. Scale bars = 50 um.

processing and/or tau phosphorylation (GSK3f, cdk5
and/or PKA pathways) [18-21]. In fact, intracellular/
extracellular S100B may link dysregulation of Ca®*
homeostasis with AD pathobiology and/or serve as a
common upstream regulator of both tau phosphoryla-
tion/neurofibrillary tangles and AB production/plaque
deposition [18-21]. While astrocytes, microglia and oli-
godendrocytes are the most logical source of S100B,
peripheral tissues such as adipose cannot be excluded
[65-67]. Defining the source of and mechanisms of
release/secretion for S100B will be important steps in
delineating the S100B-regulated processes that contri-
bute to AD histopathology.

Conclusions

Collectively, these data definitively demonstrate that S100B
ablation reduces plaque load, gliosis and dystrophic neu-
rons in the cortex but not the hippocampus. If this reduc-
tion in histopathology can be demonstrated to positivity
impact cognitive changes related to AD, then additional
impetus to the search for new therapeutic interventions
targeted at S100B will be provided. The development of
effective pharmacological strategies for modulating S100B
function in patients will also require quantifying the contri-
bution of extracellular versus intracellular forms, identify-
ing the S100B-regulated target proteins/cellular processes,
and ascertaining the contribution of the five other S100
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GFAP S100B DAPI

Figure 6 S100B staining co-localizes with microglia and astrocytes. Representative fluorescent micrographs of parasagittal cortical sections
from 6 month old PSAPP mice co-stained with a GFAP (red) and an S100B (green) antibody or an Ibal (green) and an S100B (red) antibody.
Yellow denotes co-localization of ST00B with astrocytes or microglia. Scale bars = 50 pm.

S100B Iba1

family members implicated in AD, S100A1, S100A6,
S100A7, S100A9, and S100A12 [1,68-70]. Finally, the bene-
ficial effects of S100B ablation/inhibition may extend to
other neurological disorders that involve dysregulation of
glial cell calcium homeostasis [71,72].
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