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Abstract
Background: The kinin B1 receptor (B1R) is upregulated by pro-inflammatory cytokines, bacterial
endotoxins and hyperglycaemia-induced oxidative stress. In animal models of diabetes, it
contributes to pain polyneuropathy. This study aims at defining the cellular localization of B1R in
thoracic spinal cord of type 1 diabetic rats by confocal microscopy with the use of a fluorescent
agonist, [Nα-Bodipy]-des-Arg9-BK (BdABK) and selective antibodies.

Methods: Diabetes was induced by streptozotocin (STZ; 65 mg/kg, i.p.). Four days post-STZ
treatment, B1R expression was confirmed by quantitative real-time PCR and autoradiography. The
B1R selectivity of BdABK was determined by assessing its ability to displace B1R [125I]-HPP-
desArg10-Hoe140 and B2R [125I]-HPP-Hoe 140 radioligands. The in vivo activity of BdABK was also
evaluated on thermal hyperalgesia.

Results: R was increased by 18-fold (mRNA) and 2.7-fold (binding sites) in the thoracic spinal
cord of STZ-treated rats when compared to control. BdABK failed to displace the B2R radioligand
but displaced the B1R radioligand (IC50 = 5.3 nM). In comparison, IC50 values of B1R selective
antagonist R-715 and B1R agonist des-Arg9-BK were 4.3 nM and 19 nM, respectively.
Intraperitoneal BdABK and des-Arg9-BK elicited dose-dependent thermal hyperalgesia in STZ-
treated rats but not in control rats. The B1R fluorescent agonist was co-localized with
immunomarkers of microglia, astrocytes and sensory C fibers in the spinal cord of STZ-treated
rats.

Conclusion: The induction and up-regulation of B1R in glial and sensory cells of the spinal cord in
STZ-diabetic rats reinforce the idea that kinin B1R is an important target for drug development in
pain processes.
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Background
Kinins are vasoactive peptides and central mediators act-
ing through the activation of two G-protein-coupled
receptors (R) denoted as B1 and B2 [1,2]. The B2R is widely
and constitutively expressed in central and peripheral tis-
sues and is activated by its preferential agonists bradyki-
nin (BK) and Lys-BK. The B1R is activated by the active
metabolites des-Arg9-BK and Lys-des-Arg9-BK and has a
low level of expression in healthy tissues. The latter recep-
tor is upregulated after exposure to pro-inflammatory
cytokines, bacterial endotoxins, and hyperglycaemia-
induced oxidative stress [3-7].

An important role for kinin B1R has been postulated in
nociception and pain [8-10]. B1R knock out mice are less
sensitive to pro-inflammatory pain stimuli and to spinal
sensitization [11-13]. B1R partakes to mechanical and/or
thermal hyperalgesia induced by cytokines [14,15]
through peripheral protein kinase C activation [16] and in
the formalin test [17,18]. It also contributes to neuro-
pathic pain after peripheral nerve injury [18-23] or after
the induction of type 1 diabetes with streptozotocin (STZ)
[24-27] and type 2 diabetes with high glucose feeding
[7,28,29]. Thermal hyperalgesia was evoked by intraspi-
nal stimulation of B1R in STZ-diabetic rats [9].

Basal expression of B1R was reported in the rat and human
spinal cord dorsal horn as well as in rat dorsal root gan-
glion and small caliber primary sensory neurons [30-32].
Autoradiographic B1R binding sites are increased and dis-
tributed all over the grey matter of the spinal cord after
peripheral nerve injury [22] and in models of diabetes
[7,29,33]. This spatial distribution of B1R binding sites
suggests that this receptor is not limited to primary sen-
sory afferents but could also be present on spinal cord
microglia and astrocytes.

To consolidate the role of B1R in pain polyneuropathy, its
cellular distribution was investigated in the spinal cord of
STZ-induced B1R with a newly developed fluorescent ago-
nist named [Nα-Bodipy]-des-Arg9-BK (BdABK). The B1R
selectivity of BdABK was determined by assessing its abil-
ity to displace B1R ([125I]-HPP-desArg10-Hoe 140) and
B2R ([125I]-HPP-Hoe 140) radioligands by autoradiogra-
phy. Moreover, the displacement of BdABK fluorescent
labeling by B1R antagonists (R-715 and SSR240612) was
assessed by confocal microscopy. We also investigated the
in vivo activity of BdABK in comparison with its native
agonist on thermal hyperalgesia in both STZ-treated and
control rats. Appropriate selective antibodies were used in
confocal microscopy to co-localize B1R on astrocytes,
microglia and sensory C fibers in STZ-diabetic rats. The
induction and overexpression of B1R in the spinal cord of
STZ-diabetic rats was confirmed by qPCR and autoradiog-
raphy. Experiments were achieved 4 days after STZ admin-

istration because previous studies showed that spinal cord
B1R was maximally up-regulated and engaged in thermal
hyperalgesia 2 days after STZ treatment [9,33].

Methods
Animals and treatments
All research procedures and the care of the animals were
in compliance with the guiding principles for animal
experimentation as enunciated by the Canadian Council
on Animal Care and were approved by the Animal Care
Committee of our University. Male Sprague-Dawley rats
(200–225 g, Charles River, St-Constant, Que., Canada)
were housed two per cage, under controlled conditions of
temperature (23°C) and humidity (50%), on a 12 h light-
dark cycle and allowed free access to normal chow diet
(Charles River Rodent) and tap water.

STZ treatment
Rats were used 5 days after their arrival and injected under
low light with freshly prepared STZ (65 mg/kg; i.p.;
Sigma-Aldrich, Oakville, ON, Canada). Age-matched con-
trols were injected with vehicle (sterile saline 0.9%, pH.
7.0) [33]. Glucose concentrations were measured, with a
commercial blood glucose-monitoring kit (Accusoft;
Roche Diagnostics, Laval, Que., Canada), in blood sam-
ples obtained from the tail vein, in non-fasting animals,
before STZ injection, and 4 days after treatment. Only
STZ-treated rats whose blood glucose concentration was
higher than 20 mM were considered as diabetic.

Synthesis of [Nα-Bodipy]-des-Arg9-BK
BdABK was synthesized using 4,4-difluoro-5,7-dimethyl-
4-bora-3a, 4a-diaza-s-indacene-3-propionic acid succin-
imidyl ester (BODIPY® FL SE, Molecular Probes/Invitro-
gen Canada Inc, Burlington, ON; emission 510 nm) and
des-Arg9-BK (Bachem Bioscience inc., King of Prussia, PA,
USA). Des-Arg9-BK was solubilized in 100 mM NaHCO3
0.1 M (pH 8.4), at a concentration of 1 mg/ml and two
equivalents of BODIPY® FL SE, solubilized in degassed
dimethyl sulfoxide, at a concentration of 5 mg/ml was
added. Completion of the reaction was achieved in 2 h, at
ambient temperature, under continuous agitation. The
fluorescent peptide was lyophilized and purified by C18
reverse-phase HPLC as previously described [34,35]. The
purity of the peptide was ≥ 98% as assessed by analytical
HPLC (UV and fluorescence detection).

Tissue preparation for autoradiography and microscopy
Four days after injection of STZ, rats were anaesthetized
with CO2 inhalation and then decapitated. Upper thoracic
spinal cord (T3-T7) was removed and frozen in 2-methyl-
butane (cooled at -40°C following exposure to liquid
nitrogen) and stored at -80°C. Few days later, spinal cords
were mounted in a gelatin block and serially cut into 20-
μm thick coronal sections with a cryostat. Thus the sec-
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tions were thaw-mounted on 0.2% gelatin-0.033% chro-
mium potassium sulfate-coated slides and kept at -80°C
for 1 month to allow the adhesion of sections to the cov-
erslip glasses.

Confocal microscopy
Slides preparation
On the day of experiments, sections were thawed at room
temperature for 10 min to enhance sections adhesion. They
were pre-incubated for 10 min in 25 mM PIPES-NH4OH
buffer (pH 7.4) to allow degradation of endogenous kinins
which could occupy receptors. Sections were exposed for 90
min to 50 μM BdABK. Thereafter, slides were washed twice
(1 min) in PIPES and fixed with 4% para-formaldehyde
[36]. Slides were washed three times (5 min) and then
exposed to 1 M of glycine for 90 min to eliminate autoflu-
orescence from aldehyde-fixed tissue. Tissues were permea-
bilized for 45 min with 0.1% Triton X-100.

Immunolabeling protocol
Slides were incubated with a blocking buffer (25 mM PIPES
buffer supplemented with 3% bovine serum albumin
(BSA) and 3% donkey serum) to prevent non-specific labe-
ling. Antibodies were diluted in blocking buffer. A direct
marker of DNA (TOPRO-3; Molecular Probes, Eugene, OR)
was used at concentration of 1:5000. Rabbit anti-Ionized
calcium binding adapter molecule 1 (anti-IBA-1, Wako,
Richmond, VA) at a concentration of 2 μg/ml was used to
label microglia [37-39]. Chicken anti-Glial fibrillary acidic
protein (anti-GFAP, Chemicon, Hornby, ON) at a concen-
tration of 1:500 was used as a specific marker of astrocytes
[40]. Rabbit anti-calcitonin-gene-related peptide (CGRP)
(Chemicon, Hornby, ON) at a concentration of 1:2000 was
used as marker of sensory C fibers [41]. Mouse anti-tran-
sient receptor potential vanilloid 1 (TRPV1) (Chemicon,
Hornby, ON) at a concentration of 1 μg/ml was used to
label capsaicin receptor expressed on primary afferents
[42]. Secondary antibodies were rhodamine anti-mouse
(Chemicon, Hornby, ON) 1:500; cy5 anti-chicken (Chemi-
con, Hornby, ON) 1:500 and rhodamine anti-rabbit
(Chemicon, Hornby, ON) 1:500.

Coverslip and microscopy
Slides were washed 3 times (5 min), mounted with cover-
slip, fixed with mowiol (12 h at room temperature) and

stored at -4°C for 1 month or used in confocal micros-
copy.

SYBR green-based quantitative RT-PCR
Four days after injection of STZ, rats were anaesthetized
with CO2 inhalation and then decapitated. The thoracic
spinal cord (T1-T2) was isolated and approximately 10
mg of tissue were put in RNA later stabilization reagent
(QIAGEN, Valencia, CA, USA). Total RNA was extracted
from tissue according to the manufacturer's instructions.
First-strand cDNA synthesized from 400 ng total RNA
with random hexamer primers was used as template for
each reaction with the QuantiTect Rev Transcription Kit
(QIAGEN). SYBR Green-based real-time quantitative PCR
using Mx3000p device for signal detection (Stratagene, La
Jolla, CA, USA) was performed as described [43]. PCR was
performed in SYBR Green Master mix (QIAGEN) with 300
nM of each primer. For standardization and quantifica-
tion, rat 18S was amplified simultaneously. The primer
pairs were designed by Vector NTI software and used [6]
(Table 1).

PCR conditions were as follows: 95°C for 15 min, fol-
lowed by 46 cycles at 94°C for 15 s, 60°C for 30 s and
72°C for 30 s. The cycle threshold (Ct) value represents
the cycle number at which a fluorescent signal rises statis-
tically above background [44]. The relative quantification
of gene expression was analyzed by the 2-ΔΔCt method
[45].

Quantitative autoradiography
Specific binding sites of [125I]-HPP-desArg10-Hoe 140 and [125I]-
HPP-Hoe 140
The radioligands for kinin B1R, HPP-desArg10-Hoe140 (3-
(4 hydroxyphenyl) propionyl-desArg9-D-Arg0 [Hyp3, Thi5,
D-Tic7, Oic8]Bradykinin) and kinin B2R, HPP-Hoe140 (3-
(4 hydroxyphenyl) propionyl-D-Arg0 [Hyp3, Thi5, D-Tic7,
Oic8]Bradykinin) were synthesized and kindly provided
by Dr Witold Neugebauer (Dept Pharmacology, Univer-
sity of Sherbrooke, Sherbrooke, Que., Canada). They were
iodinated by the chloramine T method [46]. On the day
of experiments, sections were incubated at room temper-
ature for 90 min in 25 mM PIPES-NH4OH buffer (pH 7.4)
containing: 1 mM 1,10-phenanthroline, 1 mM dithiothre-
itol, 0.014% bacitracin, 0.1 mM captopril, 0.2% bovine

Table 1: PCR primer pairs used in this study

Sequences Position Gen Bank

18S Forward 5' TCA ACT TTC GAT GGT AGT CGC CGT 3' 363 – 386 X01117
18S Reverse 5' TCC TTG GAT GTG GTA GCC GTT TCT 3' 470 - 447

B1 receptor Forward 5' GCA GCG CTT AAC CAT AGC GGA AAT 3' 367 – 391 NM_030851
B1 receptor Reverse 5' CCA GTT GAA ACG GTT CCC GAT GTT 3' 478 - 454
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serum albumin (protease free) and 7.5 mM magnesium
chloride in the presence of 200 pM of [125I]-HPP-
desArg10-Hoe 140 or [125I]-HPP-Hoe 140 (specific activ-
ity: 2000 cpm/fmol or 1212 Ci/mmol) [29,33]. Non-spe-
cific binding was determined in the presence of 1 μM of
unlabeled B1R antagonist: R-715 (AcLys [D-βNal7,
Ile8]des-Arg9-BK) [1] or of 1 μM of unlabeled B2R antago-
nist: Hoe 140 (Icatibant or JE 049, Jerini AG, Berlin, Ger-
many) [47]. At the end of the incubation period, slides
were transferred sequentially through four rinses of 4 min
each in 25 mM PIPES (pH 7.4; 4°C) dipped for 15s in dis-
tilled water (4°C) to remove the excess of salts, and then
air-dried. Kodak Scientific Imaging Films BIOMAX™ MR®

(Amersham Pharmacia Biotech Canada) were juxtaposed
onto the slides in the presence of [125I]-microscales and
exposed at room temperature for 7 days. The films were
developed (GBX developer) and fixed (GBX fixer). Auto-
radiograms were quantified by densitometry using an
MCID™ image analysis system (Imaging Research, St.
Catharines, ON, Canada). A standard curve from [125I]-
microscales was used to convert density levels into fento-
moles per milligram of protein [48]. Specific binding was
determined by subtracting values of nonspecific binding
from that of total binding.

Specificity of BdABK
To assess the specificity of BdABK for B1R, competition
curves were performed in autoradiography by incubating
200 pM of [125I]-HPP-desArg10-Hoe 140 with increasing
concentrations (10-10 to 10-6 M) of R-715 (selective B1R
antagonist, kindly provided by Dr Domenico Regoli,
Pharmacology, University of Ferrara, Italy), des-Arg9-BK
(dABK, selective B1R agonist, Bachem Bioscience inc.,
King of Prussia, PA, USA) and BdABK. Moreover, compe-
tition curves were performed by incubating 200 pM of
[125I]-HPP-Hoe 140 with increasing concentrations (10-10

to 10-6 M) of Hoe 140 (selective B2R antagonist) and
BdABK. Each concentration of each competitor was tested
on 4 sections per rat from 7 different rats. Those sections
were exposed to the film, and total binding was calculated
as described above. Moreover, the specificity of BdABK
was determined in confocal microscopy by the displace-
ment of fluorescent labeling with the addition of 10-5 M R-
715 or SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-
yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]pro-
panoyl)amino]-3-(4- [2R, 6S)-2,6 dimethylpiperidi-
nyl]methyl]phenyl)-N-isopropyl-N-ethylpropanamide
hydrochloride] (kindly provided by Dr Pierre Carayon,
Sanofi-Aventis, Montpellier, France) [18] to the incuba-
tion medium.

Microglial cell culture
Primary cell culture method
Mixed glial cultures were prepared following the protocol
of McCarthy and de Vellis [49] with some modifications.
Briefly, forebrains were dissected out from one litter of 2-

day-old Sprague-Dawley rat pups and the meninges were
stripped off before enzymatic and mechanical dissocia-
tion. For enzymatic dissociation, HBSS containing 0.25%
trypsin (Gibco 15090-046) was used. The tissue-trypsin
suspension was incubated for 20 min at 37°C in a water
bath with intermittent shaking. After the waiting time for
the trypsin digestion is over we added to the tissue-trypsin
suspension a mixture of prewarmed DMEM/Dnase I
(Sigma DN-25, Dnase I final concentration 0. 25 mg/ml)
followed by an incubation for 4 min at 37°C. The result-
ing suspension was dispersed by a mild mechanical tritu-
ration which consisted in the passage through 18-, 22-
and 25- gauge needles. This cell suspension was then fil-
tred through 70 μm strainer (BD Falcon 352350). After
extensive washs in prewarmed HBSS, these dissociated
cells were resuspended and plated in 75-cm2 Falcon tis-
sue-culture flasks (BD Biosciences) previously coated with
10 μg/ml poly-D-lysine (PDL). These mixed cells were
growing at 37°C and 5% CO2 in DMEM (Gibco) supple-
mented with 10% FBS, penicillin (100 units/ml), and
streptomycin (100 mg/ml). The media was changed every
2 or 3 days thereafter.

At 10 days-in-vitro, a confluent monolayer of astrocytes
was apparent, on top of which oligodendrocyte precursor
cells and a loosely attached layer of phase-bright micro-
glia was obtained. Microglias were collected by shaking
the flasks for 1 h at 200 rpm at 37°C and 5% CO2. Dis-
lodged cells were resuspended and grown in culture
medium for microglia [RPMI medium 1640 (Gibco) sup-
plemented with 10% FBS, L-glutamine (1 mM), sodium
pyruvate (1 mM), penicillin (100 units/ml), and strepto-
mycin (100 mg/ml)]. The cells were allowed to adhere to
the surface of PDL-coated coverslips (30 min at 37°C and
5% CO2), and nonadherent cells were rinsed off.

Microglia cells preparation for confocal microscopy
Briefly, confluent cells were exposed to 300 nM of BK for
24 h to induce B1R [50,51]. Control cells were exposed to
vehicle. After incubation with BdABK, cell were washed,
then fixed and permeabilized with 100% methanol previ-
ously stored at -20°C. The fixed cells were then processed
as described for immunostaining.

Thermal hyperalgesia
Thermal hyperalgesia was assessed according to the
method described by Hargreaves et al., 1988 [52] with
minor modifications. Briefly, rats were placed (unre-
strained) within a Plexiglass enclosure on a transparent
glass floor and allowed to acclimatize for 20–30 min. An
infrared beam that constitutes the noxious heat stimulus
(Plantar test, Ugo Basile, Italy) was moved beneath the
plantar surface of the hind paw. Thermal nociceptive
threshold was defined as the latency (seconds) between the
heat stimulus (46°C) onset and the paw withdrawal using
a feedback-controlled shut-down unit. A cut-off time of 33
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s was used to avoid tissue damage. Each paw was tested
three times alternatively at minimum intervals of 3 min
between stimulation to avoid sensitization of the hind paw.
The rats were trained on several days prior to testing B1R
agonists. Thereafter, the thermal nociceptive threshold was
assessed on 3 consecutive days as follows: day 1: baseline,
saline and the first dose of des-Arg9-BK and BdABK (22.5
μg/kg); day 2: des-Arg9-BK and BdABK (225 μg/kg); day 3:
des-Arg9-BK and BdABK (2250 μg/kg). Agonists were
injected intraperitoneally at 1 h apart. This series of experi-
ments was conducted in 3 control and 3 STZ-diabetic rats
because the quantity of BdABK available for in vivo study
was restricted. Thermal hyperalgesia was calculated as a per-
centage of the maximum possible effect (% MPE) accord-
ing to the following formula: % MPE = (100 × (drug latency
minus baseline latency)/(cut-off time minus baseline
latency)) [9]. The baseline latency corresponds to the aver-
age of the first three measurements.

Statistical analyses
All data were expressed as means ± S.E.M. obtained from
n rats. Statistical significance was determined with Stu-
dent's t-test for unpaired samples or a one-way analysis of
variance (ANOVA) followed by post-hoc Dunnett test for
multiple comparisons. IC50 values were calculated by
Graph Pad Prism 4.0 (GraphPad software, USA). Only
probability (P) values less than 0.05 were considered to be
statistically significant.

Results
B1R fluorescent labeling and selectivity of BdABK
Figure 1 illustrates B1R labeling with BdABK from low (i)
to high (V) magnification (green dots) in dorsal horn of
thoracic spinal cord of STZ-treated rats. As depicted in Fig-
ure 2, BdABK showed no labeling in control thoracic spi-
nal cord (A), while the labeling of B1R was apparent in
thoracic spinal cord of STZ-treated rats as revealed by
green dots (B). Selectivity and specificity of the labeling
were demonstrated by the absence of BdABK labeling in
STZ-spinal cord sections when the B1R antagonists
SSR240612 (D) and R-715 (E) were added at 10-5M.

B1R and B2R binding and IC50 value of BdABK
Competition experiments using 200 pM [125I]-HPP-
desArg10-Hoe 140 and 10-10 to 10-6 M of des-Arg9-BK, R-
715, or BdABK revealed that kinin analogues decreased in a
concentration-dependent manner the binding of [125I]-
HPP-desArg10-Hoe 140 in the thoracic spinal cord of STZ-
treated rats (Fig. 3). The rank order of potency to inhibit
total B1R binding sites was R-715 = BdABK > des-Arg9-BK
with IC50 values of 4.3 ± 0.2 nM, 5.3 ± 0.1 nM and 19 ± 0.2
nM, respectively. In contrast, BdABK (10-10 to 10-6 M) failed
to inhibit the binding of 200 pM [125I]-HPP-Hoe 140 to
B2R in the thoracic spinal cord of STZ-treated rats (Fig. 4).
In comparison, same concentrations of Hoe 140 displaced
B2R binding sites with IC50value of 1.33 ± 0.1 nM.

BdABK mediated in vivo thermal hyperalgesia
The in vivo effect of BdABK on pain behavior was assessed
by determining its ability to induce thermal hyperalgesia
upon intraperitoneal injection in STZ-treated rats. As

[Nα-Bodipy]-des-Arg9-BK (BdABK) selectivity for B1R was evaluated by confocal microscopyFigure 2
[Nα-Bodipy]-des-Arg9-BK (BdABK) selectivity for 
B1R was evaluated by confocal microscopy. While B1R 
labeling in the presence of BdABK was absent in thoracic spi-
nal cord of control rats (A), it was shown as green dots in 
STZ-treated spinal cord (B, and enlarged in C). B1R labeling 
was absent in STZ-treated spinal cord when BdABK (50 μM) 
was co-incubated with 10-5M SSR240612 (D) or 10-5M R-715 
(E). Background staining represents non specific autofluores-
cence. Scale bars = 20 μm (A, B, D, E) and 8.2 μm (C). Pic-
tures are representative of a minimum of 4 sections per rat 
from 4 different STZ-diabetic rats.

B1R distribution in thoracic spinal cord of STZ-treated rats was shown by confocal microscopy with [Nα-Bodipy]-des-Arg9-BKFigure 1
B1R distribution in thoracic spinal cord of STZ-
treated rats was shown by confocal microscopy with 
[Nα-Bodipy]-des-Arg9-BK. Shown are pictures from low 
(i) to high magnification (V) of the dorsal horn. Scale bars = 
200, 50, 20, 5 and 2.5 μm, respectively from (i) to (V). Pic-
tures are representative of a minimum of 4 sections per rat 
from 4 different STZ-diabetic rats.
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Page 5 of 12
(page number not for citation purposes)



Journal of Neuroinflammation 2009, 6:11 http://www.jneuroinflammation.com/content/6/1/11
expected, BdABK and des-Arg9-BK had no significant
effect on the nociceptive threshold in control rats, yet
both agonists caused thermal hyperalgesia in STZ-diabetic
rats at 0.225 and 2.25 mg/kg. These effects were dose-
dependent and significant when compared to saline or
control (Fig. 5). BdABK was however slightly but signifi-
cantly less potent than des-Arg9-BK to induce hyperalgesia
at the highest dose. As exemplified by des-Arg9-BK, this
response peaked at 15 min post-injection and was revers-
ible after 30 min (Fig. 6).

B1R mRNA expression assessed by qPCR
A low basal expression of kinin B1R mRNA was detected
in the spinal cord of control rats (Fig. 7). This expression
was significantly increased (18-fold) in the spinal cord of
STZ-diabetic rats.

Density of B1R binding sites assessed by quantitative 
autoradiography
As presented in Figure 8, quantitative in vitro autoradiogra-
phy showed an increase density of specific B1R binding sites
throughout the grey matter of the thoracic spinal cord in
STZ-treated rats when compared to age-matched control
spinal cord. B1R binding sites (2.4 fmol/mg protein) in spi-
nal cord of STZ-treated rats were 2.7-fold greater than those
measured in control rats (0.9 fmol/mg protein).

B1R colocalized on microglial cells in thoracic spinal cord
Figure 9 shows the colocalization of BdABK, TOPRO-3
and anti-IBA-1 in STZ thoracic spinal cord. Data suggest
that B1R is present on spinal microglial cells in STZ-dia-
betic rats.

B1R colocalized in primary cultured microglial cells
Figure 10 shows the colocalization of BdABK, TOPRO-3
and anti-IBA-1 in primary microglial cell culture. B1R was
induced by a pre-treatment with 300 nM BK. About 95 ±
2% of the primary cell culture showed a positive labeling

[Nα-Bodipy]-des-Arg9-BK selectivity for B1R was evaluated by quantitative autoradiographyFigure 3
[Nα-Bodipy]-des-Arg9-BK selectivity for B1R was 
evaluated by quantitative autoradiography. R-715 
(selective B1R antagonist), des-Arg9-BK (selective B1R ago-
nist) and [Nα-Bodipy]-des-Arg9-BK (fluorescent agonist of 
B1R) displaced in a concentration-dependent manner, from 
10-10 to 10-6 M, the total binding of 200 pM [125I]-HPP-
desArg10-Hoe 140 to B1R. Data are means ± SEM of 4 sec-
tions per rat from 7 different rats for each compound.

Displacement of (125I)-HPP-desArg10-Hoe 140 binding
 to B1R in thoracic spinal cord of STZ-treated rats
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[Nα-Bodipy]-des-Arg9-BK affinity for B2R was evaluated by quantitative autoradiographyFigure 4
[Nα-Bodipy]-des-Arg9-BK affinity for B2R was evalu-
ated by quantitative autoradiography. Increasing con-
centration (10-10 to 10-6 M) of Hoe 140 (selective B2R 
antagonist) displaced total binding of 200 pM [125I]-HPP-
HOE-140 to B2R. In contrast, same concentrations of [Nα-
Bodipy]-des-Arg9-BK (fluorescent B1R agonist) did not dis-
place the B2R radioligand. Data are means ± SEM of 4 sec-
tions per rat from 7 different rats for each compound.
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The ability of intraperitoneally injected [Nα-Bodipy]-des-Arg9-BK and its native agonist, des-Arg9-BK, to alter the paw withdrawal threshold in STZ-treated and control ratsFigure 5
The ability of intraperitoneally injected [Nα-Bodipy]-
des-Arg9-BK and its native agonist, des-Arg9-BK, to 
alter the paw withdrawal threshold in STZ-treated 
and control rats. Data represent maximal effects and are 
the average of 3 readings taken at 9, 12 and 15 min post-
injection in 3 rats per group. Statistical comparison to con-
trol (*) and 2250 μg/kg des-Arg9-BK (+) are indicated by * + 
P < 0.05; ** P < 0.01; *** P < 0.001.
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with anti-IBA-1 confirming cell purity. Data suggest that
B1R can be induced in vitro on microglial cells.

B1R colocalized on sensory C fibers in thoracic spinal cord
Figure 11 shows the colocalization of BdABK, anti-TRPV1
and anti-CGRP in the thoracic spinal cord of STZ-treated
rats. Data suggest that B1R and TRPV1 are co- localized on
sensory C fibers in STZ-diabetic rats.

B1R colocalized on astrocytes in thoracic spinal cord
Figure 12 shows the colocalization of BdABK and anti-
GFAP in the spinal cord of STZ-treated rats. Data suggest
that B1R is also present on spinal astrocyte cells in STZ-
diabetic rats.

Discussion
This study is using a newly developed selective and high
affinity fluorescent ligand enabling the cellular localiza-
tion of B1R on unfixed tissue. It provides the first evidence
that B1R is localized on microglial cells, astrocytes and
sensory C fibers in the thoracic spinal cord of STZ-diabetic
rats. This study also highlights the early upregulation of
B1R (mRNA and binding sites) in the thoracic spinal cord
of hyperglycaemic STZ-treated rats.

Diabetes induces B1R expression
STZ-diabetic rats provide an accessible model for studying
the expression, the pharmacology and physiopathology of
the B1R in the central nervous system. Pharmacological
data showed that functional B1R was expressed in spinal
cord of STZ-treated rats; its spinal activation led to sympa-
thetically mediated increases of blood pressure and heart
rate [53] and to thermal hyperalgesia [9]. Further autora-
diographic and functional evidence for B1R induction was
demonstrated in the lung [54], spinal cord [33], retina
[6,55] and brain [56] of STZ-diabetic rats. However, this is
the first report on mRNA expression in thoracic spinal
cord of STZ-diabetic rats by qPCR. Hyperglycaemia asso-
ciated with type 1 diabetes can activate NF-κB [57] which
is known to induce B1R [2,3,58]. Moreover, oxidative
stress associated with diabetes was reported to be involved
in the induction of B1R [6,7,29,59].

[Nα-Bodipy]-des-Arg9-BK selectivity for B1R
Experiments by autoradiography confirm that BdABK is
highly selective for B1R and does not bind to B2R. Indeed,
BdABK failed to displace the B2R radioligand [125I]-HPP-
Hoe-140 while it displaced the B1R radioligand, [125I]-

Time-course effect of des-Arg9-BK (2.25 mg/kg, i.p.) on the nociceptive threshold in STZ-treated ratsFigure 6
Time-course effect of des-Arg9-BK (2.25 mg/kg, i.p.) 
on the nociceptive threshold in STZ-treated rats. 
Data are means ± SEM of 3 rats. Statistical comparison to 
time 0 (*) is indicated by ** P < 0.01.
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B1R mRNA expression in STZ-treated and control thoracic spinal cords was measured by quantitative real-time PCRFigure 7
B1R mRNA expression in STZ-treated and control 
thoracic spinal cords was measured by quantitative 
real-time PCR. Data are means ± SEM of (3 to 6) rats. Sta-
tistical comparison with control is indicated by * P < 0.05.

B1R mRNA expression
in thoracic spinal cord

Control STZ-treated rats
0

5

10

15

20

25

30 *

1.0

18.1

(n=3) (n=6)

B
1R

 /
 1

8s
 m

R
N

A
(f

o
ld

 c
h

an
g

e)

B1R binding sites in STZ-treated and control thoracic spinal cords were measured by quantitative autoradiographyFigure 8
B1R binding sites in STZ-treated and control thoracic 
spinal cords were measured by quantitative autoradi-
ography. Specific density of B1R binding sites are means ± 
SEM of (7 to 8) rats. Statistical comparison with control is 
indicated by *** P < 0.001.
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HPP-desArg10-Hoe 140, with an IC50 of 5.3 ± 0.1 nM in
thoracic spinal cord of STZ-treated rats. Results also evi-
denced that B2R binding sites were displaced by the selec-
tive antagonist, Hoe 140, with an IC50 value of 1.3 ± 0.1
nM while B1R binding sites were displaced by the natural
B1R agonist, des-Arg9-BK (IC50 = 19 ± 0.2 nM) and by R-
715, a selective B1R peptide antagonist (IC50 = 4.3 ± 0.2
nM). Comparison of IC50 values suggests that the affinity
of the B1R agonist is increased by the addition of the Bod-
ipy molecule. The stabilization of the N-terminus part of
the peptide may contribute to prevent its degradation.

The reason for using 50 μM BdABK was based on prelim-
inary study. The concentration of fluorescent probe
needed to get a consistent labeling was higher than the
IC50 value most likely because BdABK binds to B1R non-
covalently and can be eliminated during the washout
period of tissue sections. Signal amplification with radio-
activity is also expected to be greater than that achieved
with a fluorescent probe. BdABK showed no labeling in
thoracic spinal cord of control rats which is in accordance
with the inducible character of the B1R and its virtual
absence in healthy tissues. The elimination of B1R labe-

ling with BdABK after co-incubation with R-715 or
SSR240612 confirms the specificity of the B1R fluorescent
ligand.

Interestingly, BdABK maintained its biological activity as
B1R agonist in vivo. Data obtained on the Hargreaves test
revealed that BdABK was only slightly less potent than
des-Arg9-BK to cause thermal hyperalgesia upon periph-
eral administration. This is consistent with the transient
thermal hyperalgesia previously reported in the tail-flick
test after intrathecal injection of des-Arg9-BK in rats made
diabetics with STZ 24 h earlier [9]. Likewise, Gabra and
Sirois [24] showed that intraperitoneal administration of
des-Arg9-BK (400 μg/kg) in STZ-treated rats significantly
reduced the paw withdraw threshold in the hot plate and
tail-flick test.

Localization of B1R
B1R on microglial cells
Previous work by Noda and coworkers [50,51] showed that
B1R can be expressed in cultured rat microglia exposed to

STZ-treated thoracic spinal cord was exposed to TOPRO-3, a specific fluorescent dye for DNA (A)Figure 9
STZ-treated thoracic spinal cord was exposed to 
TOPRO-3, a specific fluorescent dye for DNA (A). 
Microglia was identified with anti-IBA-1 (B). The B1R was 
stained with the selective fluorescent agonist, BdABK (C). 
Colocalization of the three markers is shown in panel D. 
TOPRO-3 dye is blue (ext: 642 nm/em: 661 nm), anti-IBA-1 
dye is red (ext: 550 nm/em: 570 nm) and BdABK dye is green 
(ext: 505 nm/em: 515 nm). Scale bar = 5.38 μm. Pictures pre-
sented are representative of a minimum of 4 sections per rat 
from 4 different animals.
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Rat microglial primary cultured cells were exposed for 24 h to 300 nM BK to increase B1R expressionFigure 10
Rat microglial primary cultured cells were exposed 
for 24 h to 300 nM BK to increase B1R expression. 
Then, they were exposed to TOPRO-3, a specific fluorescent 
dye for DNA (A), to anti-IBA-1, a specific antibody against 
microglia (B) and BdABK to stain B1R (C). Colocalization of 
the three markers is shown in panel D. TOPRO-3 dye is blue 
(ext: 642 nm/em: 661 nm), anti-IBA-1 dye is red (ext: 550 
nm/em: 570 nm) and BdABK dye is green (ext: 505 nm/em: 
515 nm). Scale bar = 31.75 μm. Pictures presented are repre-
sentative of 4 cultured cells samples from 4 different animals.
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BK. We confirmed this result by using our fluorescent lig-
and in the same condition, thus providing additional evi-
dence of its ability to bind B1R in a pure rat microglia
model. BK acting via B2 receptors induces elevation of intra-
cellular calcium leading to the phosphorylation and activa-
tion of NF-κB by protein kinase C [60]. NF-κB upregulates
B1R upon binding to its nuclear promoter [2].

A recent study has demonstrated that B1R is involved in
microglial migration toward rat brain lesion sites [61].
The presence of B1R on spinal microglial cells is in keep-
ing with a recent study suggesting that activated dorsal
horn microglia is a crucial component of STZ-induced tac-
tile allodynia, mediated in part, by extracellular signal-
regulated protein kinase signaling [62]. Importantly, the
development of tactile and cold allodynia in a rat model
of insulin-resistance was blocked by the B1R antagonist
SSR240612 [28] and by two antioxidants (N-acetyl-L-
cysteine and alpha-lipoic acid) known to prevent the
induction of B1R [7,29]. Taken together, these results sug-
gest a critical role for microglial B1R in generation of tac-
tile allodynia, a manifestation of pain polyneuropathy. It

is possible that microglial B1R is also involved in STZ-
induced thermal hyperalgesia as this response was abol-
ished by B1R antagonists [5,24,27] and was absent in B1R
knockout mice treated with STZ [26].

B1R on astrocytes
In addition, the present study provides the first evidence
that thoracic spinal cord astrocytes bear the B1R in STZ-
diabetic rats. Astrocyte B1R may represent another target
for neuropathic or chronic pain. Emerging evidence sug-
gests a critical role for astrocytes in the passage from acute
to chronic and neuropathic pain. It seems that intracellu-
lar calcium level oscillation in astrocytes could spread
through astrocytal network and thereby facilitate the for-
mation of new synapses. These new synapses could estab-
lish neuronal contacts for maintaining and spreading pain
sensation [63]. Moreover, astrocytes are known to release
various inflammatory mediators that promote neuroim-
mune activation and can sensitize primary afferent sen-
sory neurons contributing to development of neuropathic
pain [64].

B1R on sensory C fibers
Immunohistochemical data showed the presence of B1R
in DRG and superficial laminae of spinal cord dorsal horn

STZ-treated spinal cord was exposed to anti-CGRP, a selec-tive antibody of sensory C fibers (A)Figure 11
STZ-treated spinal cord was exposed to anti-CGRP, 
a selective antibody of sensory C fibers (A). TRPV1 
was labeled with anti-TRPV1 another marker of sensory C 
fibers (B). The B1R was stained with the selective fluorescent 
agonist, BdABK (C). Colocalization of the three markers is 
shown in panel D. Anti-CGRP dye is blue (ext: 650 nm/em: 
680 nm), anti-TRPV1 dye is red (ext: 550 nm/em: 570 nm), 
and BdABK dye is green (ext: 505 nm/em: 515 nm). Scale bar 
= 19.21 μm. Pictures presented are representative of a mini-
mum of 4 sections per rat from 4 different animals.
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STZ-treated spinal cord was exposed to anti-GFAP, a specific antibody against astrocytes (A) and to BdABK (B)Figure 12
STZ-treated spinal cord was exposed to anti-GFAP, a 
specific antibody against astrocytes (A) and to 
BdABK (B). Colocalization between B1R and the astrocytes 
is shown in panel C. Anti-GFAP dye is red (ext: 550 nm/em: 
570 nm) and BdABK dye is green (ext: 505 nm/em: 515 nm). 
Scale bar = 7.27 μm. Pictures presented are representative of 
a minimum 4 sections per rat from 4 different animals.
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[30-32]. Those studies suggested a basal expression of B1R
in primary sensory C fibers of normal rat. This is consist-
ent with the expression of B1R in sensory C fibers of STZ-
treated rats as revealed by the co-localization of B1R,
CGRP and TRPV1. Horowitz [65] described the crucial
role of small A-delta and C fibers in generation of diabetic
polyneuropathy and their sensitivity to hyperglycaemia.
Ueda's studies [66,67] support the hypothesis that the
generation of neuropathic pain is related to alterations in
gene and protein expression in primary sensory neurons
which could contribute to demyelination of A-delta fibers
through the down-regulation of myelin protein such as
MBP, MPZ and PMP22. Demyelinated A-delta fibers
sprout and synapse with A-beta fibers resulting in the
enhancement of pro-nociceptive neurotransmitter release
which generated allodynia. The presence of B1R on sen-
sory C fibers is in agreement with an earlier pharmacolog-
ical study that showed that the stimulation of B1R with an
agonist in the spinal cord of STZ-diabetic rats provokes
thermal hyperalgesia via the release of substance P [9].

Basal B1R expression in control rats
Authors failed to observe specific fluorescent labelling for
B1R in normal rats which is rather consistent with the neg-
ligible level of B1R mRNA and binding sites. Moreover,
intrathecal injection of B1R agonists or antagonists failed
to cause behavioural, cardiovascular or nociceptive
responses in control rats, suggesting that the basal expres-
sion of B1R is not functional in naïve rats [9,53]. Thus the
function of the B1R detected by immunohistochemistry in
the spinal cord of rodents and human remains elusive. It
is feasible that B1R in control animals is uncoupled to G
protein as demonstrated for other G-protein-coupled
receptors [68,69]. Although it is possible that the immu-
nological approach is more sensitive, we have evidence
(unpublished data) showing that the commercially avail-
able B1R antibodies (M-19) from SantaCruz Biotechnolo-
gies (Santa Cruz, CA, USA) are not specific for
immunohistochemical detection since B1R labeling per-
sists in spinal cord isolated from B1R knockout mice. The
latter B1R antibodies remain however suitable for Western
blot analysis, suggesting that immunohistochemical stud-
ies reported with B1R antibodies remain to be validated
with the appropriate controls in mutant mice.

Conclusion
[Nα-Bodipy]-des-Arg9-BK was found selective for B1R with
an IC50 value of 5.3 ± 0.1 nM in the rat spinal cord. Fur-
thermore, BdABK maintains its biological activity as ago-
nist as evidenced by its ability to induce thermal
hyperalgesia in STZ-treated rats. This new fluorescent lig-
and enabled the detection of B1R in primary microglial
cell culture and on microglial cells, astrocytes and sensory
C fibers in the thoracic spinal cord of STZ-diabetic rats.
Because all these cells have been implicated in neuro-

pathic pain, the induction and up-regulation of the B1R
on these elements consolidate the idea that kinin B1R is an
important target for drug development in pain processes.
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