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Abstract

Background: Beta amyloid (Af}) peptides are the major constituents of the senile plaques present
in Alzheimer's diseased brain. Pathogenesis has been associated with the aggregated form of the
peptide as these fibrils are the conformation readily found in the plaques. However, recent studies
have shown that the nonaggregated, soluble assemblies of A} have the potential to stimulate
neuronal dysfunction and may play a prominent role in the pathogenesis of Alzheimer's disease.

Methods: Soluble, synthetic AB1—42 oligomers were prepared producing mainly dimer-trimer
conformations as assessed by SDS-PAGE. Similar analysis demonstrated fibril preparations to
produce large insoluble aggregates unable to migrate out of the stacking portion of the gels. These
peptide preparations were used to stimulate primary murine microglia and cortical neuron
cultures. Microglia were analyzed for changes in signaling response and secretory phenotype via
Western analysis and ELISA. Viability was examined by quantifying lactate dehydrogenase release
from the cultures.

Results: AP oligomers and fibrils were used to stimulate microglia for comparison. Both the
oligomers and fibrils stimulated proinflammatory activation of primary microglia but the specific
conformation of the peptide determined the activation profile. Oligomers stimulated increased
levels of active, phosphorylated Lyn and Syk kinase as well as p38 MAP kinase compared to fibrils.
Moreover, oligomers stimulated a differential secretory profile for interleukin 6, monocyte
chemoattractant protein-1 and keratinocyte chemoattractant when compared to fibrils. Finally,
soluble oligomers stimulated death of cultured cortical neurons that was exacerbated by the
presence of microglia.

Conclusion: These data suggest that fibrils and oligomers stimulate unique signaling responses in
microglia leading to discrete secretory changes and effects on neuron survival. This suggests that
inflammation changes during disease may be the consequence of unique peptide-stimulated events
and each conformation may represent an individual anti-inflammatory therapeutic target.
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Background

Alzheimer's disease (AD) is a progressive dementia in
which one of the defining characteristics is the deposition
of extracellular plaques in the brain [1]. While beta-amy-
loid (AB) fibrils, a key component of the neuritic plaques,
have been demonstrated to be neurotoxic in vitro [2-4],
there is a weak correlation between the severity of demen-
tia and plaque load [5-7]. This suggests that something
other than fibrillar A is also contributing to the cell loss
and dysfunction characteristic of AD. Recently, the focus
has shifted somewhat to the soluble form of AB, which
has also been found in the cortex of AD patients [8-11].
Interestingly, there is a direct correlation between the lev-
els of soluble oligomers isolated from AD brain and the
degree of synaptic loss and cognitive impairment [12].
Additionally, AP oligomers are demonstrated to be neuro-
toxic in vitro [13-16]. Increasing evidence suggests that
neuronal dysfunction in AD may occur prior to the depo-
sition of fibrillar AR and it may be mediated by Ap oli-
gomers [17]. These data are beginning to unravel the
contribution of both the oligomers and the fibrils in AB-
mediated neurotoxicity in AD.

Although some in vitro preparations have demonstrated
that AP peptides can undergo transitions from monomer
to oligomer to protofibril in vitro [18,19] other studies
have indicated that physiologically secreted forms of oli-
gomeric AP are much more resistant to extracellular mul-
timerization [20]. Regardless, a number of studies have
now demonstrated that oligomeric Af is found in varying
molecular weight multimers extracellularly in human dis-
ease and its rodent models [8,21-23]. The extracellular
multimers have been reported to have a plethora of auto-
crine effects on neurons. Small molecular weight dimer-
trimers have been demonstrated to alter LTP formation
both in vitro and in vivo [24-26]. In agreement, other small
molecular weight forms ranging from approximately 8-
42 kDa, depending upon the study, have demonstrated
reversible effects on decreasing LTP, dendritic spine den-
sity and length in vitro and direct neurotoxicity as well
[14,27-29]. These multimers reportedly interact with a
specific plasmalemmal protein complex involving activa-
tion of the NMDA receptor and subsequent activation of
the tyrosine kinase, fyn, to carry-out their detrimental
effects [14,30-33]. Larger molecular weight multimers up
to 100 kDa have also been reported to have the ability to
bind to neurons and decrease neuron viability although
the mechanism remains less described [29,34]

In addition to direct neurotoxic effects of Ap peptides they
also have the ability to stimulate glia. In particular, fibril-
lar AB has been demonstrated to further contribute to cell
loss via stimulating microglia to release neurotoxic medi-
ators that propagate an inflammatory cycle [35-38]. As
with the neuronal toxicity data, there is also accumulating

http://www.jneuroinflammation.com/content/6/1/1

evidence that soluble oligomeric intermediates also medi-
ate a portion of this inflammatory response [39,40]. These
data demonstrated microglia are activated differentially
by soluble and protofibrillar A compared to fibrillar
[40,41]. Moreover, astrocytes are also differentially
responsive to the unique peptide conformations [42].
This suggests that a comprehensive study of the effects of
nonfibrillar peptide on microglia activation state is war-
ranted analogous to the observations that have now char-
acterized oligomeric neuron stimulation. Microglial
activation is a prominent component of AD histopathol-
ogy and thus it is of significance to understand the various
mechanisms through which these cells are stimulated to
acquire a reactive phenotype. These data would provide
insight into discreet and perhaps early pathophysiology of
the AD brain.

In this study we have compared the ability of oligomeric
and fibrillar forms of the AP peptide to modulate proin-
flammatory activation of microglia. We compare the in
vitro microglial response and demonstrate a unique acti-
vation profile stimulated by both oligomers and fibrils,
including tyrosine kinase activation, mitogen-activated
protein kinase (MAPK) activation and secretion of
cytokines and chemokines.

Methods

Materials

The 4G10 monoclonal anti-phosphotyrosine antibodies
were purchased from Millipore (Billerica, MA). Anti-Lyn,
anti-Syk, anti-COX-2, anti-phospho-ERK, anti-ERK2 anti-
body, horseradish peroxidase conjugated secondary anti-
bodies, and protein A/G PLUS-Agarose beads were from
Santa Cruz Biotechnology (Santa Cruz, CA). Anti-phos-
pho-p38, anti-p38, anti-phospho-JNK, anti-JNK, and anti-
phospho-Lyn were from Cell Signaling (Beverly, MA).
Anti-CD68 antibody was from Serotec (Raleigh, NC). KC
ELISA, IL-6 ELISA, and MCP-1 ELISA were from R&D Sys-
tems (Minneapolis, MN). Anti-AB, clone 6E10, was
obtained from Covance (Emeryville, CA). Anti-oligomer
antibody, A1l was purchased from Invitrogen.
(Camarillo, CA). DMEM/F12, Neurobasal media and B27
supplements were purchased from Invitrogen (Rockville,
MD). BSA was purchased from Serologicals Corporation
(Norcross, GA).

Preparation of peptides

In order to generate fibrillar and oligomeric peptides for
cell stimulation, AB1-42 was purchased from Bachem
(Torrance, CA) or American Peptide (Sunnyvale, CA). Oli-
gomers were generated as described in Chromy et al [43].
Briefly, AB1-42 peptide was dissolved in cold hexafluoro-
2-propanol (HFIP) to a final concentration of 1 mM. The
peptide was aliquoted and dried under vacuum. The alig-
uoted peptides were stored at -80degreeC until use. For
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use in cell experiments, the peptide was dissolved in
DMSO to a final concentration of 5 mM then diluted to
100 uM in Ham's/F12 media. The peptide oligomers were
then incubated 24 hours, 4 degree C then spun 14,000
rpm, 4 degree C, 10 min. The supernatant was collected as
the oligomeric Ap peptide. Fibrils were prepared by dis-
solving AB1-42 peptides in ddH2O to a final concentra-
tion of 250 uM then incubated at 37 degree C for 1 week
[44]. Fibrils were resuspended with vigorous trituration
prior to removing aliquots for cell stimulation. In order to
assess the peptide states under our bioassay conditions, a
portion of each preparation was diluted to 20 uM in
DMEM/F12 and incubated an additional 48 hours, 37
degree C for subsequent Western analysis. In order to ver-
ify that the fibril concentrations employed were accurate
following the 1 week fibrillization procedure, five differ-
ent aliquots of prepared fibril were quantified during dif-
ferent days by Bradford assay to calculate molarities of the
solution. This calculated molarity was compared to the
predicted molarity based upon the volume of water added
to the known mass of purchased peptide used. The differ-
ence between predicted molarity and mean calculated
molarities from the volume of fibril assayed varied only
by 2.4% (predicted 2.5 nM; calculated 2.4 nM + 0.3). This
verified that even though fibrils formed an insoluble pre-
cipitate in the solution it was being adequately resus-
pended for use as a stimulant.

Tissue culture

Microglia were derived from the brains of postnatal
C57BL/6] mice as described previously [45]. Neurons
were cultured from cortices of embryonic day 16 (E16)
mice (C57BL/6]) as described previously (Sondag and
Combs 2006). For co-cultures, neurons were plated at 260
cellsyfmm? in 48 well plates. At day 14, media was
removed and replaced with Neurobasal media supple-
mented with B27 components containing microglia (26
cellsy/mm?2) and 20 uM AP oligomers or fibrils.

Neurons were cultured from cortices of E16 mice (C57B1/
6J). Briefly, meninges-free cortices were isolated,
trypsinized and plated onto 0.05 mg/mL poly-L-lysine
coated tissue culture wells (260 cells/mm?2) for 14 days in
vitro before use. Neurons were grown in Neurobasal
media with glutamine and B27 supplements (Life Tech-
nologies, Rockville, MD) to consistently provide neuronal
cultures able to survive for at least one month in vitro.
Neuron purity was increased up to 98-99% through a
transient treatment with 1 pmol/L AraC during days 1-3.
Culture purity is routinely evaluated by cell counting after
immunostaining to identify the neuronal cytoskeletal
protein, microtubule associated protein 2 (MAP2).
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Cell stimulation

Microglia were stimulated by removing them from growth
media into serum-free DMEM/F12 media (2 x 106cells/
mL) containing AP oligomer or A fibril. Neurons were
stimulated by removing growth media and replacing it
with serum free media containing AP oligomer or AR
fibril. Cells were stimulated for 5 minutes or 24 hours and
total cell lysates were prepared as described below, or cells
were stimulated for 24 hours at 37°C and media was col-
lected.

Non-denaturing electrophoresis

Sample buffer containing no SDS or B-mercaptoethanol
was added to AP oligomers or AP fibrils. Unheated sam-
ples were resolved on a 15% polyacrylamide gel in the
absence of SDS. Western blotting was performed as
described below.

Immunoprecipitation

To perform immunoprecipitations, cells were lysed in ice-
cold radioimmunoprecipitation assay (RIPA) buffer.
Lysates were then vortexed, incubated on ice for 15 min,
briefly pulse sonicated, and centrifuged (10 min, 4 °C) to
remove insoluble material. Primary antibody (1 pg/mg
protein) was added to the equal protein amounts from
supernatants and incubated 4 h at 4° C. Protein A/G beads
(Santa Cruz) were added and incubated an additional 4 hr
at 4°C. Beads were washed three times with lysis buffer,
and immunoprecipitates were resolved and Western blot-
ted as described below.

Western blotting

Western blotting of cell or tissue lysate was done as
described previously [45]. Briefly, ice cold RIPA buffer was
used to lyse cells. Lysates were sonicated and centrifuged
(14,000 x g, 4°C, 10 min) to remove insoluble material.
Protein concentrations were quantitated and proteins
were resolved by SDS-PAGE and transferred to PVDF
membranes. Western blots were blocked and incubated in
primary antibodies. Blots were washed followed by incu-
bation with HRP-conjugated secondary antibodies. Blots
were washed again followed by detection with enhanced
chemiluminescence (Pierce, Rockford, IL).

Enzyme linked-immuno-sorbent assay (ELISA)

Media was collected from microglia following 24 hour
stimulation. Levels of mouse interleukin-6, KC, and MCP-
1 in the media were determined using commercially avail-
able ELISA kits according to the manufacturer's protocol.

Cell viability assays

Lactate dehydrogenase release (LDH) Assay

Media was collected following 24 hour cell stimulation
and centrifuged (14,000 x g, 2 min, 25°C). Aliquots were
then added to a 96-well plate and LDH concentrations
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assayed according to manufacturer's instructions
(Promega Corporation, Madison, WI). Background
absorbance was subtracted from each condition. Condi-
tions were performed with 12 replicates and each experi-
ment was repeated 3 times. Values were averaged (+ SD)
as a percent of control release.

Cell counting assay

As an additional means to assess cell viability, neurons
were fixed following 72 h stimulation, stained using a
neuron specific anti-MAP2 antibody, and a counting grid
was placed under the wells to count stained neuron num-
bers from four identical fields per condition. MAP2
immunoreactive cells with visible nuclei and processes at
least one cell diameter in length, were counted as neurons.
The average number of neurons (+ SEM) was calculated
for each condition. Each experiment was performed in
quadruplicate 3 times.

Results

Oligomeric and fibrillar AS1-42 stimulate a tyrosine
kinase-based activation response in microglia

In order to define the peptides used in our system, we first
assessed the state of our oligomer and fibril preparations.
To confirm that the AB1-42 peptide maintained the
appropriate fibrillar or oligomeric conformation through-
out the duration of stimulation, we incubated the peptide
in media alone at 37 degree C for 48 hours (Fig. 1A). As
reported by others, the peptide forms high molecular
weight SDS-stable oligomers with incubation but does
not adopt a fibrillar conformation [46]. The bulk of the
peptide in the oligomeric preparation migrated in the
molecular weight range of dimer/trimers (Fig. 1A). As
expected, the fibrillar peptide in spite of increasing
amounts of loaded protein, did not resolve into the sepa-
rating gel and remained in the stacking portion of the gel
(Fig. 1B). Upon subjecting the peptide to non-denaturing
gel electrophoresis (Fig. 1C), we determined again that
the fibril was too large to resolve into the separating gel.
However, under these conditions the bulk of the oligom-
ers ran as a ~24 kD species rather than the dimer/trimer
that was present under the denaturing conditions, sug-
gesting that the dimer/trimers were a result of larger mul-
timer disassembly during the SDS-PAGE. It is likely the 24
kDa form that was observed under the non-denaturing
conditions is a more representative formation of the pep-
tide presented to cells during our experimental studies. As
further evidence of the oligomeric versus fibrillar proper-
ties of our two preparations we performed dot blot West-
erns using anti-Af antibody, 6E10, versus anti-oligomer
antibody, Al1 [47], to verify that minimal oligomeric
peptide was in our fibrillar preparation (Fig. 1D).

We next compared the ability of fibrillar and oligomeric
forms of AB1-42 to stimulate primary microglia by treat-
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ing our cultures with increasing doses of the peptides.
Prior work has demonstrated that fibrillar A stimulates a
specific tyrosine kinase-based activation response in
microglia leading to acquisition of a reactive, neurotoxic
phenotype [48-50]. In order to determine whether A oli-
gomers stimulate a comparable response, we first assayed
changes in protein phosphotyrosine levels following stim-
ulation. Western blot analysis revealed a dose dependent
and qualitatively similar increase in protein phosphotyro-
sine levels, an indirect measure of tyrosine kinase activity.
Interestingly, the oligomers (AB,) were a qualitatively
more potent stimulant than the fibrils (Afy) (Fig. 1E).

To continue comparing the activation profile, we tested
whether AB-mediated stimulation of tyrosine kinases led
to subsequent activation of MAPKs since we, as well as
others, have demonstrated that Af; also stimulate
increased MAP kinase activities in microglia [49,51-53].
AP; stimulated increased levels of the active, phosphor-
ylated form of extracellular signal-regulated kinase (ERK)
but not p38 or ¢c-Jun N-terminal kinase (JNK) (Fig. 2A). In
contrast, AP, stimulated increased activity of p38 MAPK
(Fig. 2A). To further characterize the signaling response
associated with AP stimulation, we sought to identify pro-
teins that were tyrosine phosphorylated upon stimula-
tion. Previous studies demonstrated the Src family, non-
receptor tyrosine kinases Lyn and Syk regulate MAPK acti-
vation during AP stimulation of monocytes [49]. There-
fore, we assessed activation of these specific tyrosine
kinases via assaying their phosphorylation state upon
stimulation. As expected, levels of the phosphorylated
form of both Lyn and Syk increased upon A stimulation,
however the activation was specific to the oligomeric form
of the peptide (Fig. 2A, B). Collectively, these data demon-
strate that the different peptide conformations stimulate
similar but distinct signaling responses in microglia.

Oligomeric and fibrillar AS1-42 stimulate unique reactive
phenotypes in microglia

Based upon the differences observed in the stimulated sig-
naling response we predicted that the resultant, reactive
phenotypes would also be unique. An abundance of liter-
ature has described the reactive, secretory microglial phe-
notype stimulated by AB¢while little is known regarding
AP, effects on these cells [39,40]. Our signaling results
above suggested that the resultant phenotypes would dif-
fer between AP, and AP, stimulations. We first compared
protein levels of two typical reactive microglial marker
proteins, cyclooxygenase-2 (COX-2) and CD68. In addi-
tion, we assessed protein levels of CD45, a tyrosine phos-
phatase  demonstrating increased  microglial-like
immunoreactivity in AD brains [54]. Oligomeric but not
fibrillar AB stimulated increased protein levels of both
COX-2 and CD68 following 24 hr stimulation, while nei-
ther form of the peptide stimulated a change in CD45 lev-
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Figure | (see previous page)

Oligomeric and fibrillar Af stimulated a qualitatively similar and dose-dependent increase in tyrosine phos-
phorylated protein levels. AB 142 oligomers (ABo) and A 142 fibrils (ABf) were prepared to a 100 uM concentration via
4 degree incubation overnight (Apo) or 37 degree incubation 7 days (ABf) then diluted to 20 uM in DMEM/FI2 media and incu-
bated an additional 48 hours at 37 degree C to determine peptide states under bioassay conditions. | pg (A, C) or 0.2-2 pg (B)
of peptides were separated by (A, B) 15% SDS-PAGE or (C) 15% non-denaturing gel electrophoresis and Western blotted with
anti-Af antibody, 6E10. (D) Alternatively, prepared ABo and ABf were dot blotted (5 pg) each onto PVDF and blotted with
anti-Af antibody, 6E 10, or anti-oligomer antibody, Al I. (E) Primary mouse microglia were unstimulated (control) or stimu-
lated with increasing concentrations of ABo, ABf, or vehicle. Cells were lysed after 5 min with RIPA buffer. Cell lysates were
separated by 7% SDS-PAGE and Western blotted with anti-phosphotyrosine antibody (4G 10) and anti-ERK2 antibody (loading
control). Antibody binding was visualized by chemiluminescence. Blots are representative of at least three independent experi-

ments.

els (Fig. 2C). Based upon this difference, we predicted that
the two peptide conformations would stimulate distinct
secretory profiles. Using results from a preliminary
cytokine/chemokine array profile (Fig. 3A) we elected to
quantify secretion of interleukin-6 (IL-6), keratinocyte
chemoattractant chemokine (KC, mouse homolog to IL-
8), and monocyte chemoattractant protein-1 (MCP-1) fol-
lowing stimulation. Both AP, and AP, stimulated
increased IL-6 and KC secretion. However, AR, stimulated
a significantly greater amount of IL-6 (Fig. 3A) while Ay
stimulated a significantly greater amount of KC (Fig 3B).
Interestingly, AP, stimulated a decrease in MCP-1 secre-
tion while AB;had no effect (Fig. 3C). In agreement with
the differences observed in stimulated signaling response,
these data confirm that the resultant reactive, secretory
phenotypes stimulated by AP, or AP are distinct.

Oligomeric and fibrillar A1-42 stimulations have different
neurotoxic effects

We next compared whether the two peptide conforma-
tions stimulated microglia to acquire a neurotoxic pheno-
type. Several prior reports have demonstrated that AP,
stimulate microglia to become neurotoxic [36,49,55]
while this remains unclear for Ap,. Using our working
concentrations responsible for the stimulatory effects
described above we first verified that neither A, nor AB;
were toxic to microglia (Fig. 4A). We then tested the direct
toxicity of the oligomers and fibrils to primary cortical
neuron cultures as there have been conflicting reports
about the toxicity of the oligomers in vitro [43,56]. After
quantitating released LDH into the media it appeared that
the oligomers did not stimulate neuronal toxicity under
our assay conditions. However, the same assay demon-
strated significant fibril dependent toxicity in a dose-
dependent manner, as expected (Fig. 4B). Because we
have identified several proinflammatory molecules that
are secreted by microglia in response to A1-42 stimula-
tion, we tested whether the different conformations of the
peptide stimulated microglia to secrete neurotoxic species
when they were co-cultured with neurons. As expected,
the fibrils stimulated microglia to increase neuron death

during a 24 hour stimulation in mixed cultures above that
induced by direct neuronal toxicity of the peptide alone
(Fig. 4C). Although the oligomers were not toxic alone, as
determined by LDH release quantitation, they did stimu-
late neuronal death in the presence of microglia (Fig. 4C).
However, microglia can basally secrete LDH that could act
as a confound in our LDH quantitation data and LDH
release may not accurately identify cells dying by means
other than necrotic death. Therefore, the ability of oligo-
meric AP to kill neurons independent and in the presence
of microglia was again examined using a cell counting
measure to determine viability. In addition, a longer time
period of stimulation, 48 hours, was employed. These
data demonstrated that oligomeric peptide alone was
toxic to neurons at this longer time period and stimulated
a greater degree of cell death when microglia were co-cul-
tured with the neurons (Fig. 4D). This suggests that the
longer time period of stimulation or the different assay of
viability are required to accurately determine APo effects
on neurons in our cultures. Collectively, these data dem-
onstrated that the two peptide conformations stimulate
distinct effects on neuron viability both directly and indi-
rectly through microglial activation.

Discussion

There is increasing evidence that AP oligomers have an
early role in AD pathology before the appearance of amy-
loid deposits [17]. Importantly, oligomers have been
demonstrated to potentiate synaptic loss and inhibit hip-
pocampal long-term potentiation (LTP) in vitro and in vivo
in the absence of any fibril formation [24,57]. Further-
more, transgenic mice overexpressing APP have substan-
tial presynaptic loss before the appearance of Ap deposits
[58,59]. Thus, amyloid fibril formation may be an end
stage event in a disease process that is mediated by the
effects of the oligomers. To date, there are few reports as
to how microglia react to AP oligomers and how that com-
pares with fibril-mediated activation [40]. While it is
known that Af fibrils stimulate microglial activation in
vitro, it is unclear where this fits in the neuroinflammatory
timeline of events in AD. Here we examined the effect of
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Figure 2 (see previous page)

AP 1-42 stimulated a conformation-specific MAP and tyrosine kinase signaling response along with increased
COX-2 and CDé68 protein levels. Primary mouse microglia were unstimulated (control) or stimulated with 20 uM Ao or
20 uM ABf. (A) Cells were lysed after 5 min with RIPA buffer and lysates were separated by 10% SDS-PAGE and Western blot-
ted with anti-phosphotyrosine antibody (4G 10), anti-phospho-JNK antibody, anti-JNK antibody (loading control), anti-phos-
pho-ERK antibody, anti-ERK?2 antibody (loading control), anti-phospho-p38 antibody, anti-p38 antibody (loading control), anti-
phospho-Lyn antibody, or anti-Lyn antibody (loading control). (B) Cells were also lysed after 5 min with RIPA buffer and Syk
was immunoprecipitated. Inmunoprecipitates were separated by 7% SDS-PAGE and Western blotted with anti-phosphotyro-
sine antibody (4G 10) and anti-Syk antibody. Arrowheads differentiate specific immunoreactivity from IgG heavy chain. (C) Cells
were lysed after 24 hrs with RIPA buffer. Cell lysates were separated by 10% SDS-PAGE and Western blotted with anti-COX-
2 antibody, anti-CD68 antibody, anti-CD45 antibody and anti-ERK2 antibody (loading control). Antibody binding was visualized

by chemiluminescence. Blots are representative of at least three independent experiments.

oligomeric and fibrillar AB1-42 on proinflammatory acti-
vation of microglia in vitro. Microglial cultures treated
with oligomeric AP exhibited different profiles for
changes in tyrosine phosphorylated proteins, MAPK acti-
vation, and subsequent cytokine and chemokine produc-
tion than fibril-treated cultures. These results suggest that
oligomeric and fibrillar AB1-42 may play distinct roles in
the proinflammatory activation of microglia demon-
strated in AD. While both conformations of the peptide
stimulated increased levels of tyrosine phosphorylated
proteins, they did so at qualitatively different levels and
the resultant phenotypes differed between the two stim-
uli. We demonstrated that oligomers and fibrils activate
the microglia through unique signaling pathways that
include activation of specific MAPKs for each form of the
peptide. In addition, the propagation of this signaling
response through subsequent activation of Lyn and Syk
tyrosine kinases is specific to the oligomeric peptide.
Again, this reinforces the differences between the ability of
the fibrils and oligomers to stimulate microglia and pro-
vide potential therapeutic targets to alleviate inflamma-
tion associated with AD. Although the peptide
comparisons were based upon molarity calculations, it is
possible that the surface area of peptide in the two differ-
ent states is a variable influencing ability to stimulate
microglia. For example, the aggregated, insoluble nature
of the fibril may diminish the surface area for stimulating
microglia in spite of a comparable or even higher molarity
comparison to oligomers. With this caveat in mind, fibrils
did induce direct, significant neurotoxicity, assayed by
LDH release, at concentrations that were inadequate for
oligomers (Fig. 4B). This differential neuron effect at sim-
ilar concentrations, together with the ELISA and signaling
data supports the notion that similar concentration com-
parisons with microglia are reasonable, at least as a start-
ing point, for oligomers versus fibrils.

It is well-documented that AB1-42 stimulates increased
cytokine secretion from microglia and cytokine upregula-
tion is a key feature demonstrated in AD [60,61]. IL-6
expression is largely increased in AD brain and is believed

to have a prominent role in the inflammatory cycle asso-
ciated with the disease [62]. Interestingly, we show that
both AP, and APstimulate increased IL-6 release from
microglia but the soluble assemblies stimulate signifi-
cantly more than the fibrils. In contrast, the fibrillar con-
formation stimulates a significantly greater amount of the
proinflammatory chemokine, KC, than the oligomer. KC
is the murine homolog to IL-8, a chemokine with demon-
strated proinflammatory effects that is also upregulated in
AD brain [63,64]. These data demonstrate that AB1-42 is
indeed a stimulus for increased cytokine production in
microglia but more importantly it is the specific confor-
mation of the peptide that dictates the nature of the
release. The decrease in MCP-1 release upon oligomer
stimulation, while somewhat unexpected, is yet another
example of how the oligomers and fibrils differ in the
means by which they stimulate microglia. It is possible
that these data will provide relevant information regard-
ing when in the disease process some of the inflammatory
mediators are released. For example, it has been suggested
that IL-6 upregulation occurs relatively early in AD, prior
to neuritic changes [17]. This is supported by our data
which demonstrates the oligomer is a potent stimulus for
microglial IL-6 release relative to the fibrils.

We and others have demonstrated that AB1-42 is neuro-
toxic in vitro [2-4]. However, there are still conflicting
reports as to whether it is the oligomers or fibrils that are
the more potent neurotoxin. It is likely that the different
assay parameters are affecting the clarity of this outcome.
For example, our results demonstrated that oligomeric
peptide was toxic to neurons when viability was assessed
via cell counting but was not toxic when cell death was
determined by measuring levels of LDH released into the
media. In addition, primary neuronal cultures and cell
lines appear to respond differently to stimulation with
AB1-42 [56,65]. Also, there may be some discrepancies
that can be attributed to the use of the synthetic AB1-42
and the consistency of its preparation. We have character-
ized by denaturing electrophoresis our oligomeric prepa-
ration to be approximately dimer-trimer forms initially
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AP 1-42 stimulated a conformation-specific increase in proinflammatory cytokine and chemokine secretion.
Primary microglia were unstimulated (control) or stimulated for 24 hours with 20 uM ABo, 20 uM Apf, or 25 ng/mL lipopoly-
saccharide (LPS, positive control). (A) Media were collected and used to perform a preliminary screen of a mouse inflammation
antibody array to assess whether relative differences in secretion occurred. In order to quantitate select changes, media was
collected and analyzed by (A) mouse IL-6 ELISA, (B) mouse KC ELISA, or (C) mouse MCP-| ELISA. Data were analyzed by
unpaired ANOVA with Tukey's post-test comparison and are expressed as mean +/- SD. Values are representative of three
independent experiments (* = p < 0.05 over control, ** = p < 0.001 from control, ** = p < 0.00 from oligomer, # = p <

0.001 from fibril).

and multimerizing to several larger molecular weight spe-
cies with in vitro incubation. It is important to point out
that our species of AB may not be the only disease relevant
multimers. For example, recent work by Lesne et al has
demonstrated that memory deficits in a transgenic AD
mouse model can be produced by a 56 kDa multimer of
AP [22]. Reports by others have also demonstrated that
varying molecular weight oligomers, detected by immu-
nostaining, co-localize with neurons in AD brains [34,66]
and bind to neuronal membranes in vitro to affect changes
in gene expression [34]. Others have demonstrated that
smaller molecular weight oligomers have distinct effects
on neuron dysfunction [24-26]. Although our preparation

is consistent with that employed by others [33] we can not
be entirely specific regarding the particular species
involved in the stimulated cytokine secretion in vitro or
the toxicity induced during the 48 hour stimulation due to
the clear ability of the peptide to multimerize to higher
molecular weight species in our hands. Indeed, the fact
that large concentrations (10-20 pM) were needed to
stimulate signaling responses and cytokine secretion may
well suggest that the particular species involved in stimu-
lating microglia or neuron death may be one of the less
abundant molecular weight species in our preparation.
Future efforts involving chromatographic separation of
the different oligomeric forms followed by acute stimula-
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Ap1-42 oligomers were only neurotoxic in neuron-microglia co-cultures. (A) Primary microglia, (B) 14 day in vitro
primary cortical neuron, or (C, D) primary neuron-microglia co-cultures were unstimulated (control) or stimulated for 24 (A-
C) or 48 (D) hours with increasing doses of ABo, ABf, or vehicle. Media were collected and analyzed by (A-C) LDH release
assay to assess viability. Data were analyzed by unpaired ANOVA with Tukey's post-test comparison and are expressed as
mean +/- SD. Values are representative of three independent experiments (* = p < 0.05 from control, ** = p <0.001 from con-
trol, ** = p < 0.0l from ABf+neurons). (D) Alternatively, neurons were fixed after stimulation and immunostained for MAP2
expression and counted to assess viability. Data were analyzed by unpaired ANOVA with Tukey's post-test comparison,
expressed as mean +/- SEM, and representative of three independent experiments. (* = p < 0.0l from microglia+neurons, ** =
p < 0.001 from microglia+neurons).
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tion of microglia may help define any particular receptor
interactions as well as determine whether a distinct form
is responsible for stimulating the tyrosine kinase-medi-
ated signaling response.

Conclusion

This study provides novel information regarding the dif-
ferences between oligomeric and fibrillar AB1-42 stimu-
lation of microglia in wvitro. Importantly, these data
demonstrate multiple proinflammatory mediators that
are released upon stimulation with either peptide that
likely contribute to the neuropathology evident in AD.
These data may not only help develop a timeline for
proinflammatory mediator release by microglia in AD,
but also may provide critical information with respect to
therapeutic strategies for the disease. These data empha-
size the necessity to compare side-by-side responses of
microglia to both oligomeric and fibrillar peptide confor-
mations to gain an accurate impression of the behavior of
these cells during aging and disease as well as provide the
framework for logical intervention strategies.
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