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Abstract
Acute hemorrhagic leukoencephalomyelitis (AHLE) is a rare neurological condition characterized
by the development of acute hemorrhagic demyelination and high mortality. The pathomechanism
of AHLE, as well as potential therapeutic approaches, have remained elusive due to the lack of
suitable animal models. We report the first murine model of AHLE using a variation of the Theiler's
Murine Encephalitis Virus (TMEV) MS model. During acute TMEV infection, C57BL/6 mice do not
normally undergo demyelination. However, when 7 day TMEV infected C57BL/6 mice are
intravenously administered the immunodominant CD8 T cell peptide, VP2121–130, animals develop
characteristics of human AHLE based on pathologic, MRI and clinical features including
microhemorrhages, increased blood-brain barrier permeability, and demyelination. The animals
also develop severe disability as assessed using the rotarod assay. This study demonstrates the
development of hemorrhagic demyelination in TMEV infected C57BL/6 mice within 24 hours of
inducing this condition through intravenous administration of CD8 T cell restricted peptide. This
study is also the first demonstration of rapid demyelination in a TMEV resistant non-demyelinating
strain without transgenic alterations or pharmacologically induced immunosuppression.

Findings
The acute monophasic demyelinating disorders, includ-
ing acute disseminated encephalomyelitis (ADEM) and
acute hemorrhagic leukoencephalitis (AHLE) usually
present 1–3 weeks after infections or vaccination, but
have also been observed without preceding illness [1,2].
In cases of ADEM, the prognosis is favorable, with 60–
80% of cases experiencing complete recovery [3,4]. How-
ever, AHLE is associated with rapidly deteriorating focal
and diffuse neurological symptoms leading to death
within 2–14 days [5-8]. The few patients that survive
AHLE usually have significant residual neurological symp-
toms [9]. Its high mortality and poor response to therapy

necessitate the development of animal models of AHLE to
understand the mechanism of its pathology.

During acute TMEV infection of the H-2b haplotype, 50–
70% of central nervous system (CNS) infiltrating CD8+ T
cells have T cell receptor specificity towards an immuno-
dominant viral peptide VP2121–130 presented in the con-
text of the Db class I molecule [10]. We have previously
reported that a rapidly fatal hemorrhagic CNS disease
develops in the C57BL/6 strain when the immunodomi-
nant VP2121–130 peptide is intravenously administered 7
days post TMEV infection [11]. In these studies, we con-
firmed by northern blot analysis that TMEV RNA in the
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CNS was not increased in animals administered VP2121–

130 peptide, demonstrating that this fatal condition was
not due to increased viral load [11]. The C57BL/6 strain is
considered non-demyelinating, as these mice do not
develop chronic viral persistence and demyelination [12].
We now report that the fatal hemorrhagic CNS disease in
these mice is associated with demyelination. Our findings
highlight two very important concepts: 1) a classically
non-demyelinating strain can develop fulminant hemor-
rhagic demyelination by intravenous administration of an
immunodominant peptide recognized by CD8 T cells;
and 2) this hyperacute model of hemorrhagic demyelina-
tion is the first TMEV-induced murine model of AHLE.

All experiments were approved by the Institutional Ani-
mal Care and Use Committee of the University of Cincin-
nati. All adequate measures were taken to minimize pain
or discomfort, and experiments were conducted in accord-
ance with international standards on animal welfare as
well as being compliant with local and national regula-
tions. TMEV infection was induced via intracranial injec-
tion of 2 × 106 PFUs of TMEV [11]. Induction of the
hemorrhagic demyelinating condition required IV injec-
tion of 0.1 mg VP2121–130 peptide 7 days after infection. Db

binding Human papilloma virus E7 peptide was used as
negative control [11].

(1) In vivo magnetic resonance imaging was performed in
a 7 Tesla narrow bore small animal imaging system
(Bruker Biospin, Billerica, MA). Inhalational isofluran
anesthesia was used. A custom made saddle coil was used
for acquisition and excitation [11,13]. We acquired three
dimensional T2 weighted (RARE pulse sequence, TR1500
ms, TE65 ms, FOV: 4 × 2.5 × 2.5 cm, matrix: 256 × 128 ×
128, RARE factor 16), T2* weighted (GEFI pulse sequence,
TR150 ms, TE10 ms, FA:15, FOV: 4 × 2.5 × 2.5 cm, matrix:
256 × 128 × 128, NEX 4) and T1 weighted (SE pulse
sequence, TR200 ms, TE10 ms, FOV: 4 × 2.5 × 2.5 cm,
matrix: 256 × 128 × 128, NEX 2) images. Gadopentetate
dimeglumine (Magnevist, Bayer Healthcare Pharmaceuti-
cals) was injected intravenously 20 minutes before acquir-
ing the post-contrast images, using a human equivalent
dose of 0.1 mmol/kg. Analysis of the images, including
2D slice extraction was done using Analyze 8.0 [14]. Fig-
ure 1 shows MRI images obtained 24 hours after VP2 pep-
tide injection in 7 day TMEV infected C57BL/6 mice (B).
The MRI images revealed extensive areas of hyperintense
signal abnormality on T2 weighted images, corresponding
with edema, cell infiltration and demyelination in the
deep white matter, the corpus callosum, and in gray mat-
ter structures. The T2* weighted images revealed several
areas of punctuate microhemorrhages in the areas where
T2 hyperintensities were also demonstrated. The T1
weighted post-gadolinium images demonstrate signifi-
cant blood-brain barrier permeability in large confluent

areas of the brain. MRI images obtained 24 hours after E7
peptide injection (A) revealed very subtle T2 hyperinten-
sities and minimal contrast enhancement in the parahip-
pocampal and deep gray matter areas, where the majority
of viral replication and the resulting immune response
occurs. No T2* hypointensities are demonstrated in E7
peptide injected animals, suggesting that microhemor-
rhages are not part of the pathology in sham treated ani-
mals. Also at 24 hours, mice were assessed using the
rotarod apparatus, a rotating bar which increases from 5–
40 RPM over 7 minutes. The rotarod is a well documented
method of determining sensorimotor deficits and overall
functional impairment in mice [15,16]. VP2 peptide
treated animals demonstrated greatly decreased ability to
negotiate the rotarod apparatus as compared to E7 pep-
tide treated controls (P < .001, data not shown).

(2) To determine the presence and extent of demyelina-
tion, mice were perfused via intracardiac puncture with 50
mL Trump's fixative solution. Brains were removed and
post-fixed for an additional 24 hours in Trump's fixative.
Coronal blocks of brain tissue were osmicated and
embedded in glycol methacrylate [17]. Two-μm-thick sec-
tions were stained with a modified paraphenolyene
diamine stain to detect demyelination.

We used pathologic studies of animals administered
mock E7 peptide or VP2 peptide treatment to determine if
these signal changes were indicative of demyelination. 24
hours after E7 or VP2 peptide injection in 7 day TMEV
infected C57BL/6 mice, brains were harvested and proc-
essed for histology using paraphenolyene diamine stain
for demyelination. Figure 2 shows extensive demyelina-
tion in areas adjacent to microhemorrhages in VP2 treated
animals (C, D). Demyelination was observed in both the
corpus callosum as well as in the deep white matter. Addi-
tional demyelination was observed in and adjacent to gray
matter structures. No such abnormalities were observed in
mock E7 peptide treated controls (A, B). To assess the
presence of CD8 T cells in areas with demyelination and
gadolinium enhancement we used immunoperoxidase
staining for CD8a (Ly-2) as previously described [18]. In
Figure 2 we show that CD8 T cells were found throughout
the brain, most notably in the hippocampal regions and
corpus callosum (E). Gadolinium-enhanced T1 weighted
MRI showed evidence of BBB disruption in these same
areas of the brain (F). These experiments demonstrated
the presence of CD8 T cells in the corpus callosum, a
region with high levels of demyelination and BBB perme-
ability.

We report that immunodominant peptide injection in
TMEV infected C57BL/6 mice causes significant blood
brain barrier (BBB) permeability and CNS damage, result-
ing not only in inflammatory infiltrates, microhemor-
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rhages, and tissue damage, but also demyelination. To our
knowledge, this is the first example of inducing demyeli-
nation in a non-demyelinating mouse strain in the TMEV
model without the use of immunosuppressants or trans-
genic technology [19]. Our previously published results
also demonstrate that CD8+ T cells specific for the immu-
nodominant Db: VP2 121–130 epitope play a key role in
mediating the observed pathology [11].

Demyelination is rapid in this murine model, occurring
within 24 hours of intravenous injection of VP2 peptide.
Also of interest, demyelination, as a result of TMEV infec-
tion, is normally not observed in the C57BL/6 strain. Sus-
ceptibility to demyelination in the TMEV model is largely
dependent on the major histocompatibility class I geno-
type of the mouse [12]. However, other quantitative trait
loci (QTL) pertaining to susceptibility to persistent virus
infection and chronic demyelination in the spinal cord

In vivo MRI images of 8 day TMEV infected C57BL/6 mice, 24 hours after VP2121–130 peptide injection (right panel, B) or irrele-vant E7 peptide injection (left panel, A)Figure 1
In vivo MRI images of 8 day TMEV infected C57BL/6 mice, 24 hours after VP2121–130 peptide injection (right panel, B) or irrele-
vant E7 peptide injection (left panel, A). Top row: axial images extracted from the gadolinium enhanced T1 weighted dataset 
demonstrate extensive contrast enhancement of confluent areas of the brain in the VP2 injected mouse, and very faint 
enhancement in the parahippocampal area in the E7 injected animal. Middle row: T2* weighted images demonstrate punctuate 
T2 hypointensities, corresponding with areas of microhemorrhages in the VP2 injected mouse. Bottom row: T2 weighted 
images demonstrate T2 hyperintensities, corresponding with areas of edema, inflammatory infiltrates, demyelination and tissue 
damage in the VP2 injected mouse; minimal hyperintense changes are also demonstrated in the parahippocampal areas of the 
E7 injected animal.
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Pathology of mouse brain coronal sections of 7 day TMEV infected C57BL/6J miceFigure 2
Pathology of mouse brain coronal sections of 7 day TMEV infected C57BL/6J mice. A and B: 24 hours post intravenous irrele-
vant E7 peptide injection. C and D: 24 hours post intravenous VP2121–130 peptide injection. Red arrows demonstrate microhe-
morrhages, yellow arrows demonstrate sites of demyelination. E: CD8 T cell stain in the corpus callosum (cc) and 
hippocampus (hipp) 24 hours post intravenous VP2121–130 peptide injection. F: T1 Gadolinium enhanced MRI at the level of the 
hippocampus 24 hours post intravenous VP2121–130 peptide injection.
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have also been defined [12]. C57BL/6 mice, being of the
resistant H-2b haplotype, mount a very strong antiviral
response, mediated by epitope specific CD8+ T-cells rec-
ognizing the VP2121–130 viral capsid fragment [20]. This
results in clearance of the virus, and survival of the animal
without neurological deficits. As demonstrated by this
study, a demyelinating syndrome can be rapidly induced
by a simple in vivo injection of the immunodominant
peptide VP2 which is recognized by the majority of brain
infiltrating CD8 T cells [10].

In the human condition, ADEM is characterized by multi-
focal perivascular demyelination in an asymmetric fash-
ion, mostly in the white matter. However, gray matter
involvement of the basal ganglia, thalamus and brainstem
has also been reported. In AHLE, necrotizing immune
infiltration, perivascular demyelination, ball and ring
hemorrhages, prominent infiltrates with lymphocytes,
macrophages and neutrophils have been reported [2].
Radiologically AHLE is also more severe than ADEM, with
mass effect, edema, and punctuate hemorrhages being
present adjacent to usually asymmetric T2 hyperintense
lesions. The histological and MRI findings put forth in this
study clearly present with these traits, demonstrating that
in vivo activation of CNS infiltrating CD8 T cells can serve
as a novel model of AHLE. Such studies may ultimately
lead to the development of more effective and focused
therapies instead of non-specific and partially effective use
of steroids [21], cyclophosphamide or plasma exchange
[22]. Future experiments directed at putative mechanisms
of BBB disruption and demyelination are already under-
way in our labs.
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