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Abstract

Background: Activation of the peripheral innate immune system stimulates the secretion of CNS cytokines that
modulate the behavioral symptoms of sickness. Excessive production of cytokines by microglia, however, may cause long-
lasting behavioral and cognitive complications. The purpose of this study was to determine if minocycline, an anti-
inflammatory agent and purported microglial inhibitor, attenuates lipopolysaccharide (LPS)-induced neuroinflammation,
sickness behavior, and anhedonia.

Methods: In the first set of experiments the effect of minocycline pretreatment on LPS-induced microglia activation was
assessed in BV-2 microglia cell cultures. In the second study, adult (3—6 m) BALB/c mice received an intraperitoneal (i.p.)
injection of vehicle or minocycline (50 mg/kg) for three consecutive days. On the third day, mice were also injected (i.p.)
with saline or Escherichia coli LPS (0.33 mg/kg) and behavior (i.e., sickness and anhedonia) and markers of
neuroinflammation (i.e., microglia activation and inflammatory cytokines) were determined. In the final study, adult and
aged BALB/c mice were treated with the same minocycline and LPS injection regimen and markers of neuroinflammation
were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were
subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions.

Results: Minocycline blocked LPS-stimulated inflammatory cytokine secretion in the BV-2 microglia-derived cell line and
reduced LPS-induced Toll-like-receptor-2 (TLR2) surface expression on brain microglia. Moreover, minocycline
facilitated the recovery from sickness behavior (i.e., anorexia, weight loss, and social withdrawal) and prevented
anhedonia in adult mice challenged with LPS. Furthermore, the minocycline associated recovery from LPS-induced
sickness behavior was paralleled by reduced mRNA levels of Interleukin (IL)-1§, IL-6, and indoleamine 2, 3 dioxygenase
(IDO) in the cortex and hippocampus. Finally, in aged mice, where exaggerated neuroinflammation was elicited by LPS,
minocycline pretreatment was still effective in markedly reducing mRNA levels of IL-If, TLR2 and IDO in the
hippocampus.

Conclusion: These data indicate that minocycline mitigates neuroinflammation in the adult and aged brain and
modulates the cytokine-associated changes in motivation and behavior.
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Background

The bi-directional communication between the immune
system and the central nervous system (CNS) is necessary
for mounting the appropriate immunological, physiolog-
ical, and behavioral responses to immune stimulation [1].
CNS innate immune cells including microglia and macro-
phages play integral roles in receiving and propagating
inflammatory signals that are initiated at the periphery.
Activation of peripheral innate immune cells elicits the
secretion of inflammatory cytokines, including inter-
leukin (IL)-1, IL-6, and tumor necrosis factor-o. (TNFa..),
that use neural [2,3], humoral [4] and blood brain barrier
pathways [5] to relay this signal to the CNS. This inflam-
matory signal, in turn, induces CNS macrophages and
microglia to produce the same cytokines [6], which target
neuronal substrates and elicit a sickness behavior syn-
drome that is normally adaptive and beneficial to the host
[1]. An amplified or excessive inflammatory cytokine
response in the brain, however, is associated with a myr-
iad of complications including cognitive dysfunction [7-
10], prolonged sickness behavior [11-14], and depressive-
like behavior [15].

Microglia are primarily involved in immune surveillance
[16,17], but when activated have macrophage-like capa-
bilities including phagocytosis, inflammatory cytokine
production, and antigen presentation [18]. Normally
these neuroinflammatory changes are transient with
microglia returning to a resting state as the immune stim-
ulus is resolved. Aging or neurological disease, however,
may provide a brain environment where microglia are
more "reactive or primed" to a peripheral immune chal-
lenge [19]. Recent findings indicate that several markers of
glial activation such as major histocompatibility complex
(MHCQ) class II, complement receptors, and scavenger
receptors are increased in brain during normal aging
[13,20-26]. Furthermore, we and others have reported
that a biological consequence of this reactive glial profile
is an exaggerated neuroinflammatory response to innate
immune challenge [9,10,12-14,27,28].

Active microglia and CNS macrophages also contribute to
the production of oxidative and neuroactive mediators
that may influence behavior. For instance, inflammatory
cytokines in the CNS upregulate the enzyme IDO [29,30],
which metabolizes tryptophan (TRP) into L-kynurenine
(KYN) [31]. TRP degradation to KYN can reduce TRP lev-
els that are required for serotonin synthesis [32] and can
lead to the production of neuroactive mediators including
3-hydroxykynurenine (3HK) and quinolinic acid (QUIN)
[31]. High levels of 3HK and QUIN induce neuronal dam-
age through oxidative stress [33] and over stimulation of
N-methyl-D-aspartate (NMDA) receptors [34,35]. A
recent study indicates that while several cell types in the
CNS express IDO, only microglia maintain all the
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enzymes required to produce 3HK and QUIN [36].
Because IDO mediated TRP degradation impacts both ser-
otonergic and glutamatergic pathways, this may be an
important mechanism underlying mood and behavior
complications concomitant with inflammation [37-39].

Because activated microglia are suspected to cause or exac-
erbate several neurodegenerative diseases, pharmacologi-
cal strategies to suppress microglial activity are being
explored as therapies. Minocycline is a tetracycline
derived antibiotic that has anti-inflammatory properties
in the CNS that are separate from its antimicrobial action
[40]. Minocycline readily crosses the blood brain barrier
and attenuates inflammation associated with microglial
activation. For example, minocycline blocks the deleteri-
ous effects of neuroinflammation on neurogenesis, long-
term potentiation, and neuronal survival [41-43]. The
mechanism of action is unclear, but recent studies indi-
cate that minocycline abrogates MAPkinase and NFxB
dependent signaling pathways in primary microglia and
microglia cell cultures [44]. Moreover, in the brain of rats,
minocycline abrogates microglial expression of CD11b
and MHC II through a protein kinase-c dependent mech-
anism [45]. This is relevant because minocycline attenu-
ates neuroinflammation in several rodent models of
disease including Amyotrophic Lateral Sclerosis [46],
Experimental Autoimmune Encephalomyelitis (EAE) [45]
and MPTP-induced Parkinson's disease [47]. However,
the extent to which minocycline facilitates the recovery
from cytokine-mediated sickness behavior is unknown.

The present study investigated the degree to which mino-
cycline-an anti-inflammatory agent and purported micro-
glial inhibitor-reduced LPS-induced neuroinflammation
and sickness behavior. We show that minocycline blocked
LPS-stimulated inflammatory cytokine secretion in the
BV-2 microglia-derived cell line and reduced LPS-induced
Toll-like-receptor-2 (TLR2) surface expression on brain
microglia. Moreover, our data show that minocycline pre-
treatment attenuated LPS-induced weight loss, social
withdrawal, and anhedonia in adult mice. The attenua-
tion of sickness behavior was paralleled with minocycline
dependent decrease in markers of neuroinflammation
(IL-18, TLR2, and IDO) in adult and aged mice. These
findings support our hypothesis that the ability to miti-
gate cytokine expression in the brain during systemic
inflammatory events may be useful in preventing cogni-
tive and behavioral deficits.

Methods

Animals

Male BALB/c mice, adults (3 month old) and juvenile (3-
4 week old) were purchased from Harlan (Indianapolis,
IN). For age comparisons, male BALB/c mice (3-4 and
20-22 month old) were purchased from the National
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Institute on Aging specific pathogen free colony. Upon
arrival, mice were individually housed in polypropylene
cages and maintained at 21°C under a 12 h light: 12 h
dark cycle with ad libitum access to water and rodent chow.
At the end of each study, mice were examined postmor-
tem for gross signs of disease (e.g., splenomeglia or
tumors). Data from mice determined to be unhealthy
were excluded from analysis (< 5%). All procedures were
in accordance with the National Institute of Health
Guidelines for the Care and Use of Laboratory Animals
and were approved by The Ohio State University Institu-
tional Laboratory Animal Care and Use Committee.

Cell culture

BV-2 microglia cell lines were cultured in growth medium
(DMEM supplemented with 10% FBS, sodium bicarbo-
nate 3.7 g/l, 200 mM glutamine, 100 U/ml penicillin G,
100 pg/ml streptomycin, 0.25 pg/ml fungizone) as previ-
ously described [12]. Cultures were maintained at 37°C
with 95% humidity and 5% CO, and growth medium was
replenished every third day until confluence. Cultures
were washed twice and supplemented with warm growth
medium containing experimental treatments. Cell viabil-
ity was measured by the MTS cell proliferation assay
according to the manufacturer's instructions (Promega,
Madison, WI).

CNS macrophagelmicroglia isolation

CNS macrophages and microglia were collected from
whole brain homogenates as described previously [48],
but with several modifications. Mice were euthanized by
CO, asphyxiation and whole brains were collected. Brains
were homogenized in Hank's balanced salt solution
(HBSS) pH 7.4. Brain homogenates were passed through
a 70 um nylon cell strainer and centrifuged at 400 x g for
10 min. Supernatants were removed and cell pellets were
re-suspended in 70% isotonic Percoll (GE-healthcare,
Uppsala, Sweden) at room temperature. A discontinuous
Percoll density gradient was set up as follows: 70%, 35%,
and 0% isotonic Percoll. This suspension was centrifuged
for 30 minutes at 400 x g. A mixed population of CNS
macrophages and microglia was collected from the inter-
phase between the 70% and 35% Percoll layers. Cells were
washed and then re-suspended in sterile HBSS. The
number of viable cells was determined using a hemacy-
tometer and 0.2% trypan blue staining.

Flow cytometry

Flow cytometric analysis of microglial cell surface markers
was performed as described previously, but with a few
modifications [48]. In brief, Fc receptors on macrophages
and microglia were blocked with anti-CD16/CD32 anti-
body (eBiosciences, CA). Next, cells were incubated with
either Panel-1 (anti-CD11b APC, anti-CD45 FITC, and
anti-MHC II PE from eBiosciences, CA) or Panel-2 anti-
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bodies (anti-CD11b APC, anti-CD45 FITC, and anti-TLR2
PE from eBiosciences, CA). Expression of these surface
receptors was determined by flow cytometry using a Bec-
ton-Dickinson FACSCaliber four color Cytometer. Thirty
thousand events were collected and microglia were differ-
entiated from macrophages based on the levels of CD11b
and CD45 surface expression. Microglia stain CD11b+/
CD45% and macrophages stain CD11b+/CD45high
[48,49]. Flow data were analyzed using FlowJo software
(Tree Star, San Carlos, CA).

Behavior tests

Social exploratory behavior

To assess the motivation to engage in social exploratory
behavior, a novel juvenile conspecific was introduced into
the test subject's home cage for a 10-min period. Behavior
was video taped and the cumulative amount of time the
subject engaged in social investigation was determined
from the video records by a trained observer who was
blind to the experimental treatments. Baseline social
behavior was measured at time O for all experimental
treatments. Social behavior was determined as the
amount of time that the experimental subject spent inves-
tigating (e.g., anogenital sniffing, trailing) the juvenile.
Results are expressed as percent decrease in time engaged
in social behavior compared to respective baseline meas-
ures.

Sucrose preference

To assess sucrose preference, mice were provided two
solutions, water or water supplemented with 2% sucrose,
in 50 ml conical tubes with stoppers fitted with ball-type
sipper tubes. Prior to testing conditions, all mice were
acclimated to the two bottle test choice. All mice drank
both the water and the 2% sucrose solution, but preferred
drinking the sucrose over the water (data not shown). On
the day of testing, mice were fluid and food deprived for
2 h prior to testing [50]. At the start of the dark phase of
the photoperiod, drinking water and the 2% sucrose solu-
tion were placed in the home cage overnight (15 h). At the
end of each testing period the fluid content of the conical
tubes was measured and sucrose preference was deter-
mined using the equation: Sucrose intake/Total fluid
intake (water + sucrose intake) x 100 [51].

Plasma cytokine measurement

IL-6 and IL-1p were measured in the plasma as previously
described [52]. In brief, mice were euthanized by CO,
asphyxiation and blood was collected by cardiac puncture
into EDTA coated syringes. Samples were centrifuged
(6000 x g for 15 min at 4°C) and plasma was collected
and stored frozen (-80°C) until assaying. Plasma samples
were assayed for IL-6 using a customized ELISA that we
have described in detail [52] and for IL-1p using a com-
mercial ELISA kit (R&D Systems, Minneapolis, MN).
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Assays were sensitive to 8 pg/ml of IL-6 and 1.5 pg/ml of
IL-1B, and inter- and intra-assay coefficients of variation
were less than 10%.

Real time PCR

Total RNA was isolated from brain using the Tri Reagent
protocol (Sigma, St. Louis, MO). RNA samples were sub-
jected to a DNase I digestion procedure and then reverse
transcribed to cDNA using a RT RETROscript kit (Ambion,
Austin, TX). Quantitative real time PCR was performed
using the Applied Biosystems (Foster, CA) Assay-on
Demand Gene Expression protocol as previously
described [13]. In brief, cDNA was amplified by real time
PCR where a target cDNA (IL-1f, IL-6, MHC 1II, TLR2, or
IDO) and a reference cDNA (glyceraldehyde-3-phosphate
dehydrogenase) were amplified simultaneously using an
oligonucleotide probe with a 5' fluorescent reporter dye
(6-FAM) and a 3' quencher dye (NFQ). Fluorescence was
determined on an ABI PRISM 7300-sequence detection
system (Applied Biosystems, CA). Data were analyzed
using the comparative threshold cycle (Ct) method and
results are expressed as fold difference.

Experimental protocols

For the cell culture studies, minocycline was prepared in
dimethyl sulfoxide (DMSO) and BV-2 cells were washed
and replenished with growth mediumsupplemented with
0, 25, 50, 100, 200, or 400 pug/ml minocycline. After 30
min, LPS at 10 ng/ml was added to the culture medium.
Supernatants were collected 4 h later and IL-6 and IL-1j
concentrations were determined by ELISA. Total proteins
were determined from cell culture homogenates by the
Bio-Rad Dc protein assay according to the manufacturer's
instructions (Bio-Rad Lboratories, Hercules, CA). Each
treatment was replicated a minimum of four times. Cell
viability was confirmed by the MTS cell proliferation assay
according to the manufacturer's instructions (Promega,
Madison, WI).

For all mouse studies, minocycline (Sigma, St. Louis, MO)
was dissolved in sterile water and sonicated to ensure
complete solubilization. In the first mouse study, adult
male BALB/c mice received an intraperitoneal (i.p.) injec-
tion of vehicle or minocycline (50 mg/kg) for three con-
secutive days. On the 3™ day, mice were also injected i.p.
with saline or Escherichia coli LPS (0.33 mg/kg; serotype
0127:B8, Sigma, St. Louis, MO) and were euthanized by
CO, asphyxiation 24 h later (n = 6). The LPS dosage was
selected because it elicits a proinflammatory cytokine
response in the brain resulting in mild transient sickness
behavior in adult mice [13,53]. Macrophage/microglial
cells were isolated from whole brain homogenates and
TLR2 and MHC II surface expression were determined by
flow cytometry. The minocycline injection regimen and
dosage was selected because a repeated pretreatment
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course with minocycline is necessary to attenuate neu-
roinflammation [41-43,45].

In the second study, adult male BALB/c mice received an
i.p. injection with vehicle or minocycline for three consec-
utive days. On the third day, motivation to engage in
social behavior was determined immediately before i.p.
injection of saline or LPS (0.33 mg/kg) and again 2, 4, 8,
12, and 24 h later (n = 8). Body weight and food intake
were measured at each time point over the 24 h period. In
a related, but separate study, adult mice were treated with
minocycline and LPS as described and anhedonia was
assessed 24-39 h following i.p. injection of saline or LPS
(0.33 mg/kg) (n = 15). Body weight, food intake, water
intake, and sucrose intake were determined over the test-
ing period.

In the third study, adult BALB/c mice were treated with
minocycline and then LPS as described. Mice were eutha-
nized by CO, asphyxiation 4 later. Brains were removed
and dissected to collect different brain regions. Brain
regions were stored at -20°C in RNAlater (Qiagen, CA).
Total RNA was isolated from brain samples and assayed
using quantitative PCR (n = 8). Plasma was also collected
and stored (-80°C) until assaying.

In a final study, adult (3-4 month old) or aged (20-22
month old) male BALB/c mice were treated with minocy-
cline and LPS as described and euthanized 4 h later. Brains
were dissected to collect different brain regions and were
stored at -20°C in RNAlater (Qiagen, CA). Total RNA was
isolated from the hippocampus and assayed using quanti-
tative PCR (n = 8).

Statistical analysis

All data were analyzed using Statistical Analysis Systems
(SAS) General Linear Model procedures. Data were sub-
jected to one, two- (Mino x LPS, Age x LPS, Mino x Age)
or three-way (Mino x LPS x Time, Mino x LPS x Age)
ANOVA to determine significant main effects and interac-
tions between main factors. When appropriate, differ-
ences between treatment means were evaluated by an F-
protected t-test using the Least-Significant Difference pro-
cedure of SAS. All data are expressed as treatment means +
standard error of the mean (SEM).

Results

Minocycline attenuates LPS-induced cytokine production

in BY-2 microglia

Minocycline is a tetracycline-type antibiotic that has anti-
inflammatory properties in the CNS [41-43,45]. To deter-
mine the degree to which minocycline suppresses micro-
glia activation, BV-2 microglia-derived cell lines were
used. In the first experiment, BV-2 cells were treated with
LPS and IL-6 production was determined 4 h later. Fig. 1A
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Minocycline suppresses LPS-stimulated expression and production of cytokines in BV-2 microglia cultures. A)
BV-2 cells were stimulated with 0, 0.1, I, 10, 100, or 1000 ng/ml LPS and IL-6 protein levels were determined from superna-
tants collected 4 h later. B) BV-2 cells were pretreated with 0, 25, 50, 100, 200, or 400 pig/ml minocycline for 30 min and then
treated with LPS (10 ng/ml). IL-6 protein levels were determined from supernatants collected 4 h later. C) BV-2 cells were
treated with 200 pg/ml minocycline for 30 min and then treated with 10 ng/ml LPS. IL-1§ protein levels were determined from
supernatants collected 4 h later. D) BV-2 cells were treated as above and MHC Il, TLR2, IL-1f3, and IL-6 mRNA levels were
determined. For each cell culture experiment, results are an average of 4 independent experiments. Means with different let-
ters (a, b, ¢, d, or e) are significantly different (P < 0.05) from each other.

shows that LPS increased IL-6 production in a dose
dependent manner F(5, 23) = 101, P < 0.001). In the sec-
ond experiment, BV-2 cells were incubated with DMSO or
minocycline and then stimulated with LPS. Minocycline
reduced LPS-induced IL-6 secretion in a dose dependent
manner (Mino x LPS interaction, F(4, 23) = 16.87, P <
0.001, Fig. 1B). Minocycline pretreatment had a similar
anti-inflammatory effect on LPS-stimulated IL-1B secre-
tion (Fig. 1C). In a third experiment, minocycline sup-
pressed LPS-induced MHC 1II, TLR2, IL-18, and IL-6
mRNA levels (P < 0.05, for each, Fig. 1D). The MTS assay
verified that neither cell survival nor proliferation was
affected by the experimental treatments (data not shown).

LPS-induced TLR2 surface expression on microglia is
reduced by minocycline

Because minocycline attenuated LPS-induced cytokine
secretion and TLR2 mRNA expression in BV-2 cells we
next sought to determine if minocycline suppresses mark-
ers of microglial activation in the brain of mice. Mice were

injected i.p. with vehicle or minocycline for 3 consecutive
days then challenged with saline or LPS i.p. Markers of
activation, TLR2 and MHC II, were determined on micro-
glia collected 24 h later. The representative bivariate den-
sity plot in Fig. 2A shows that there were two populations
of CD11b/CD45 positive cells and that more cells stained
CD11b+*/CD45" (microglia) than CD11b*/CD45high
(CNS macrophages). ANOVA revealed that LPS injection
increased TLR2 surface expression on microglia (F(1, 20)
= 17.6, P < 0.004, Fig. 2B&D), but this induction was
abrogated by minocycline pretreatment (Tendency for
Mino x LPS interaction, F(1, 20) = 2.66, P = 0.10, Fig.
2C&D). It is important to note that because minocycline
and saline controls did not differ in their TLR2 expression,
these data were grouped together as the Control group (Fig.
2B&C). In addition, neither minocycline nor LPS treat-
ment had a significant main effect on MHC class II surface
expression on microglia (data not shown). These data
indicate that minocycline attenuated LPS-induced TLR2
expression on microglia.
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LPS-induced TLR2 surface expression on microglia is reduced by minocycline. Adult mice were injected i.p. with
vehicle or minocycline for three consecutive days. On the third day mice were challenged with saline or LPS i.p., microglia and
macrophages were collected 24 h later and TLR2 surface expression was determined. A) Representative bivariate density plot
of stained cells. Macrophages were CD | | b*/CD45"igh and microglia were CD | | b*/CD45'ow. B&C) Representative histograms
of TLR2 expression on microglia following experimental treatments. C) Mean fluorescence intensity (M.F.l.) of TLR2 expres-
sion on microglia (CD | Ib*/CD45'°%) following experimental treatments. Bars represent the mean + SEM (n = 6). Means with
different letters (a, b, or c) are significantly different (P < 0.05) from each other.

Minocycline facilitates the recovery from LPS-induced
sickness behavior

CNS macrophages and microglia produce inflammatory
cytokines and secondary messengers that modulate
behavioral responses. Therefore, we next investigated if
minocycline reduced the sickness response associated
with peripheral LPS injection. In this experiment, adult
mice were treated with minocycline and LPS as described.
Social exploratory behavior was measured before i.p. LPS
injection and again 2, 4, 8, and 24 h later. Fig. 3A shows
that LPS injection caused a reduction in social exploratory
behavior (F(1,57) =218, P <0.001) that was time depend-
ent (F(4,57) = 66.5, P < 0.001). Moreover, the LPS-associ-
ated reduction in social exploration was attenuated by
minocycline (Mino x LPS interaction, F(1,57) = 7.5, P <

0.007). For example, at 8 h post LPS, social exploration
was reduced by 35% in minocycline pretreated mice given
LPS compared to a 67% reduction in vehicle pretreated
mice given LPS (P < 0.001). While minocycline adminis-
tration alone reduced food intake and body weight in con-
trol mice (P < 0.05, for each), it also protected against LPS-
associated anorexia (Mino x LPS interaction, F(1, 60) =
70.0, P < 0.001, Fig. 3B) and weight loss (Mino x LPS
interaction, F(1, 60) = 29.7, P < 0.001, Fig. 3C).

Because sickness can also be associated with longer lasting
changes in motivation [38], we next sought to determine
if minocycline abrogated LPS-induced anhedonia [54,55].
In this experiment, mice were subjected to the same mino-
cycline injection regimen and LPS challenge as above and
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Figure 3

Minocycline facilitates recovery from LPS-induced sickness behavior. Mice were injected i.p. with vehicle or minocy-
cline for three consecutive days. On the third day mice were challenged with saline or LPS i.p. A) Social exploratory behavior
was measured before i.p. LPS injection and again 2, 4, 8, and 24 h later. Graph represents the mean + SEM (n = 10). Means with
* are significantly different (P < 0.05) from saline controls and means with } are significantly different from Vehicle LPS. In the
same experiment, B) body weight and C) food intake were measured before i.p. LPS injection and again 2, 4, 8, and 24 h later.
Bars represent the mean £ SEM (n = 10). Means with different letters (a, b, ¢, or d) are significantly different (P < 0.05) from

each other.

sucrose preference was assessed 24-39 h post LPS injec-
tion. By 24 h post LPS injection, food and water intake
returned to baseline and LPS treated mice still exhibited a
marked reduction in sucrose preference from 24-39 h
(F(1,59) =14.3, P<0.003). Moreover, this LPS-dependent
reduction in sucrose preference was prevented by minoc-
ycline pretreatment (Mino x LPS interaction, F(1, 59) =
9.9, P < 0.004, Fig. 4). For example, minocycline pre-
treated mice injected with LPS maintained the same
strong preference for sucrose as saline and minocycline
controls (i.e., approximately 85% preference). These data
can be interpreted to indicate that minocycline blocks
anhedonia associated with peripheral LPS challenge.

Minocycline reduces LPS-induced neuroinflammation

Pro-inflammatory cytokines in the CNS are partially
responsible for the behavioral symptoms of sickness (e.g.,
anorexia, social withdrawal, and anhedonia) [1]. There-
fore, we investigated the degree to which minocycline
reduces neuroinflammation (IL-1pB, IL-6, and IDO) after
peripheral injection of LPS. In this experiment, mice were
subjected to the minocycline injection regimen and LPS
challenge as above and cytokine mRNA levels were deter-
mined in the cortex and hippocampus 4 h after LPS injec-
tion. In mice pretreated with vehicle, LPS markedly
increased IL-1B mRNA levels in the hippocampus
(F(1,31) = 62, P < 0.0001) and cortex (F(1,31) = 17.25, P
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LPS-associated anhedonia is blocked by minocycline.
Mice were injected i.p. with vehicle or minocycline for three
consecutive days. On the third day mice were challenged
with saline or LPS i.p. and sucrose preference was deter-
mined 24 to 39 h post LPS. Bars represent the mean + SEM
(n = 15). Means with different letters (a or b) are significantly
different (P < 0.05) from each other.

< 0.0003). The LPS-induced IL-1 mRNA expression was
reduced in both brain regions in mice receiving minocy-
cline prior to LPS injection: (hippocampus, F(1,31) =
9.63, P < 0.01) and cortex, F(1,31) = 7.23, P = 0.08, Fig.
5A). LPS caused a similar induction of IL-6 mRNA levels
in the hippocampus (F(1,31) = 37.2, P < 0.001) and cor-
tex (F(1,31) = 22.5, P < 0.001), but minocycline pretreat-
ment only significantly attenuated LPS-induced IL-6
mRNA levels in the hippocampus (F(1,31) = 10.27, P <
0.004, Fig. 5B).

IDO mRNA levels were determined from the same RNA
pool. Fig. 6D shows that LPS injection increased IDO
mRNA expression in the hippocampus (F(1,31) = 11.69,
P <0.002) and cortex (F(1,31) = 5.26, P < 0.03). This LPS-
induced IDO mRNA expression was attenuated by mino-
cycline in the hippocampus (F(1,31) = 11.69, P < 0.002)
and cortex (F(1,31) = 5.26, P < 0.03). It is important to
note that IDO mRNA was undetected in saline treated
mice. Therefore, the fold IDO change was relative to the
IDO mRNA levels in mice receiving minocycline prior to
LPS.

Minocycline reduces LPS-induced IL-6, but not IL-1/, in
the plasma

Because cytokine signals can be relayed from the periph-
ery to the brain by humoral pathways [56], plasma

http://www.jneuroinflammation.com/content/5/1/15

cytokine levels of IL-6 and IL-1f were determined 4 h post
LPS injection. As expected, LPS injection caused a marked
increase in plasma IL-1B (F(1,36) = 52.5, P < 0.001) and
IL-6 levels (F(1,36) 34.01, P < 0.01). Minocycline pretreat-
ment reduced LPS-induced IL-6 levels in the plasma
(F(1,36) 6.68, P < 0.01) but had no significant main effect
on LPS-induced IL-1p levels (Fig. 6).

Minocycline attenuates LPS-induced exaggerated
neuroinflammation in aged mice

Aged BALB/c mice (22-24 m) have an exaggerated neu-
roinflammatory response to LPS injection [10,13,14].
Therefore, we next sought to determine if the heightened
inflammatory response in the brain of aged mice was
reduced by minocycline. In this experiment, adult and
aged mice were subjected to the minocycline injection reg-
imen and LPS challenge as above. As we have reported
previously, MHC II mRNA expression was increased by
age (P < 0.03, Fig. 7A)[13,14], but MHC 1I levels were
unaffected by either LPS or minocycline treatment (not
shown). Consistent with the data presented in Fig. 2,
ANOVA revealed a significant main effect of LPS injection
on TLR2 mRNA expression in the hippocampus (F(1,63)
=85.5, P <0.001). Moreover, LPS caused a greater increase
in TLR2 mRNA in the hippocampus of aged mice com-
pared to adults (LPS x Age interaction, F(1,63) = 12.70, P
< 0.01). Furthermore, minocycline pretreatment attenu-
ated LPS-induced TLR2 mRNA levels in both adult and
aged mice (Mino x LPS interaction, F(1,63) = 9.02, P <
0.004).

Parallel to the results for TLR2, LPS caused a greater
increase in IL-1B and IDO mRNA levels in hippocampus
of aged mice compared to adults (Age x LPS, F(1,60) =
8.64, P < 0.01 for IL-1B and F(1,60) = 4.0, P < 0.05 for
IDO). Minocycline pretreatment attenuated LPS-induced
mRNA levels of IL-1§ (Mino x LPS, F(1,60) = 8.76, P <
0.01, Fig. 7C) and IDO (Mino x LPS, F(1,60) = 9.7, P <
0.003, Fig. 7D). While LPS induced higher IL-6 mRNA lev-
els in the hippocampus of both adult and aged mice
(F(1,59) = 44.5, P < 0.001), there was not an Age x LPS
interaction. Minocycline pretreatment attenuated the LPS-
induced increase in hippocampal IL-6 mRNA (Mino x
LPS, F(1,59) = 5.4, P < 0.02, Fig. 7E). Taken together these
data indicate that minocycline pretreatment was effective
in attenuating the exaggerated neuroinflammation in
aged mice.

Discussion

In the elderly, systemic infection is associated with an
increased frequency of behavioral and cognitive compli-
cations [57,58]. We have reported that stimulation of the
peripheral immune system in older (20-24 m) BALB/c
mice causes exaggerated neuroinflammation that is paral-
leled by prolonged sickness [13], impaired working mem-
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Minocycline attenuates LPS-induced mRNA levels of IL-1f3, IL-6, and IDO in the cortex and hippocampus of
adult mice. Mice were injected i.p. with vehicle or minocycline for three consecutive days. On the third day mice were chal-
lenged with either saline or LPS i.p and A) IL-18, B) IL-6, and C) IDO mRNA levels were determined in the cortex and hippoc-
ampus collected 4 h later. Bars represent the mean £ SEM (n = 8). For each brain region, means with different letters (a, b, or

c) are significantly different (P < 0.05) from each other.

ory [10], and depressive-like behaviors [15]. Therefore, it
is important to understand the mechanisms that can
modulate cytokine-mediated pathways in the brain. Here
we show that minocycline treatment reduced LPS-induced
TLR2 expression in BV-2 cells and on microglia isolated
from adult mice. Moreover, we demonstrate that minocy-
cline was effective in facilitating the recovery from LPS-
induced sickness and preventing anhedonia in adult mice.
Furthermore, we show that minocycline attenuated LPS-
induced neuroinflammation in adults and normalized
the exaggerated neuroinflammation in aged mice.

Our findings, using cell culture and animal experiments,
support the notion that minocycline attenuates microglial
activation and limits production of inflammatory media-

tors. For instance, minocycline pretreatment of BV-2 cul-
tures decreased LPS-stimulated cytokine production in a
dose dependent manner (Fig. 1A). In BV-2 cells, minocy-
cline also attenuated mRNA expression of inflammatory
genes including IL-6, IL-13, MHC I, and TLR2 (Fig. 1D).
These data are consistent with other studies using minoc-
ycline and LPS in BV-2 cells [44,59]. Based on these data
we next investigated if microglial activation could be
attenuated in the brain. Because LPS increases brain
cytokine production we expected that MHC II expression
would also be increased. Contrary to our predictions, nei-
ther MHC II mRNA levels (Fig. 7) in the brain nor MHC II
surface expression on microglia (CD11b+/CD45!ow) (data
not shown) were increased by LPS injection. In an EAE
model, minocycline reduced microglial expression of
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Minocycline reduces LPS-induced IL-6, but not IL-1§, levels in the plasma. Mice were injected i.p. with vehicle or
minocycline for three consecutive days. On the third day mice were injected with saline or LPS i.p. IL-1p and IL-6 were deter-
mined in plasma collected 4 h later. There was no detectable IL-6 (n.d.) in the plasma of saline-treated mice. Bars represent the
mean + SEM (n = 8). Means with different letters (a, b, or c) are significantly different (P < 0.05) from each other.

MHCII [45], but one key difference from our study is that
the induction of EAE pathology requires functional anti-
gen presentation on MHC II [60]. It is postulated that
microglia have several activation states that depend on the
specific inflammatory stimulus [61]. Thus, in situations of
transient peripheral innate immune stimulation, markers
in the CNS such as Toll-Like receptors [6] may be indica-
tive of microglia activation. In support of this premise, our
data show that LPS injection increases TLR2 surface
expression on microglia (CD11b+/CD45!v), which is
inhibited by minocycline pretreatment (Fig. 2). These
data are consistent with other studies showing that central
or peripheral LPS challenge increases TLR2 mRNA in the
brain [6,14]. Taken together our findings can be inter-
preted to suggest that minocycline attenuates pathways
associated with microglia activation following peripheral
LPS challenge.

One of the important findings of this study was that
reduction of neuroinflammation by minocycline was
associated with facilitated recovery from LPS-induced
sickness behavior. These results are akin to our previous
work with the anti-oxidant, a-tocopherol [52], and an
NFKB decoy inhibitor [62]. Consistent with our previous
studies [52,53,62,63], reductions in neuroinflammatory
cytokines (Fig. 5) did not prevent the induction of the
LPS-induced sickness response (2-4 h), but rather facili-
tated the recovery from sickness (8-24 h) (Fig. 3A). Recov-
ery may be a critical issue because brain cytokines and the
corresponding physiological and behavioral responses are
beneficial to the host [1]. The potential risk for a maladap-
tive response occurs when the normally transient neuroin-

flammatory response is amplified or protracted [64].
Therefore pharmacological agents, similar to minocy-
cline, that attenuate neuroinflammatory responses, but
do not completely inhibit them, may be important in pre-
venting the development of more severe and long-lasting
cognitive and behavioral complications.

The results of the sucrose preference experiments support
the idea that limiting exposure to neuroinflammation
decreases the duration of behavioral responses. For exam-
ple, while minocycline did not inhibit cytokine expres-
sion (Fig. 5) or the induction of sickness (Fig. 3A),
minocycline pretreatment completely reversed the reduc-
tion in sucrose preference (i.e., anhedonia) associated
with LPS injection (Fig. 4). It is also important to mention
that while LPS-associated sickness and anhedonia are
interrelated, these behaviors can be differentiated from
one another. For instance, reduced social exploration was
evident 2-24 h post injection (Fig. 3A), but only
decreased sucrose preference was exhibited 24 to 39 h
later (Fig. 4). This separation between behaviors is con-
sistent with other studies investigating sickness and
longer-lasting changes in motivation [15,65,66].

IDO mediated TRP metabolism represents a potential
connection between activation of CNS innate immune
cells and longer lasting behavioral responses. IDO medi-
ated TRP metabolism in the brain may affect behavior by
impacting both serotonin and glutamate pathways [39].
We have reported that IDO induction and activity is
amplified in the brain of aged mice and is associated with
prolonged depressive-like behavior [15]. Here we show
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Minocycline pretreatment attenuates LPS-induced mRNA levels of TLR2, IL-1, IL-6, and IDO in the hippoc-

ampus of aged mice. Adult and aged mice were injected i.p. with vehicle or minocycline for three consecutive days. On the
third day mice were challenged with saline or LPS i.p. and A) MHC II, B) TLR2, C) IL-18, D) IL-6, and E) IDO mRNA levels were
determined from hippocampus collected 4 h later. Bars represent the mean + SEM (n = 8). Means with different letters (a, b, c,

or d) are significantly different (P < 0.05) from each other.

that IDO mRNA induction is blocked by minocycline in
the brain of both adult and aged mice (Figs. 5&7). These
data are consistent with a recent report showing a causal
relationship between IDO activity and acute depressive
effects in adult CD-1 mice. In this study, O'Connor et al.
report that both 1-methyl tryptophan (a competitive
inhibitor of IDO) and minocycline blocked IDO induc-
tion and prevented depressive-like immobility in the tail
suspension and forced swimming tests [66]. Thus, in the
present study, the minocycline blockade of IDO induc-
tion may explain the abrogation of LPS-induced anhedo-
nia.

Another interesting finding was that while minocycline
pretreatment in adult mice attenuated LPS-induced brain
IL-1B at 4 h (Fig. 5), it had no effect on plasma IL-1f levels
(Fig. 6). Because IL-1pB signals can be relayed from the
periphery to the brain by humoral pathways [5], these
findings suggest that minocycline has anti-inflammatory
properties within the brain. These data are consistent with
related findings that minocycline readily crosses the
blood brain barrier to elicit an anti-inflammatory effect
[41-43]. With regard to IL-6, minocycline pretreatment
attenuated both brain and plasma levels at 4 h post LPS
injection. Because circulating IL-6 levels can be increased
by CNS mediated pathways including activation of the
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hypothalamus-pituitary-adrenal (HPA) axis [67] and the
sympathetic nervous system [68], the specific reduction in
plasma IL-6 by minocycline may reflect the reduction in
brain inflammation at 4 h (Fig. 5). In support of this
notion, we and others have reported that i.c.v. injection of
LPS or IL-1p increase plasma IL-6 levels, but not IL-13 lev-
els [14,68,69].

The final critical finding of this study was that minocy-
cline was effective in attenuating neuroinflammation
independent of age. Consistent with other aging and neu-
roinflammation studies, our data show that LPS caused
exaggerated neuroinflammation in aged mice compared
to adults [10,13-15]. It is important to mention that while
there was an age-related difference in MHC II expression
in the hippocampus of saline treated mice (Fig. 7A) there
was not an age-related difference in IL-1f and IL-6 mRNA
levels. These data differ from a previous report using
BALB/c mice showing an increase in IL-6 in older mice
[70]. This may be because the mice used in the present
study were approximately 4 months younger than the
mice used previously. Nonetheless, microglia can be
primed or reactive with increased MHC II expression, but
do not necessarily produce inflammatory cytokines in this
state [19]. The key results are that peripheral LPS injection
causes a greater induction of TLR2, IL-1f, and IDO mRNA
in the aged brain than in the adult brain and that minoc-
ycline pretreatment normalizes this age-related exagger-
ated neuroinflammation (Fig. 7). These findings are also
important because an amplified neuroinflammatory
response in the aged brain is a precursor to complications
including deficits in working memory, memory consoli-
dation, and depressive-like behavior [9,10,15]. Based on
the biochemical and behavioral data obtained from this
study, we predict that minocycline will abrogate the pro-
longed LPS-induced sickness [13] and depressive-like
behavior exhibited by aged BALB/c mice [15]. We
acknowledge, however, that future studies are necessary to
test these predictions.

Conclusion

The present study demonstrates that minocycline reduces
LPS-induced microglial activation, CNS cytokine produc-
tion, and behavioral symptoms of sickness (e.g., social
withdrawal and anhedonia). These findings are poten-
tially important because they indicate that minocycline
can be used to mitigate cytokine expression in the brain
and have a beneficial affect on behavioral responses.
Taken together, these data support the idea that pharma-
cological strategies aimed at decreasing neuroinflamma-
tion associated with microglial activation are important
for improving recovery from sickness and reducing the fre-
quency of neurobehavioral complications.

http://www.jneuroinflammation.com/content/5/1/15
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