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Abstract
Secretory phospholipase A2-IIA (sPLA2-IIA) is an inflammatory protein known to play a role in the
pathogenesis of many inflammatory diseases. Although this enzyme has also been implicated in the
pathogenesis of neurodegenerative diseases, there has not been a direct demonstration of its
expression in diseased human brain. In this study, we show that sPLA2-IIA mRNA is up-regulated
in Alzheimer's disease (AD) brains as compared to non-demented elderly brains (ND). We also
report a higher percentage of sPLA2-IIA-immunoreactive astrocytes present in AD hippocampus
and inferior temporal gyrus (ITG). In ITG, the majority of sPLA2-IIA-positive astrocytes were
associated with amyloid β (Aβ)-containing plaques. Studies with human astrocytes in culture
demonstrated the ability of oligomeric Aβ1–42 and interleukin-1β (IL-1β) to induce sPLA2-IIA
mRNA expression, indicating that this gene is among those induced by inflammatory cytokines.
Since exogenous sPLA2-IIA has been shown to cause neuronal injury, understanding the
mechanism(s) and physiological consequences of sPLA2-IIA upregulation in AD brain may facilitate
the development of novel therapeutic strategies to inhibit the inflammatory responses and to
retard the progression of the disease.

Background
Alzheimer's disease (AD) is the most prevalent neurode-
generative disease affecting the aging population, and is
characterized by memory loss and decline in cognitive
functions. Some of the characteristic landmarks of the dis-
ease include neurofibrillary tangles [1] and amyloid
plaques, which are frequently surrounded by reactive
astrocytes and activated microglial cells as well as dys-
trophic neurites [2,3]. The presence of activated glial cells
and the increase in inflammation-associated proteins in

AD brain support the neuroinflammatory nature of this
disease [4-9]. Increased amounts or deposits of inflamma-
tory proteins such as the classical and alternative comple-
ment proteins and acute phase reactant proteins have
been reported in AD brains, as have increased microglial
expression of the major histocompatibility complex
(MHC) antigens [10]. Although the underlying mecha-
nism(s) for neuroinflammation in AD brain is not clearly
understood, there is considerable evidence supporting a
role for specific forms of amyloid beta peptide (Aβ) in
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inducing production of pro-inflammatory cytokines by
microglia and astrocytes [5,11-13]. Therefore, under-
standing the mechanisms that modulate neuroinflamma-
tory responses and their impact on neuronal degenerative
processes may help to uncover important elements of the
disease and to develop new treatment strategies [14-16].

The phospholipases A2 (PLA2) belong to a family of
enzymes that are widely expressed in many types of mam-
malian cells [17]. These enzymes not only play a role in
maintenance of cell membrane phospholipids, but are
also actively involved in the production of arachidonic
acid (AA), the precursor for prostanoids [18,19]. Among
more than 20 different forms of PLA2 identified, there is
considerable attention on the group IV calcium-depend-
ent cytosolic PLA2 (cPLA2) and the group II secretory PLA2
(sPLA2). Both groups of PLA2 can participate in the oxida-
tive and inflammatory responses in neurodegenerative
diseases [20-25]. Although previous studies have demon-
strated an increase in mRNA expression [26] and immu-
noreactivity of cPLA2 in AD brains [26-28], studies to
relate sPLA2-IIA expression with AD have been lacking. In
the periphery, sPLA2-IIA is regarded as an inflammatory
protein, and is involved in inflammatory diseases such as
arthritis, atherosclerosis, acute lung injury, sepsis and can-
cer [25,29-32]. Secretory sPLA2-IIA cannot be studied in
transgenic mouse models of AD due to a frameshift muta-
tion of this gene in many mouse strains [33]. However,
studies with rat models of brain injury have demonstrated
an increase in sPLA2-IIA expression associated with differ-
ent forms of neuronal insults, including cerebral ischemia
[34,35] as well as other types of neuronal injuries [36,37].

In this report, we provide data demonstrating up-regula-
tion of sPLA2-IIA mRNA and protein expression in reac-
tive astrocytes in AD brains as compared to age-matched
non-demented (ND) control brains. In addition, studies
with human astrocytes demonstrated the induction of
sPLA2-IIA mRNA by pro-inflammatory cytokines and Aβ,
further supporting an inflammatory role of this enzyme in
AD brain.

Methods
Human brain tissue
Paraformaldehyde-fixed brain sections for immunohisto-
chemistry were obtained from the Brain Bank of the Sun
Health Research Institute (Sun City, AZ). Patients were
classified as AD or ND cases by the neuropathological cri-
teria of the Consortium to Establish a Registry for AD
(CERAD) and NIA-Reagan guidelines. Postmortem brain
samples were obtained from 7 male and 9 female ND sub-
jects and 5 male and 11 female AD subjects (Table 1). The
mean age (years) for the AD cases was 86.25 ± 8.22 and
for the ND cases was 84.44 ± 6.74 (mean ± SD), and the

mean postmortem interval (hours) for AD cases was 2.59
± 0.45 and for ND cases was 2.63 ± 0.62 (mean ± SD).

Stimulation of sPLA2-IIA mRNA expression in astrocytes 
from human post-mortem brains
Astrocytes were cultured from superior frontal gyrus of
post-mortem brains donated to the Sun Health Research
Institute Brain Program according to a protocol described
previously [38]. Astrocytes were maintained in Dulbecco's
Modified Eagle medium (DMEM) containing 10% fetal
bovine serum (FBS).

IL-1β and interferon-γ(IFNγ)(PeproTech, Rocky Hills, NJ)
and recombinant Aβ1–42 (rPeptide, Bogart, GA) were used
to stimulate astrocytes for the study of sPLA2-IIA mRNA
expression. Lyophilized Aβ1–42 were dissolved in 0.1 M
NaOH and buffered with phosphate buffered saline to
make a final concentration of 500 μM. The peptide solu-
tion was subsequently incubated at 37°C for 18 hours to
promote oligomerization. Aliquots of the oligomerized
Aβ1–42 were stored in liquid nitrogen until experiments
were performed. Twenty four hours before treatments,
culture media was exchanged for serum-free DMEM. Cells
were then incubated in serum-free DMEM with IL-1β (20
ng/ml), IFNγ (100 ng/ml), or 2.5 μM Aβ1–42 for 24 h at
37°C. After incubation, cells were processed for RNA
extraction.

RNA isolation, reverse transcription polymerase chain 
reaction (RT-PCR), and real time PCR
RNA was extracted from frozen brains and cultured astro-
cytes with Trizol reagent according to the manufacturer's
instructions (Invitrogen, Carlsbad, CA). RNA was isolated
from hippocampus and cerebellum from 10 AD and 10
ND cases (Table 1). The integrity of isolated RNA was con-
firmed by denaturing agarose gel electrophoresis, and
quantified by ultraviolet spectrophotometry. Total cellu-
lar RNA (1–2 μg) was reverse transcribed with random
hexamers using Superscript III reverse transcriptase (Invit-
rogen, CA) as previously described [13,39].

RT-PCR was carried out to assess sPLA2-IIA mRNA expres-
sion in astrocyte cultures. In this study, primers for sPLA2-
IIA are: forward 5'- GACTCATGACTGTTGTTACAACC-3'
and reverse 5'-TCTCAGGACTCTCTTAGGTACTA-3' that
amplify a 493 bp fragment, and primers for β-actin are:
forward 5'-TGGAGAAGAGCTATGAGCTGCCTG-3' and
reverse 5'-GTGCCACCAGACAGCACTGTGTTG-3' that
amplify a 289 bp fragment [39]. After amplifications of 40
cycles for sPLA2-IIA or 25 cycles for β-actin, a 5 μl aliquot
of each reaction mixture was applied to 6% acrylamide
gels. Bands were quantified using AlphaEaseFC software
(Alpha Innotech, San Leandro, CA). Expression values
were normalized for the levels of β-actin, which was used
as the reference cellular transcript.
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Real time PCR was used for determination of levels of
sPLA2-IIA mRNA in brain tissues. Taqman primers and
probes specific for human sPLA2-IIA and ribosomal 18S
RNA were obtained from Applied Biosystems (Foster City,
CA). For each sample (analyzed in triplicate), a pool con-
taining Brilliant qPCR master mix (Stratagene, La Jolla,
CA), Taqman probes, along with the cDNA was prepared,
and then aliquoted into 96 well microtiter qPCR plates.
Each analysis contained a series of diluted samples for
standard curve purposes, as well as negative template and
negative reverse transcriptase control samples. The real
time PCR was carried out under optimized conditions
using a Stratagene Mx3000p qPCR instrument. At the end
of the run, relative expression results were calculated from
the Ct values of each sample using the Mx3000p operating
software. Each run was considered satisfactory if the

standard curve covering a 1000-fold dilution range gave
R2 of > 0.98. Results were expressed relative to levels of
18S ribosomal RNA present in the samples, which were
determined in the same manner.

Immunohistochemistry
Free-floating 20 μm sections from hippocampus and infe-
rior temporal gyrus (ITG) were cut from 4% paraformal-
dehyde-fixed human brains and were used to study sPLA2-
IIA protein expression. Our previously published immu-
nohistochemical procedure was used for this purpose
[40]. Sections were sequentially incubated with a mono-
clonal antibody to sPLA2-IIA (Cayman, Ann Arbor, MI;
1:500 dilution, 18 hours, room temperature) in a phos-
phate buffered saline containing 0.3% Triton-X 100 (PBS-
T). This was followed by reaction with biotinylated anti-

Table 1: Postmortem human brains used in the study of sPLA2-IIA expression

Cases Clinical Diagnosis Gender Age (years) PMI (hours) Type of Study Brain Region

1 ND M 78 2.7 IHC ITG
2 ND M 81 2.7 IHC I TG
3 ND M 69 2.2 IHC HPC, ITG
4 ND M 84 2.5 IHC HPC, ITG
5 ND M 78 1.7 IHC HPC, ITG
6 ND M 94 3.0 RNA HPC, CB
7 ND M 85 3.2 RNA HPC, CB
8 ND F 85 2.5 RNA HPC, CB
9 ND F 86 2.0 RNA HPC, CB
10 ND F 88 3.0 RNA HPC, CB
11 ND F 94 2.5 RNA HPC, CB
12 ND F 86 2.5 RNA HPC, CB,
13 ND F 83 2.5 RNA HPC, CB
14 ND F 94 2.3 RNA HPC, CB,
15 ND F 78 2.8 IHC ITG

RNA HPC, CB
16 ND F 88 3.5 RNA HPC, CB
17 AD M 86 3.0 IHC ITG
18 AD M 87 3.0 IHC HPC

RNA HPC, CB
19 AD M 79 2.0 IHC HPC

RNA HPC, CB
20 AD M 94 3.8 IHC ITG
21 AD M 92 2.0 IHC ITG
22 AD F 89 3.0 IHC HPC

RNA HPC, CB
23 AD F 80 2.3 IHC HPC, ITG
24 AD F 85 1.7 RNA HPC, CB
25 AD F 95 3.2 RNA HPC, CB
26 AD F 91 3.0 RNA HPC, CB
27 AD F 89 2.3 RNA HPC, CB
28 AD F 97 1.5 IHC ITG
29 AD F 64 3.2 IHC ITG
30 AD F 77 2.8 IHC ITG
31 AD F 85 2.3 IHC HPC
32 AD F 90 3.0 RNA HPC, CB

Abbreviations: ND: Non Demented Control, AD: Alzheimer's Disease, M: Male; F: Female; PMI: Post Mortem Interval; IHC: Immunohistochemistry; 
HPC: Hippocampus; ITG: Inferior Temporal Gyrus, CB: Cerebellum.
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mouse IgG (Vector Laboratories, Burlingame, CA; 1:2000,
2 hours) and washed with PBS-T before applying avidin-
biotin peroxidase complex (ABC) solution (Vector Labo-
ratories, Burlingame CA; 1:2000, 1 hour). We detected
bound antibody-antigen enzyme complex by reaction of
sections with nickel-enhanced diaminobenzidine (DAB)
solution [38,41]. For two-color double immunohisto-
chemistry, brain sections were first immunoreacted with
nickel-DAB solution, then washed, and followed by 1%
hydrogen peroxide to block peroxidase activity. Subse-
quently, sections were reacted with a polyclonal antibody
to glial fibrillary acidic protein (GFAP; DAKO, Carpinte-
ria, CA) to identify reactive astrocytes. Detection of GFAP
was carried out using the same procedure described, with
the exception that biotinylated anti-rabbit IgG and DAB
substrate without nickel enhancement were used. These
procedures produced sPLA2-IIA immunoreactivity in dark
blue color and GFAP in brown color. In some of the sec-
tions, an antibody to amyloid β (3D6, Elan Pharmaceuti-
cals, South San Francisco, CA; 1:2000) was used to detect
amyloid plaques. Some of the immunoreacted sections
were counterstained with 1% neutral red to provide a gen-
eral view of the cell populations in tissues. The mounted
sections were dehydrated through graded ethanol and
coverslipped with Permount embedding solution. The
number of sPLA2-IIA immunoreactive astrocytes associ-
ated with amyloid plaques was counted. Following dou-
ble immunoreaction with sPLA2-IIA and GFAP, sections
were mounted and counter-stained with 1% thioflavin S
(in 70% alcohol) for 15 minutes, dehydrated in 70% alco-
hol, and coverslipped with Vectashield mounting
medium (Vector Laboratories, CA).

Quantifying sPLA2-IIA-positive astrocytes in AD and ND 
brain sections
To estimate the percentage of sPLA2-IIA-positive astro-
cytes, we used a semi-quantitative cell counting procedure
with brain sections containing dentate gyrus (DG), CA3,
or ITG that had been reacted with antibodies to detect
sPLA2-IIA and GFAP. In each brain region, the total
number of GFAP immunoreactive cells and GFAP/sPLA2-
IIA immunoreactive cells were counted using a 1-mm2 ret-
icle, mounted in the eye-piece of an Olympus microscope,
using 20X and 40X objective lenses (Olympus, Melville,
NY). In the ITG sections, 10 vertical regions encompassing
the width of the 1-mm2 reticle field were counted. In each
vertical region, counting began at the outer edge of the
molecular layer and finished at the interface of the multi-
form layer and white matter. Cell counting was performed
by a blinded examiner and in each vertical region mean
cell numbers from 10 vertical fields were obtained. From
this, we calculated the percentage of sPLA2-IIA immunore-
active astrocytes in ITG for each case from 6 AD and 6 ND
samples. In the CA3 region, we started counting at the
CA3 boundary, and counted 5 consecutive, 1-mm2 reticle

fields covering the pyramidal cell layers. In the DG region,
we began counting at the hilus and counted the 1-mm2

reticle fields consecutively as far as the junction of the DG
and CA region. The percentages of sPLA2-IIA-positive
astrocytes in the DG and CA3 regions were determined
from 4 AD and 4 ND cases.

Using the same methodology, the number of sPLA2-IIA-
positive cells that co-localized with thioflavin S-positive
plaques was counted. In each reticle field, thioflavin S-
positive plaques were first visualized with a fluorescence
microscope followed by phase contrast observation. Per-
centages of sPLA2-IIA-positive astrocytes that co-localized
with thioflavin S-positive plaques were obtained from the
total number of sPLA2-IIA-positive astrocytes.

Statistical analysis
Student's t test, or one-way ANOVA followed by Tukey
posthoc multiple comparison test was used to analyze
data using the GraphPad Prism 4 software. Significant dif-
ferences between groups were assumed for P values <
0.05.

Results
Expression of sPLA2-IIA mRNA in hippocampus and 
cerebellum of AD and ND brains
To demonstrate sPLA2-IIA mRNA expression in human
brain, we measured levels of sPLA2-IIA mRNA by real time
PCR analysis of RNA prepared from hippocampus and
cerebellum samples from AD and ND patients. Hippoc-
ampal tissues for RNA purification were confined mainly
to CA3 and dentate gyrus (DG) areas, as tissues from CA1
were not available. We detected a significant, 4.5-fold
increase (p < 0.01) in sPLA2-IIA mRNA in AD hippocam-
pus samples as compared to ND. On the other hand, there
was no difference between sPLA2-IIA mRNA levels in cer-
ebellar samples from AD and ND brains.

Increased immunoreactivity of sPLA2-IIA in astrocytes of 
AD brain
Immunohistochemistry was used to demonstrate cell-
associated sPLA2-IIA protein in AD and ND brains. As
shown in Figure 1A, there were few GFAP-positive astro-
cytes present in the hippocampal DG area from ND brain
and these cells, which appeared to be forming astrocyte
foot contacts with an amyloid plaque, showed little
sPLA2-IIA immunoreactivity. A higher number of GFAP-
positive astrocytes and sPLA2-IIA/GFAP-positive astro-
cytes were present in AD hippocampal regions (Fig. 1B
and 1C). Immunoreactivity of sPLA2-IIA was also detected
in GFAP-positive cells lining the blood vessels (Fig. 1D),
and co-localized with amyloid deposits (Fig. 1E).

To investigate whether sPLA2-IIA-positive astrocytes are
co-localized with amyloid deposits that contain Aβ in β-
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sPLA2-IIA immunoreactivity in human postmortem brain tissuesFigure 1
sPLA2-IIA immunoreactivity in human postmortem brain tissues. Double immunostaining depicting sPLA2-IIA immu-
noreactivity in dark blue color and GFAP immunoreactivity in brown color is shown in panels A-D (using 20X and 40X objec-
tive lenses). Panel A demonstrates that little sPLA2-IIA immunoreactivity is present in a cluster of GFAP immunoreactive 
astrocytes in ND hippocampus. Panel B shows many GFAP-positive astrocytes (white arrow) labeled with intense immunore-
activity for sPLA2-IIA (dark immunoreactive products, red arrow) in AD hippocampus. At higher magnification (Panel C), 
sPLA2-IIA immunoreactivity is shown in an astrocyte cell body in granular-like structures (red arrow). Panel D shows that 
immunoreactivity for sPLA2-IIA (red arrows) is also present in GFAP-positive astrcoytes (white arrows) surrounding microves-
sels in AD hippocampus. We also detected sPLA2 immunoreactivity in hippocampal neurons (black arrows) in ND (Panel A) 
and AD (Panel D) hippocampus. In Panel E, several sPLA2-IIA immunoreactivitve profiles (red arrows) are co-localized with an 
amyloid plaque (brown immunoreactive area) detected by immunohistochemistry with an antibody to Aβ.
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sheet conformation, brain sections double-immunore-
acted with sPLA2-IIA and GFAP were stained with thiofla-
vin S fluorescence dye. Thioflavin S-positive plaques were
present in the DG, CA3, and ITG of all AD cases; no thio-
flavin S-positive plaques were detected in the DG and CA3
regions of ND cases. Nevertheless, thioflavin S-positive
plaques were present in the ITG of two ND cases. A sub-
population of sPLA2-IIA-positive astrocytes co-localized
with thioflavin S-positive plaques in AD patients as dem-
onstrated in the same brain sections that were processed
for double immunohistochemistry for GFAP and sPLA2-
IIA antibodies (Fig. 2B) and for thioflavin S histochemis-
try (Fig. 2A).

We have quantified the percentages of astrocytes that were
immunoreactive for sPLA2-IIA and GFAP, and also the
percentages of sPLA2-IIA-positive astrocytes that are asso-
ciated with thioflavin S-positive plaques from brain sec-
tions containing DG, CA3, and ITG regions in AD and ND
patients (see Table 1 for patient information). The results
are shown in Table 2. Data show firstly that significantly
greater percentages of GFAP-positive astrocytes were
immunoreactive for sPLA2-IIA in AD cases than in ND

cases in all three brain regions. Secondly, in the gray mat-
ter of ITG, more than two thirds of sPLA2-IIA-positive
astrocytes in AD tissue sections co-localized with thiofla-
vin S-positive plaques. Thirdly, among the three brain
regions tested, the DG in AD brains contained the highest
percentage of sPLA2-IIA-positive astrocytes. However, the
majority of the sPLA2-IIA-positive astrocytes in the hip-
pocampal regions were not associated with thioflavin S-
positive plaques.

sPLA2-IIA immunoreactivity was not detected in micro-
glial cells (not shown); however, sPLA2-IIA immunoreac-
tivity was observed in neurons (identified based on their
morphology) in both ND and AD brains (Fig. 1A and
1D). Unlike the immunostaining for astrocytes, which
showed punctate dark spots, sPLA2-IIA immunoreactivity
in neurons shows an amorphous distribution pattern.

Pro-inflammatory cytokines and Aβ1–42 induce sPLA2-IIA 
mRNA in human astrocytes
To further demonstrate expression and regulation of
sPLA2-IIA in astrocytes, human astrocytes cultured from
superior frontal gyrus of post-mortem AD brains were

Co-localization of sPLA2-IIA-positive astrocytes with thioflavin S-positive plaquesFigure 2
Co-localization of sPLA2-IIA-positive astrocytes with thioflavin S-positive plaques. Double immunostaining of 
sPLA2-IIA and GFAP combined with thioflavin S staining shows the presence of sPLA2-IIA (red arrows) in GFAP-positive astro-
cytes (panels A and B) and their association with thioflavin S-positive amyloid plaques (green fluorescent area in panel A) in an 
ITG section from an AD case.

A B
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treated with Aβ1–42 (2.5 μM), IL-1β (20 ng/ml), and IFNγ
(100 ng/ml), alone or in combination for 24 hours. When
stimulated with IL-1β, astrocytes from AD post-mortem
brain developed reactive morphology with slender long
processes as compared to untreated astrocytes (Fig. 3A
and 3B). RT-PCR indicated very low sPLA2-IIA mRNA
expression in control and IFNγ -treated astrocytes (Fig. 3C
and 3D), but significant increases were observed upon
stimulating astrocytes with Aβ1–42 and IL-1β. When Aβ1–42
and IL-1β were given together, there was no further
enhancement of sPLA2-IIA mRNA expression, compared
to each treatment alone.

Discussion
In this study, we characterize the expression of sPLA2-IIA
in AD and ND brains. In AD, severe pathological changes
occur, topographically and quantitatively, in the hippoc-
ampus and temporal cortical areas, whereas cerebellum is
relatively spared from AD pathology. Using real time PCR
for measuring sPLA2-IIA mRNA in hippocampus and cer-
ebellum, we showed a significant increase in sPLA2-IIA
mRNA in the hippocampus of AD brains as compared to
ND brains, whereas no increase was observed in cerebel-
lum. Using immunohistochemistry, we demonstrated
that GFAP-positive astrocytes are the main cell type that
express sPLA2-IIA protein. In hippocampus and ITG, the
percentages of astrocytes that expressed sPLA2-IIA protein
are significantly higher in the AD brains when compared
to ND brains. This is the first demonstration of upregula-
tion of sPLA2-IIA protein in astrocytes in AD brains. The
increase in sPLA2-IIA expression in AD hippocampus, but
not in AD cerebellum, is in agreement with the neu-
ropathological observations that reactive astrocytes are
increasingly associated with pathology in hippocampus
and cortex, whereas diffuse amyloid deposits and limited
astrocyte activation are found in cerebellum [3,42].

It has been established that the number of GFAP-positive
astrocytes associated with amyloid plaques changes dur-
ing plaque formation. There are fewer GFAP-positive
astrocytes associated with diffuse plaques; while more are
associated with neuritic plaques containing fibrillar Aβ
and dystrophic neuritis [43]. Thioflavin S fluorescence dye

can detect amyloid fibrils in β-pleated sheet formation, a
state of aggregation that occurs when diffuse plaques
progress to neuritic plaques. Although thioflavin S-posi-
tive plaques are more abundant in AD brains, there are
occasionally such plaques in the neocortex of normal
aging brains [44,45]. In this study, thioflavin S-positive
plaques were observed in ITG in 2 ND patients. We ana-
lyzed whether increases in the number of sPLA2-IIA-posi-
tive astrocytes are associated with thioflavin S-positive
plaques. Our results indicated that these cells were highly
associated with thioflavin S-positive plaques in ITG sec-
tions, but not in DG or CA3 regions of the hippocampus.
In the ITG of ND brains, a very low percentage of sPLA2-
IIA-positive astrocytes is present in the thioflavin S-posi-
tive plaques. These data suggest that the induction of
sPLA2-IIA protein in astrocytes could result from their
interaction with Aβ and other inflammatory stimuli. This
notion is supported by data obtained from experiments
using astrocyte cultures derived from post-mortem
human brains. Since the IL-1β signaling pathway is con-
sidered a key pathway for induction of pro-inflammatory
molecules in brain [46], it is possible that a progressive
elevation of IL-1β in AD brain could lead to persistent
upregulation of inflammatory proteins including sPLA2-
IIA in astrocytes [47]. Results from astrocyte cultures
showed significant induction of sPLA2-IIA mRNA by IL-1β
or by Aβ alone. These results are in agreement with our
previous studies with rat astrocytes [39,48]. Because IL-1β
secreted by activated microglia is involved in initiating
astrocyte activation and inflammatory cascade [49], its
ability to induce sPLA2-IIA mRNA in astrocytes suggests
that sPLA2-IIA upregulation could be engaged in early
inflammatory events resulting from astrocyte activation.
Taken together, these results are in agreement with the
ability of pro-inflammatory cytokines and Aβ to mediate
inflammatory responses in astrocytes including the induc-
tion of sPLA2-IIA.

The apparent lack of sPLA2-IIA immunoreactivity in
microglial cells seems to be in agreement with our earlier
study with a rat stroke model in which up-regulation of
sPLA2-IIA immunoreactivity was observed primarily in
reactive astrocytes but not in microglia [34]. Wang et al.

Table 2: sPLA2-IIA-positive astrocytes in hippocampus and inferior temporal gyrus of Alzheimer (AD) and nondemented (ND) 
subjects.

Brain region Dentate gyrus CA3 region Inferior temporal gyrus

Subjects AD ND AD ND AD ND

Total sPLA2-IIA-positive astrocytes 50.82 ± 9.001,*** 1.27 ± 0.96 24.11 ± 5.15*** 0.00 12.86 ± 2.90*** 1.99 ± 0.56
Plaque-associated sPLA2-IIA-positive astrocytes2 0.66 ± 0.21* 0.00 1.59 ± 0.38** 0.00 8.60 ± 2.74* 0.51 ± 0.35

1Astrocyte counts are given as percent of all GFAP-positive astrocytes. Values are expressed as mean ± SD.
2Plaque-associated astrocytes were identified by co-staining with thioflavin S
*, **, ***Value is significantly different from corresponding ND value (Student's t test): *p < 0.01; **p < 0.005; ***p < 0.001
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Induction of sPLA2-IIA mRNA expression by cytokines and Aβ 1–42 in cultured human astrocytesFigure 3
Induction of sPLA2-IIA mRNA expression by cytokines and Aβ 1–42 in cultured human astrocytes. Phase contrast 
micrographs show human astrocytes in control (panel A) and IL-1β-stimulated cultures (panel B) for 24 hours. Human post-
mortem astrocytes were used for the sPLA2-IIA RNA study. Experiments were performed using cultures derived from 3 neu-
ropathologically confirmed AD cases. A representative gel depicting PCR-amplified fragments for sPLA2-IIA and β-actin is 
shown in panel C. Gel lanes 1–5 represent the following treatments used in the astrocyte cultures: 1. control; 2. IFNγ (100 ng/
ml); 3. Aβ1–42 (2.5 μM); 4. IL-1β (20 ng/ml); 5. IL-1β and Aβ1–42. Twenty-four hours after treatment, RNA was extracted from 
cells, reverse transcribed, and RT-PCR was carried out as described in methods. Panel D shows a bar graph depicting relative 
units of sPLA2-IIA expression after normalization with β-actin. Significant differences (*) comparing treatment groups with con-
trols were obtained by one-way ANOVA followed by Tukey multiple comparison post hoc test.
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[50] also demonstrated the ability of lipopolysaccharide
(LPS) to stimulate and release sPLA2-IIA from astrocytes
but not from microglial cells. Results in this study also
show immunoreactivity of sPLA2-IIA in hippocampal
neurons with intensity and staining patterns that are dif-
ferent from those in astrocytes. Since this staining pattern
appears in all neurons in both ND and AD samples, more
studies are needed to characterize this immunoreactivity.
sPLA2-IIA immunoreactivity has also been reported in
neurons from other brain regions, including Purkinje
neurons of rat cerebellum [51]. Aside from sPLA2-IIA,
other types of sPLA2 with similar structure, e.g., groups 1B,
IIE, V and X, are present in distinct brain regions [52,53].
Consequently, the functional role of different sPLA2 in
neurons and glia, and the specific subtypes induced in
response to injury, remain an important area to be further
explored.

Secretory PLA2-IIA has been regarded as an inflammatory
protein in the periphery and is upregulated in a number
of cardiovascular diseases [25,29,54]. The physiological
consequences of inflammatory factors released from glial
cells and their ability to damage neurons have been a
topic of intense investigation. Our earlier study with astro-
cytes has demonstrated a role for sPLA2-IIA induced by
pro-inflammatory cytokines in the production of prostag-
landins [39]. Other studies have also shown that secreted
sPLA2-IIA can perturb cellular membranes, especially
those undergoing apoptosis [55-57]. In PC12 cells, lyso-
phospholipids produced by sPLA2-IIA were shown to alter
neurite outgrowth [58]. Furthermore, sPLA2 from bee
venom was shown to modulate the activities of ionotropic
glutamate receptors and Ca2+ channels, resulting in neuro-
nal excitotoxicity and apoptosis [59,60]. Due to the possi-
ble damaging effects of sPLA2-IIA on neuronal function,
there is strong rationale to develop specific inhibitors for
this enzyme [35]. CHEC-9, a peptide inhibitor of sPLA2-
IIA, was shown to ameliorate PLA2-directed inflammation
in both acute and chronic neurodegenerative disease
models [36]. Our data demonstrating sPLA2-IIA as a new
inflammatory factor for AD may further facilitate the
development of novel therapeutics to retard the progres-
sion of this disease.

Conclusion
This study demonstrates for the first time an increase in
protein expression of sPLA2-IIA in GFAP-positive astro-
cytes in AD brains as compared to ND brains. The ability
of pro-inflammatory cytokines and Aβ1–42 to induce
sPLA2-IIA mRNA in astrocytes further supports a possible
role for sPLA2-IIA in the inflammatory responses in AD.
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