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Abstract

Background: Although elicited inflammation contributes to tissue injury, a certain level of inflammation is
necessary for subsequent tissue repair/remodeling. Diabetes, a chronic low-grade inflammatory state, is a predisposing
risk factor for stroke. The condition is associated with delayed wound healing, presumably due to disrupted inflammatory
responses. With inclusion of the diabetic condition in an experimental animal model of stroke, this study investigates
whether the condition alters inflammatory response and influences stroke-induced brain injury.

Methods: C57BL/6 mice were fed a diabetic diet (DD) for 8 weeks to induce an experimental diabetic condition
or a normal diet (ND) for the same duration. Gene expression of inflammatory factors including monocyte
chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), CCR2, and CD36 was assessed in the peripheral immune
cells and brains of normal and diabetic mice before and after focal cerebral ischemia. The expression of these
factors was also determined in lipopolysaccharide (LPS)-treated cultured normal and diabetic macrophages.
Ischemic outcome was assessed in these mice at 3 days post-ischemia.

Results: DD intervention in mice resulted in obesity and elevated insulin and glucose level in the blood. The
peritoneal immune cells from the diabetic mice showed higher MCP-1 mRNA levels before and after stroke.
Compared to normal mice, diabetic mice showed reduced MCP-1, IL-6, and CCR2 gene expression in the brain
at 6 h post-ischemia. LPS-stimulated inflammatory responses were also reduced in the diabetic macrophages.
The diabetic mice showed larger infarct size and percent swelling.

Conclusions: These results showed that diabetic conditions deregulate acute inflammatory response and that
the condition is associated with increased stroke-induced injury. The study suggests that interventions aimed at
restoring appropriate inflammatory response in peripheral immune cells/macrophages may be beneficial in
reducing stroke-induced brain injury in subjects with chronic inflammatory conditions.
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Background

In response to injury, inflammatory responses occur in
a rapid and orchestrated manner, involving the innate
immune system [1]. While the elicited response by
mononuclear cells including monocytes/macrophages
contributes to stroke-induced brain injury, an optimal
level of acute inflammation by these immune cells is
necessary for subsequent resolution of the inflammation
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and tissue repair/remodeling. Aberrant activation of
these cells has been implicated in the development of
age-related diseases and chronic inflammatory condi-
tions [2,3], suggesting the importance of mounting
proper acute inflammatory responses following insults.
Studies indicate that the extent of stroke-induced brain
injury is influenced by the periphery. It has been shown
that increased peripheral inflammation at the time of
stroke aggravates ischemic injury [4]. Furthermore, exa-
cerbated ischemic brain injury was reported in mice with
elevated levels of plasma cholesterols [5]. The impact of
comorbidity on stroke outcome therefore suggests the
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need to include comorbid conditions in the experimental
animal model of stroke for a better understanding of path-
ology and therapeutic strategy.

Diabetes is a predisposing risk factor for cerebrovascular
diseases and increases stroke incidence. The prevalent
form of diabetes in the human population is type II, which
accounts for approximately 90% of diabetic patients. It has
been reported that 70% of stroke patients were previously
diagnosed with diabetes, occult diabetes, or pre-diabetes
[6]. Several clinical studies indicated that patients with dia-
betes had poorer ischemic outcomes [7-11].

The diabetic condition is a chronic systemic low-grade
inflammation accompanied by hyperglycemia, glucose
intolerance, and hyperinsulinemia [12]. Several pro-
inflammatory proteins including monocyte chemoattra-
ctant protein-1 (MCP-1) and interleukin-6 (IL-6) are
elevated in the plasma of diabetic patients [13,14]. As a
major chemokine, MCP-1 plays a role in recruiting macro-
phages into adipose tissue and causing insulin resistance.
The critical role of MCP-1 in the diabetic condition has
been demonstrated in studies showing that its over-
expression in adipocytes leads to tissue inflammation and
insulin resistance, while the mouse deficient in MCP-1 or
its receptor, CCR2, reverses the condition [15-17]. In
addition, administration of MCP-1 in circulation elicits
systemic insulin resistance [18]. Studies also indicate that
diabetic conditions increase the burden of CD36 ligands
via modifications of low-density lipoprotein (LDL) and
excess advanced glycated end products, and augment
CD36 expression. CD36 expression is increased in mono-
cytes from type II diabetic patients and in diabetic mouse
hearts, suggesting that CD36 expression is modulated by
the diabetic condition [19-22].

Despite the increasing incidence of type II diabetes
[12], relatively few investigations of stroke injury have
been performed in animal models that closely mimic
human type II diabetes. To be clinically relevant, the
current study established diet-induced type II diabetes in
C57BL/6 mice. Using this experimental mouse model of
diabetes, this study investigates the effect of the diabetic
condition on stroke-induced inflammatory response and
brain injury. We report that in the diabetic condition,
acute inflammatory responses are perturbed in the brain
following stroke and in the macrophages after lipopoly-
saccharide (LPS) stimulation, and the alteration is asso-
ciated with the exacerbation of stroke-induced injury.

Methods

Animals and diets

The use of animals and the procedures were approved by
the Institutional Animal Care and Use Committee of Weill
Medical College of Cornell University. Experiments were
performed in male C57BL/6 mice. Six-week-old C57BL/6
mice were fed either a normal diet (ND, 4.5% fat and
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53.0% carbohydrate, 5053, LabDiet, MO, USA) or a diabe-
togenic diet (DD, 36% fat and 35.7% carbohydrate, F3282,
Bioserv, NJ, USA) for 8 weeks to induce the diabetic con-
dition. Individuals who performed tissue cutting and gene
analysis were blinded to the animal’s identity. The code
was revealed after data were collected.

Plasma glucose measurement and glucose tolerance test
(GTT)

To monitor the progression of the diabetic condition,
weight and fasting plasma glucose levels were measured
and GTT was performed after 7 weeks of diet. Blood
glucose levels were measured from a tail snip of the
overnight fasted ND and DD fed mice using a gluc-
ometer (Ascensia Contour, Bayer, Germany). For GTT,
the overnight fasted mice were injected intraperitoneally
with 2 g/kg of D-glucose and blood glucose levels were
measured at 15, 45, and 120 min post-injection.

Plasma MCP-1 and insulin measurement

Plasma MCP-1 and insulin levels were determined using
commercially available kits (MCP-1 ELISA kit, R&D sys-
tems, MN, USA; insulin EIA kit, ALPCO Diagnostics,
NH, USA) according to the manufacturers’ procedures.
For MCP-1, mouse trunk blood was collected in a hepa-
rinized tube. For insulin, the mice were overnight-fasted
and then blood was collected from the tail vein. The col-
lected blood was centrifuged at 3,000 rpm for 10 min
and the plasma was stored at —80°C until analysis.

Harvesting peritoneal cells and primary macrophage
culture

The peritoneal cavity of normal and diabetic mice was
filled with sterile phosphate buffered saline (PBS), gently
massaged, and the PBS was withdrawn. The peritoneal
lavage was repeated 3 to 4 times and the collected solu-
tion was centrifuged at 3,000 rpm for 10 min. The cell
pellet was stored at —80°C until total RNA extraction.
Primary macrophages were cultures by a modified
method from previous studies [23-25]. The peritoneal
cells obtained by lavage were suspended in macrophage
serum-free media (MSF, Invitrogen, Carlsbad, CA, USA)
containing 1% penicillin/streptomycin (Sigma, St Louis,
MO, USA). The re-suspended cells were plated in a
12-well cell culture dish (2 x 10° cells/well) and incu-
bated overnight at 37°C with 5% CO,. The adhered cells
on the plate were washed with sterile PBS, incubated in
the MSF for 1 h, and then treated with 0.2 pg/mL LPS
for 6 h. Total RNA was extracted from the LPS-treated
cells for gene expression analysis.

Flow cytometry analysis
Flow cytometry analysis was performed in peritoneal im-
mune cells according to the methods previously described
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[26-28]. After blocking in 10% FBS for 1 h, the peritoneal
cells were incubated with allophycocyanin-conjugated
antibody against myeloid cells including monocyte/macro-
phages (CD11b, Clone M1/7) and a cocktail of phycoery
thrin-conjugated antibodies (BD Biosciences, San Jose,
CA, USA) against T cells (CD90.2, Clone 53-2.1), B cells
(CD45R/B220, Clone RA3-6B2), NK cells (CD49b/Pan-
NK cells, Clone DX5; NK1.1, Clone PK136), and granulo-
cytes (Ly-6G, Clone 1A8) in 1% FBS. Cells were washed
with PBS and passed through a 40-pm cell strainer prior
to flow cytometry analysis (Accuri C6, BD Bioscience).

Transient middle cerebral artery occlusion (MCAO)

The normal and diabetic mice were subjected to MCAO
according to the method previously described [5,29].
Mice were anesthetized with isoflurane (1.5% to 2.0%)
with a mixture of oxygen and nitrogen (30%/70%). A
fiber optic probe was glued to the parietal bone (2 mm
posterior and 5 mm lateral to the bregma) and con-
nected to a Laser-Doppler Flowmeter (Periflux System
5010; Perimed, Jarfilla, Sweden) for continuous monitor-
ing of cerebral blood flow in the center of the ischemic
territory. A 6—0 Teflon-coated black monofilament surgi-
cal suture (Doccol Co., Redland, CA, USA) was inserted
into the exposed external carotid artery, advanced into the
internal carotid artery, and wedged into the cerebral arter-
ial circle to obstruct the origin of the MCA for 30 min.
The filament was withdrawn to allow reperfusion. Using a
rectal probe controlled by a Masterflex pump and ther-
mistor temperature controller (Cole-Parmer, Vernon Hills,
IL, USA), the animals’ body temperatures were maintained
at 37 £ 0.5°C during MCAO and 1 h post-ischemia.

Tissue section strategy for infarct volume, swelling, and
gene expression measurement

To obtain tissue that contains the entire infarct territory,
an unbiased stereological sampling strategy was used
according to the method described in the previous study
[29]. Three days after MCAO, brains were excised, fro-
zen, and serial sections spanning about 6 mm rostrocau-
dal (roughly +2.8 mm and extending to -3.8 mm from
bregma) were collected. The entire infarct region was
cryosectioned for infarct volume measurement (20 pm
thickness) and collected serially at 600 pm intervals.
Infarct volume and hemispheric swelling were measured
using Axiovision software (Zeiss, Germany). Infarct vol-
ume was corrected for swelling by a method described
previously [30]. Tissues between the 600 pm intervals
were sectioned and cut in half and collected for each
hemisphere to determine mRNA levels.

RNA extraction and gene expression analysis
Total RNA was extracted using RNeasy mini extraction
kit (Qiagen, Valencia, CA, USA) for cultured peritoneal
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macrophages or Tri reagent (MRC, OH, USA) for brain
tissues. Total RNA was reverse-transcribed using oligo
(dT) primers and the SuperScript First-Strand Synthesis
System (Invitrogen) according to the manufacturer’s
protocol. PCR primers and probes specific for MCP-1,
IL-6, CCR2, CD36, and [B-actin (an internal control)
were obtained as TagMan pre-developed optimized assay
reagents for gene expression (Applied Biosystems, Foster
City, CA, USA). The PCR reaction was performed using
TagMan Universal PCR Mastermix, No AmpErase UNG,
and 7500 Fast Real-Time PCR system (Applied Biosys-
tems) according to the manufacturer’s protocol. Reactions
were performed in 20 pL total volume and incubated at
95°C for 10 min, followed by 40 cycles of 15 sec at 95°C,
and 1 min at 60°C. The results were analyzed by 7500 Fast
Real-Time PCR System software (Applied Biosystems).

Data analysis

Infarct volume and percent hemispheric swelling were
reported as mean + 95% confidence interval (CI). Gene
and protein levels were reported as mean + SEM. Gene
expression levels from in vivo studies were presented as
the B-actin normalized value according to the formula,
value = 2(Ct of B-actin-Ct of target gene)' Gene eXpression
levels in in vitro studies were reported relative to control
cultures and averaged from two independent experi-
ments. Comparison between the two groups was statisti-
cally evaluated using Student’s t-test. Differences were
considered significant at P <0.05.

Results

Characterization of experimental mouse model of type Il
diabetes

Mice fed a DD gained body weight significantly faster than
those fed a ND (Figure 1A). The DD also caused signifi-
cantly higher plasma insulin levels measured after 7 weeks
of diet (Figure 1B). DD mice displayed elevated blood
glucose levels (ND vs. DD, 1154 +11.5 vs. 180.7+9.3,
n = 15/group, P <0.001). Upon glucose challenge, the mice
fed a DD showed slower glucose clearance, suggesting the
development of insulin resistance (Figure 1C). MCP-1
levels in the plasma of DD mice were significantly higher
than that of ND mice (Figure 1D). The results showed that
DD intervention induces hallmarks of type II diabetes in
mice.

Elevated MCP-1 expression in diabetic peritoneal cells

The peritoneal cavity harbors resident immune cells in-
cluding lymphocytes and macrophages. FACS analysis of
the peritoneal immune cells using antibodies against
CD11b (monoctyes/macrophages) and Lin, an antibody
cocktail for lineage markers (lymphocytes, NK cells, and
granulocytes) showed that several populations and appro-
ximately 20% of cells represent monocytes/macrophages
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Figure 1 Characterization of diet-induced diabetic mouse model. (A) Body weight changes during 8 weeks of diet intervention, n= 14 to
15/group. (B) Plasma insulin levels, n =11 to 14/group. (C) Clearance of blood glucose upon glucose challenge by glucose tolerance test, n =15/
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(Lin'®*/CD11b"eh) (Figure 2A). We determined the expres-
sion of several inflammatory genes in these resident peri-
toneal immune cells obtained from normal and diabetic
mice. Prior to stroke, the basal MCP-1 gene expression in
the diabetic peritoneal cells was highly elevated (Figure 2B)
while IL-1f and TNFa were not different between normal
and diabetic peritoneal cells (data not shown). Additionally,
we did not find differences between the groups in other in-
flammatory mediators including IL-6, CCR2, and CD36
(Figure 2C-E). Stroke induced an increase in MCP-1 at
6 h and 72 h after ischemia in the diabetic peritoneal cells
(Figure 2B), while IL-6, CCR2, and CD36 gene expressions
were not different between the normal and diabetic cells
(Figure 2C-E). The results showed selective and sustained
elevation of MCP-1 in the diabetic peritoneal cells.

The compromised acute inflammatory response in the
stroked brain

We next investigated stroke-induced inflammatory re-
sponse in the normal and diabetic brain. Compared to
that of normal mice, basal gene expression before stroke
in the brain of diabetic mice showed lower CD36 (x10™%)
(ND vs. DD, 69+0.6 vs. 52+0.3, n=4 to 5/group,
P <0.05), while MCP-1, IL-6, and CCR2 were similar be-
tween the groups (ND vs. DD, MCP-1 (x107°), 6.3 + 0.3
vs. 6.2+ 0.5; IL-6 (x107°), 4.9 £ 0.2 vs. 5.4 + 0.4; and CCR2
(x107%), 2.9 £ 0.5 vs. 3.4 £ 0.3).

Gene expression in the brain prior to stroke and in the
contralateral hemisphere following stroke was relatively
unchanged (data not shown). There was, however, a pro-
found increase in the ipsilateral brain. MCP-1 expression
increased >50-fold in the normal brains at 6 h; the fold
induction at this time point was significantly attenuated
in the diabetic brains (Figure 3B). This early-blunted in-
flammatory response at 6 h in the diabetic brain was also
observed in the expression of IL-6 and CCR?2, a receptor
for MCP-1 (Figure 3C and D). The differences, however,
were not observed at 72 h post-ischemia except in
CD36, which showed increased expression in the dia-
betic brain (Figure 3E). Collectively, the data suggest that
early inflammatory responses in the diabetic brain are
deregulated.

Attenuated LPS-stimulated inflammatory response in
diabetic macrophages

Mononuclear cells including monocytes/macrophages
that infiltrate into infarct, contribute to inflammation in
the injured tissue. We therefore investigated whether
these immune cells largely account for the blunted in-
flammatory response upon insults, as we observed in the
stroked brain. Primary macrophages from the normal
and diabetic mice were cultured and their responses to
external inflammatory stimulus were investigated. Com-
pared to vehicle-treated cultures, LPS increased MCP-1
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Figure 2 Effect of the diabetic condition on inflammatory gene expression in the peritoneal cells before and after stroke. (A) Flow
cytometry analysis of peritoneal immune cells. The cells in the gated area indicate CD11b*/Lin™ (CD11b"9"/Lin'*) monocytes/macrophages.
(B to E) Gene expression of MCP-1 (B), IL-6 (C), CCR2 (D), and CD36 (E) in normal and diabetic peritoneal cells prior to ischemia (pre-) and at 6 h
(6 h-post) and 72 h after stroke (72 h-post), n =9 to 13/group. ND, normal mice; DD, diabetic mice; Lin, markers for lymphocytes/NK cells/granulocytes;

and IL-6 expression in normal macrophages. However,
the responses to LPS were significantly attenuated in
diabetic macrophages (Figure 4A and B), showing altered
chemokine and cytokine expression in LPS-stimulated
diabetic macrophages. CCR2 and CD36 gene expression
was higher in the vehicle-treated diabetic macrophages;
LPS down-regulated CCR2 and CD36 expression in both
normal and diabetic macrophages (Figure 4C and D).
The results suggest that diabetic macrophages exhibit al-
tered responses upon an external inflammatory stimulus.

Exacerbation of ischemic brain injury in the DD mice

The effect of diabetes on ischemic outcome was assessed.
Histological examination at 3 days after stroke revealed
that the diabetic mice showed an increased infarct size
and percent hemispheric swelling (Figure 5A-C). To de-
termine the contribution of hemispheric swelling, we fur-
ther performed correlation analyses within the groups.
Infarct size is positively correlated with percent swelling in
normal mice (r* = 0.5089, P <0.001). However, there is no
correlation between infarct size and percent swelling in
diabetic mice (r* =0.03895, ns). In addition, the correl-
ation slopes between the groups were significantly differ-
ent (P =0.0113), showing a larger swelling component at a
given infarct in the diabetic mice. The result indicates that
differential dynamics in acute infarct evolution in diabetic
mice may contribute to the exacerbation of stroke induced
brain injury (Figure 5D).

Discussion

Accumulating evidence suggests that peripheral status
influences stroke-induced brain injury, a major CNS
event. With the inclusion of the diabetic condition in an
experimental animal model of stroke, the current study
addresses the effect of the condition on stroke-induced
inflammatory response and outcome. An important find-
ing of this study is that the diet-induced diabetic condi-
tion captures many features of prevalent type II diabetes,
evidenced by obesity, increased plasma insulin and
MCP-1 protein, as well as the development of insulin
resistance. In the diabetic mice, stroke-induced inflam-
matory response in the brain was blunted. Moreover,
diabetic macrophages also displayed attenuated expres-
sion of pro-inflammatory chemokines and cytokines in
response to LPS stimulation. The altered acute inflam-
matory response in diabetic conditions is associated with
the exacerbation of stroke injury, implying the import-
ance of mounting the proper inflammatory response in
limiting stroke-induced brain injury in the presence of
the comorbidity.

The diet-induced obese mice used in the current study
provide a suitable experimental model to investigate the
impact of the diabetes comorbidity in stroke. In contrast
to the widely used genetically modified ob/ob or db/db
mice that display excessively elevated fasting blood
glucose (190 to 400 mg/dL) and plasma insulin levels
(20-fold) [31-33], the current model displays obesity,
moderately increased insulin and fasting blood glucose,
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insulin resistance, and increased MCP-1 in the plasma
and peritoneal immune cells (Figures 1 and 2). These
hallmarks of type II diabetes featured in the current
model signify its validity and advantage over genetic
models in studying the effect of diabetes in stroke path-
ology and outcome.

Hyperglycemia-induced acidosis with lactate buildup
was considered a potential mechanism by which diabetic
conditions exacerbate stroke-induced brain injury [34-36].
However, arguments against this view include a study that
showed greater injury size in diabetic mice than in control
mice despite comparable plasma glucose levels [37,38].
Moreover, a report on larger infarct size with lower glu-
cose and lactoacidosis in male db/db mice compared to
female mice [39], further supports the view that hyper-
glycemia, per se, may not account for the diabetes-
induced aggravation of stroke injury.

Chronic inflammation is a salient feature of metabolic
disorders and aging-related disease. Because the chronic
inflammation is associated with compromised antimicro-
bial defenses, delayed wound healing, and impaired in-
flammatory responses [2,40], immunological disturbances
may be an underlying event for diabetes-induced exa-
cerbation of ischemic brain injury. Diabetic mice (db/db)
displayed reduced inflammatory cytokine expression and
microglial activation and delayed wound healing [41].
Since microglial activation and the release of chemokines
and cytokines are critical steps in eliciting inflammatory
response, we speculate that inability to mount a proper
host immune response immediately after cerebral ische-
mia in diabetic microglia may cause an extended inflam-
matory phase, which leads to a prolonged infiltration of
peripheral immune cells and worsen ischemic injury.
Sustained elevation of glucose has been linked to
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dysregulation of normal immune function through C-
type lectin-mediated immune function [42]. Our finding
of attenuated stroke-induced inflammatory response in
diabetic mice is also consistent with literature showing
attenuated LPS-stimulated IL-6 levels and hypoxic/ische-
mia-induced cytokine in diabetic conditions [41,43-45].
Besides its implicated role as a prototype inflammatory
receptor in acute cerebral ischemia [5,29,46], CD36 in
the plasma was identified as a novel marker of insulin
resistance [21,47]. Increased CD36 expression in the is-
chemic brains and diabetic macrophages in this study
may reflect the feed-forward expression of CD36 in the
presence of excess CD36 ligands such as advanced gly-
cated end products and glucose-oxidized LDL in the
diabetic condition.

Although stroke-induced MCP-1 expression suggests
its role in the trafficking of inflammatory immune cells to
the injury site, the attenuated MCP-1 expression in the dia-
betic brain following stroke (Figure 3) suggests a perturbed
immune response. In age-related chronic inflammatory
conditions, several functions of mononuclear phagocytes,
including immune defense, inflammation, and phago-
cytosis, are deregulated [40]. In the current study, the
reduced LPS-stimulated MCP-1 and IL-6 expression in
the diabetic macrophages (Figure 4) provided a mech-
anistic link between impaired mononuclear phagocyte
function and diabetes-induced exacerbation of ischemic
injury. Despite the impaired pro-inflammatory MCP-1
and IL-6 in the ischemic brain and LPS-stimulated macro-
phages, increased stroke-induced brain injury in diabetic
conditions suggests a benefit of rapid inflammatory re-
sponse following stroke. This may be relevant to the re-
ported protective role of MCP-1 against apoptotic stimuli
and excitotoxicity in neurons [48,49], norepinephrine-
induced reduction of neuronal damage [50], and wound
healing [51,52].

Conclusions

In summary, we report that disturbed immune response
in diabetic mice is associated with increased stroke-
induced brain injury. The study showed that impaired
inflammatory function in mononuclear cells and inability
to elicit rapid inflammatory responses may partly under-
lie the diabetes-induced exacerbation of stroke injury.
As tissue injury typically elicits a rapid inflammatory
response to resolve inflammation, this study indicates
the importance of mounting timely inflammatory re-
sponses to limit stroke-induced injury in subjects with
chronic systemic inflammatory conditions. Careful and
discriminatory blockade of inflammation should be cau-
tiously considered for stroke therapies.
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