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Nutraceutical agents with anti-inflammatory
properties prevent dietary saturated-fat induced
disturbances in blood–brain barrier function
in wild-type mice
Ryusuke Takechi1,2, Menuka M Pallebage-Gamarallage1, Virginie Lam1, Corey Giles1 and John C Mamo1,2*

Abstract

Background: Emerging evidence suggests that disturbances in the blood–brain barrier (BBB) may be pivotal to the
pathogenesis and pathology of vascular-based neurodegenerative disorders. Studies suggest that heightened
systemic and central inflammations are associated with BBB dysfunction. This study investigated the effect of the
anti-inflammatory nutraceuticals garlic extract-aged (GEA), alpha lipoic acid (ALA), niacin, and nicotinamide (NA) in a
murine dietary-induced model of BBB dysfunction.

Methods: C57BL/6 mice were fed a diet enriched in saturated fatty acids (SFA, 40% fat of total energy) for nine
months to induce systemic inflammation and BBB disturbances. Nutraceutical treatment groups included the
provision of either GEA, ALA, niacin or NA in the positive control SFA-group and in low-fat fed controls. Brain
parenchymal extravasation of plasma derived immunoglobulin G (IgG) and large macromolecules (apolipoprotein
(apo) B lipoproteins) measured by quantitative immunofluorescent microscopy, were used as markers of disturbed
BBB integrity. Parenchymal glial fibrillar acidic protein (GFAP) and cyclooxygenase-2 (COX-2) were considered in the
context of surrogate markers of neurovascular inflammation and oxidative stress. Total anti-oxidant status and
glutathione reductase activity were determined in plasma.

Results: Brain parenchymal abundance of IgG and apoB lipoproteins was markedly exaggerated in mice
maintained on the SFA diet concomitant with significantly increased GFAP and COX-2, and reduced systemic anti-
oxidative status. The nutraceutical GEA, ALA, niacin, and NA completely prevented the SFA-induced disturbances of
BBB and normalized the measures of neurovascular inflammation and oxidative stress.

Conclusions: The anti-inflammatory nutraceutical agents GEA, ALA, niacin, or NA are potent inhibitors of dietary
fat-induced disturbances of BBB induced by systemic inflammations.
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Background
Accumulating evidence suggests that disturbances in cere-
bral capillary integrity characterized by inflammation, loss
of blood–brain barrier (BBB) functions, parenchymal ex-
travasation of plasma proteins, proteinaceous deposits on
extracellular matrices, and glial cell activation contribute
to the onset or progression of a number of neurodegener-
ative disorders including vascular dementia, Alzheimer’s
disease, Parkinson’s disease, and multiple sclerosis [1].
Cerebral capillary abnormalities that precede frank patho-
logical or clinical abnormalities include capillary endothe-
lial cell proliferation, perivascular gliosis, and progressive
arteriopathy, and thereafter the formation of lacunar
lesions [2-5].
Cerebral capillary dysfunction induced as a conse-

quence of a chronically heightened state of systemic
inflammation is positively associated with neurovascular
degenerative disorders [6-9]. Comorbidities such as dy-
slipidemia, hypertension or endocrine disorders, exposure
to pollutants such as smoking, alcohol consumption, or
atherogenic diets may also increase neurodegenerative
disease onset via a cerebral capillary axis [3,6,8-10]. Stud-
ies in animal models support the latter. Wild-type mice
chronically fed pro-inflammatory diets enriched in satu-
rated fatty acids (SFA) or cholesterol showed hallmark fea-
tures of BBB dysfunction including cerebral extravasation
of large plasma proteins (immunoglobulin G (IgG) and
macromolecules (apolipoprotein (apo) B lipoproteins))
concomitant with diminished endothelial tight junction
proteins [9,11-13].
Several in vivo and in vitro studies suggest that pharma-

cological agents with anti-inflammatory or anti-oxidative
activity may positively regulate BBB integrity through
regulation of systemic inflammatory pathways [14-16].
The potent antioxidant, probucol, preserved BBB function
and profoundly attenuated astroglial cell activation in
SFA-fed mice [17]. The cholesterol-lowering 3-hydroxy-
methyl-Co-A reductase inhibitor, atorvastatin, prevented
BBB disturbances in spontaneously hypertensive rats [18].
Atorvastatin, pravastatin, and the non-selective cyclooxy-
genase inhibitor, ibuprofen, were shown to also restore
BBB function in mice with BBB dysfunction induced by
chronic ingestion of a pro-atherogenic diet [18].
Bioactive anti-inflammatories may also confer benefit

to cerebral capillary vessels [19,20]. A bitter melon-
attenuated dietary-fat induced BBB disturbances in wild-
type mice concomitant with a significant reduction in
both central and systemic inflammatory/oxidative stress
markers [7]. However, paradoxical observations have
been reported in other studies. Provision of omega-3
fatty acids to mice that had been maintained on an SFA
enriched diet for twelve weeks, exacerbated measures of
BBB dysfunction [11]. A study by Mustata et al. also
showed increased glycoxidation in tendon, aorta, and

plasma by anti-oxidative green tea and vitamins C and E
in a diabetic rat model [21]. Soy isoflavones, such as
genistein, inhibit the lipid peroxidation only with super-
physiological concentrations due to its poor peroxyl
radical scavenging function [22].
In the current study, we investigated the efficacy of

selected anti-oxidative nutraceuticals, namely garlic
extract-aged (GEA), alpha-lipoic acid (ALA), niacin,
and nicotinamide (NA), in an established dietary-in-
duced model of BBB disruption. The GEA contains
anti-oxidative phytochemicals including S-allylcysteine,
S-allylmercaptocysteine, diallyl sulfide, and allicin, which
can scavenge reactive oxygen species. The GEA was
shown to inhibit lipid peroxidation and reduce expression
of key inflammatory proteins such as nuclear factor-kappa
B in vivo and in vitro [23-25]. In clinical studies, GEA sup-
plementation was found to reduce measures of oxidative
stress and showed therapeutic benefits in subjects with
Parkinson’s and Alzheimer’s disease [26-31]. ALA is a nat-
urally occurring anti-oxidant that sequesters free radicals.
ALA acts indirectly to enhance cellular anti-oxidant status
by stimulating uptake of exogenous anti-oxidants and
enhancing the production of endogenous anti-oxidant
enzymes. ALA also inhibits the production of pro-
inflammatory cytokines [32]. In a traumatic brain injury
model, Toklu et al. reported that ALA improved BBB
function concomitant with attenuated central and sys-
temic inflammation [33]. Niacin and NA are classified
within the B3 group of vitamins; however, niacin also has
significant lipid-lowering effects [34]. Both niacin and NA
can be converted into nicotinamide adenine dinucleotide
or nicotinamide adenine dinucleotide phosphate, key
mediators in enzymatic anti-oxidative reactions [34].
Morris et al. reported that niacin retards the cognitive
decline in Alzheimer’s disease and, consistent with
those findings, NA was found to delay the cognitive
decline in Alzheimer’s subjects and reduce amyloid
deposition in amyloid transgenic mice [35].

Materials and methods
Animals and diets
Wild-type C57BL/6J female mice were purchased from
Animal Resources Centre, WA, Australia. The low-fat
(LF) control chow was the maintenance diet (AIN-93M,
Specialty Feeds, WA, Australia) containing < 4% (w/w)
polyunsaturated fats and was free of SFA or dietary chol-
esterol. Mice with dietary-induced BBB dysfunction were
fed a semi-synthetic diet enriched in SFA (SF07-050,
Specialty Feeds, WA, Australia) containing 40% energy
of fat derived from cocoa butter as previously described
(5% w/w palmitic 16:0, 7% stearic 18:0) [17]. The nutra-
ceutical supplements GEA (Kyolic, USA), ALA, niacin,
or NA (all Sigma-Aldrich, USA) were incorporated into
either the LF or SFA diets at a concentration of 3%
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(w/w), 0.2% (w/w), 1% (w/w), or 0.3% (w/w), respectively.
The dose of nutraceutical ingested relative to weight was
within clinical recommendations and similar to previous
studies [23,26-28,30-35]. The components of GEA are
standardized by the manufacturer relative to the amount
of S-allylcysteine [36]. Animals were kept in individually
ventilated cages with 12 h light/dark cycle, under con-
trolled temperature (21°C) and air pressure. All animals
had ad libitum access to the diets and water. All the
procedures described in this study were approved by
NHMRC accredited Curtin Animal Ethics Committee
(approval no. N34-10).

Dietary/nutraceutical intervention and sample collection
Eight mice were randomly allocated at six weeks of age
to dietary or nutraceutical treatment groups of LF control
chow; LF diet supplemented with GEA (LF+GEA); LF diet
supplemented with ALA (LF+ALA); LF diet supplemented
with niacin (LF+Niacin); LF diet supplemented with NA
(LF+NA); diet enriched in SFA; SFA diet supplemented
with GEA (SFA+GEA); SFA diet supplemented with ALA
(SFA+ALA); SFA diet supplemented with niacin (SFA+
Niacin); or SFA diet supplemented with NA (SFA+NA).
After nine months of dietary/nutraceutical intervention,
mice were anesthetized with pentobarbital (45 mg/kg).
Blood samples were collected from a cardiac puncture,
and plasma was isolated and stored at −80°C until next
use. The brain was carefully removed and fixed in 4%
paraformaldehyde (w/v in PBS, pH 7.2) for 24 h. Following
cryoprotection with 20% sucrose for 72 h at 4°C, the brain
tissues were frozen in dry ice/isopentane and stored at
−80°C until next use.

Assessment of BBB integrity
The integrity of the cerebrovascular BBB was assessed
by an established method of cerebral plasma protein
extravasation that indicates the unspecific blood-to-
brain leakage of plasma proteins and macromolecules
[9,11,12,17,18,37,38]. Briefly, 3-D quantitative immu-
nomicroscopy was used to assess brain parenchymal
abundance of IgG (Mw 155 kDa) and of apoB lipopro-
teins (molecular weight > 2×107 kDa). Briefly, 20 μm thick
cryosections were prepared from the right hemisphere of
frozen brain tissues. After blocking with 10% goat serum

for 30 min, the sections were incubated with goat anti-
mouse IgG conjugated to Alexa488 (1:200, Invitrogen, US)
for 20 h at 4°C. For the immunodetection of apoB, the
sections were incubated with rabbit anti-mouse apoB
(1:400, Abcam) for 20 h at 4°C, followed by an incubation
with anti-rabbit IgG secondary antibody conjugated to
Alexa488 (1:200, Invitrogen) for 2 h at 20°C. Following
DAPI nuclei counterstaining, the sections were observed
under a fluorescent microscope (Axiovert 200M, Zeiss,
Germany). A positive control of BBB dysfunction from
mice euthanized with carbon dioxide was utilized.

Immunomicroscopic detection of cerebral inflammation
Neuronal inflammation was assessed by determining the
abundance of parenchymal glial-fibrillar acidic protein
(GFAP) and cyclo-oxygenase-2 (COX-2) using a 3-D
quantitative immunofluorescent method previously de-
scribed [12,17]. Briefly, 20 μm thick cryosections of the
right brain hemisphere were prepared. Non-specific
biding sites were blocked with 10% goat serum in PBS
for 30 min at 20°C. Either rabbit anti-mouse GFAP
(1:200, Abcam, UK) or rabbit anti-mouse COX-2 (1:200,
Abcam) was applied to the sections for 20 h at 4°C. The
sections were then incubated with goat anti-rabbit IgG
conjugated with Alexa488 (1:200, Invitrogen) for 2 h at
20°C. DAPI was used to counterstain the nuclei.

3-D quantitative immunomicroscopy
Immunofluorescent micrographs were quantitatively an-
alyzed in a 3-D context as previously described [12,17].
One section per animal was used in the estimated
stereotaxic areas of 1.7 mm interaural and −2.1 mm
Bregma. Immunofluorescent micrographs were captured
with mRM digital camera (Zeiss) attached to Axiovert
200M. At a magnification of 200× (20× Zeiss Plan-
Neofluar objective with 10× mRM camera), a minimum
of five and three 3-D images was captured from ran-
domly selected areas of the cortex and hippocampal
formation, respectively, utilizing the AxioVision imaging
software (Zeiss). The random images capture process
represents approximately half of the cortex and hippo-
campal formation region of each section. Each 3-D
image consisted of 12 Z-stack 2-D images, and the
distance between the Z-stack images were 1.225 μm

Table 1 Mean weight and weight gain

LF LF+GEA LF+ALA LF+Niacin LF+NA SFA SFA+GEA SFA+ALA SFA+Niacin SFA+NA

Final mean weight (g) 23.36 25.01 21.71 22.81 23.16 23.56 24.95 20.51* 23.16 22.13

SEM 0.3995 0.7448 0.2806 0.6906 0.5106 1.154 0.4088 0.4228 0.2275 0.4956

Mean weight gain (g) 9.05 9.26 5.26 7.78 7.27 8.25 9.76 4.85 7.96 7.29

The mean weights with standard error of mean at the end of nine months dietary intervention are shown in low-fat (LF), saturated fat (SFA) or diets
supplemented with nutraceutical aged garlic extract-aged (+GEA), alpha-lipoic acid (+ALA), niacin (+Niacin), or nicotinamide (+NA) groups. The differences of
means from the beginning to the end of dietary intervention in each group are also shown. *Indicates the statistical significance at P < 0.05 compared to SFA
group by using one-way ANOVA followed by Tukey’s post hoc test.
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optimized based on Nyquist overlap theory. The voxel
intensity of fluorescent dye was then analyzed in 3-D
with Volocity 6.2 image analysis software (PerkinElmer,
UK). Means of total fluorescent intensities of all the
images in cortex and hippocampal formation regions
were calculated within each animal, and thereafter com-
pared between the groups.

Plasma oxidative markers
Plasma anti-oxidative status was assessed by determining
the plasma concentration of glutathione reductase and
plasma total anti-oxidant status (TAS) using commer-
cially available colorimetric assays (Randox, UK). The
details are as described in the manufacturer’s instruc-
tions but with minor modifications. Briefly, for the gluta-
thione reductase assay, 4 μL of plasma sample was
mixed with 100 μL of substrate buffer and incubated at
37°C. Exactly at 1, 2, 3, 4, and 5 min after adding 20 μL
of NADPH solution, the optical absorbance was read at
340 nm. By plotting the absorbance values, the slope of
the linear portion of the curve was determined. The
glutathione reductase activity was calculated by deter-
mining the reaction rate at 340 nm with the NADPH
extinction coefficient of 0.00622/μM/cm.
The TAS assay measures the anti-oxidative status of

the samples by measuring the suppression of radical
cation 2,2′-azino-di-[3-ethylbenzthiazoline sulphonate]
(ABTS) production. Briefly, 2 μL of water, standard or
samples were incubated with 100 μL of chromogen solu-
tion at 37°C, and the absorbance was read at 600 nm
(A1). At exactly 3 min after adding 20 μL of substrate
buffer, the absorbance was read at 600 nm (A2). The
suppression of ABTS formation (A2 – A1) was deter-
mined with the known value of the standard (2.14
mmol/L).

Plasma lipids
Commercially available colorimetric assays were used
to measure the concentrations of plasma cholesterol,
triglycerides (Randox, UK), and non-esterified fatty acids
(NEFA) (WAKO, Japan) according to the manufacturer’s
instruction with some minor modifications.
Briefly, for cholesterol and triglyceride assays, 2 μL

of plasma samples or standards were loaded to a 96-
well microplate; 200 μL of reaction solution was then
added and incubated for 5 min at 37°C. The optical
absorbance was read at 550 nm. For the NEFA assay,
7 μL of plasma samples or standards were loaded to a
96-well microplate; 300 μL of Reagent 1 was added and
incubated for 3 min at 37°C, then 150 μL of Reagent 2
was added for 4.5 min at 37°C. The optical absorbance
was read at 550 nm.

Figure 1 Plasma lipids. The plasma concentrations of cholesterol
(A), triglyceride (B), and non-esterified fatty acid (NEFA) (C) were
analyzed with commercially available colorimetric kits in mice
maintained on low-fat control chow (LF), diet enriched in saturated
fat (SFA) or each diet supplemented with nutraceutical garlic
extract-aged (+GEA), alpha-lipoic acid (+ALA), niacin (+Niacin) or
nicotinamide (+NA) for nine months. One-way ANOVA followed by
Tukey’s post hoc test was used to analyze the statistical significance
at P <0.05. (a) Significant difference between LF and SFA; (b)
Significant difference between LF and each nutraceutical treatment;
and (c) Significant difference between SFA and each
nutraceutical treatment.
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Statistical analysis
Each dietary and nutraceutical intervention group
contained a minimum of eight mice, which was pre-
dicted to provide sufficient power based on the coeffi-
cient of variation of the key measures previously
published [9,11,12,17,18]. All the statistical analyses
were conducted by one-way ANOVA analyses followed
by Tukey’s post hoc tests. The Pearson’s correlation co-
efficient describing the association between parenchymal
protein extravasation (IgG and apoB) and parenchymal
inflammatory markers, or plasma oxidative markers was
determined. Statistical significance was considered at
P <0.05. Data were expressed as means ±SEM.

Results
Mice have similar weight gain pattern and plasma lipids
Animals maintained on the diets enriched in SFA and
diets supplemented with nutraceutical agents were well
tolerated. The total calories consumed were approxi-
mately equivalent for the mice maintained on LF control
chow and high SFA diet, and a similar weight gain was

recorded in most treatment groups for a nine-month
intervention period (Table 1). However, the final mean
weight of the SFA+ALA group of mice was less than the
SFA group (P < 0.05).
The plasma concentration of cholesterol and triglycer-

ide of mice maintained on an SFA diet was not signifi-
cantly different from that of mice maintained on an LF
diet (Figure 1A and B). However, the plasma concentra-
tion of NEFA was significantly reduced in SFA fed mice
compared to LF fed mice (P < 0.05) (Figure 1C). Supple-
mentation of niacin in SFA diet significantly reduced
plasma cholesterol, whereas no difference was found in
LF+niacin group. Both niacin and NA supplementation
significantly lowered the plasma NEFA concentration in
the LF mice.

Chronic ingestion of SFA diet causes severe breakdown of
BBB, but BBB integrity is restored by nutraceutical agents
We confirm substantial parenchymal perivascular abun-
dance of plasma-derived proteins (IgG) and macromole-
cules (apoB lipoproteins) in mice maintained on SFA

Figure 2 Immunofluorescent micrographs of cerebral extravasations of plasma IgG and apolipoprotein B lipoproteins. The integrity of
the BBB was assessed by the detection of brain parenchymal extravasation of plasma derived IgG, and apoB lipoproteins in mice maintained on
low-fat control chow (LF), diet enriched in saturated fat (SFA) or each diet supplemented with nutraceutical garlic extract-aged (+GEA),
alpha-lipoic acid (+ALA), niacin (+Niacin), or nicotinamide (+NA). (A) The representative images of cerebral extravasation of IgG or apoB in the
cortex are shown in green or red, respectively. Nuclei are shown in blue. Scale bar indicates 100 μm. (B) The magnified images of the regions of
interest are indicated by a white rectangle in frame A. Vascular endothelial cells are shown with white arrowheads. Scale bar indicates 12 μm.
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enriched diet for nine months (Figure 2). The 3-D quan-
titative immunomicroscopy showed that the parenchy-
mal extravasation of IgG and apoB are substantially
greater in SFA fed mice compared to mice maintained
on LF control chow (Figure 3). However, provision of
GEA, ALA, niacin, or NA with the SFA diet completely
ameliorated the BBB damaging effect of dietary-SFA
(Figures 2 and 3). The control mice maintained on LF
diet for nine months showed some moderate signs of
cerebral IgG and apoB lipoprotein extravasation (Figure 2
and 3), however this effect was not attenuated by co-
supplementation with GEA, ALA, niacin, or NA.

Parenchymal inflammations occur following the BBB
disruption
Evidence of significant neurovascular inflammation and
oxidative stress was concomitant with compromised
BBB integrity in mice maintained on an SFA enriched
diet for nine months. Cerebral parenchymal abundance
of GFAP was elevated 3-fold in SFA mice compared to
LF-fed mice at nine-months (Figure 4). Similarly, COX-2
expression was substantially increased because of chronic
ingestion of the SFA-enriched chow (Figure 4). Consistent
with the suppression of parenchymal plasma protein
extravasation in SFA mice, provision of either GEA, ALA,
niacin, or NA, completely suppressed the SFA-induced
expression of GFAP and COX-2 (Figures 4 and 5A,D). A
heightened state of neurovascular inflammation was
not indicated by GFAP and COX-2 in mice main-
tained on the LF-diet for nine months (Figures 4 and
5A,D). A causal association between inflammation (in-
dicated by GFAP and COX-2 abundance) and BBB-
dysfunction (parenchymal IgG and apoB lipoprotein
abundance) is suggested by Pearson’s correlation ana-
lysis (Figure 5B,C,E,F).

Nutraceutical agents restore the systemic oxidative status
Plasma total anti-oxidative status was expressed relative
to in vitro suppression of enzymatic genesis of a cation
radical. Plasma TAS was significantly less in SFA fed
mice compared to the LF fed control (Figure 6A). In
contrast, mice supplemented with either GEA, ALA,
niacin, or NA in the SFA treatment groups had a plasma
TAS similar to age-matched low-fat controls. Pearson’s
correlation analysis showed that the plasma TAS was
negatively associated with parenchymal IgG and apoB
lipoprotein extravasation in mice (Figure 6B,C). Gluta-
thione reductase activity was not reduced in SFA mice
compared to controls and provision of nutraceuticals
had no significant effect (Figure 6D). Glutathione reduc-
tase activity was not associated with cerebral IgG or
apoB-lipoprotein extravasation (Figure 6E,F).

Discussion
The present study investigated the efficacy of the anti-
oxidant nutraceuticals GEA, ALA, niacin, and NA in
preventing BBB disruption in genetically unmanipulated
mice maintained on a pro-inflammatory diet enriched in
SFA. Consistent with previous studies showing progres-
sive deterioration of BBB commensurate with the dur-
ation of feeding [7,9,11,12,17,18], in this study mice
maintained on the SFA diet for nine months had sub-
stantial breakdown of BBB function. Compromised BBB
integrity was indicated by established methodologies
which considered the parenchymal abundance of plasma
derived IgG, and also by the extravasation of larger
macromolecules (apoB triglyceride rich lipoprotein)
[9,11,12,17,18,37,38]. Quantitative 3-D immunohisto-
chemical microscopy indicated that cerebral extravasa-
tion of IgG and apoB were substantially greater in the
mice maintained on the SFA diet for nine months

Figure 3 3-D quantitative analyses of cerebral IgG and apoB extravasation. The optical staining intensities of IgG (A) and apoB (B) were
measured with 3-D image analysis software and shown in the cortex (CTX) and hippocampal formation (HPF) of mice maintained on low-fat
control chow (LF), diet enriched in saturated fat (SFA) or each diet supplemented with nutraceutical garlic extract-aged (+GEA), alpha-lipoic acid
(+ALA), niacin (+Niacin), or nicotinamide (+NA) for nine months. One-way ANOVA followed by Tukey’s post hoc test was used to analyze the
statistical significance at P <0.05. Data were analyzed in cortex and hippocampal formation separately, however shown as combined since the
statistical significance was identical. (a) Significant difference between LF and SFA; (c) Significant difference between SFA and each
nutraceutical treatment.
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compared to the control LF-fed mice. Moreover, the
dietary SFA-induced blood-to-brain kinetics and reten-
tion of plasma proteins and macromolecules occurred
concomitant with evidence of heightened state of in-
flammation (GFAP and COX-2). Indeed, the correlation
analyses showed an association between inflammation
and parenchymal IgG and apoB abundance. In addition,
our recent study showed the colocalization of parenchy-
mal IgG extravasation and increased GFAP abundance
in the same SFA-fed mouse model [12]. Interestingly,
provision of the anti-oxidants GEA, ALA, niacin, or NA
showed similar effects and completely suppressed SFA-

induced BBB dysfunction. The prevention of BBB
disruption by the indicated nutraceuticals occurred con-
comitant with the suppression of inflammation (GFAP
and COX-2) and restoration of plasma total anti-
oxidative status.
Earlier studies suggested that dyslipidemia might be

central to brain capillary disturbances in this established
model of BBB dysfunction [9,39,40]. In the present
study, SFA feeding for nine months had no significant
effect on the plasma concentration of cholesterol, tri-
glycerides, or NEFA. Cell culture studies suggest several
mechanisms by which dietary cholesterol may be pro-

Figure 4 Immunofluorescent micrographs of cerebral inflammation (GFAP) and oxidative stress (COX-2). Cerebral astrocytic activation
and oxidative stress were analyzed by the detection of parenchymal GFAP and COX-2 expression after nine months of dietary intervention with
low-fat control chow (LF), a diet enriched in saturated fat (SFA) or LF/SFA diet supplemented with nutraceutical garlic extract-aged (+GEA), alpha-
lipoic acid (+ALA), niacin (+Niacin), or nicotinamide (+NA). (A) The representative staining of GFAP in the hippocampus and COX-2 in the cortex
are shown in yellow and cyan, respectively. Nuclei are shown in blue. The scale bar indicates 100 μm. (B) The magnified images of the regions of
interest are indicated by a white rectangle in frame A. Vascular endothelial cells are shown with white arrowheads. The scale bar indicates 12 μm.
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inflammatory and some of these appear to be analogous
to the effects of dietary SFA. Yao and colleagues re-
ported that excess cholesterol causes ER and mitochon-
drial stress that can lead to apoptosis [41]. Central to the
latter, may be regulatory processes via altered ceramide/
sphingosine-1-phosphate homeostasis [42]. Interestingly,
Myriocin, an inhibitor of ceramide biosynthesis was
effective in ameliorating ceramide accumulation in ani-
mals fed diets enriched in SFA [43,44]. Other mecha-
nisms for SFA-induced alterations in the BBB functions
include stimulation of NADPH-oxidase derived reactive

oxygen species generated by activated microglial cells
[45]. Substantially increased parenchymal COX-2 activity
and diminished anti-oxidant status are consistent with
exaggerated oxidative metabolism. COX-2 is an indu-
cible enzyme most commonly associated with activated
macrophages [46]. Increased abundance of COX-2 in
SFA mice is consistent with the pro-inflammatory effects
of SFA reported in many other studies [47,48]. Whilst
not directly explored in this study, COX-2 may be asso-
ciated with activated glial cells in mice fed SFA. More-
over, GFAP, a hallmark feature of activated glial cells,

Figure 5 3-D quantitative analyses of cerebral GFAP and COX-2 expressions. The optical staining intensities of GFAP (A) and COX-2 (D)
were measured with 3-D image analysis software and shown in the cortex (CTX) and hippocampal formation (HPF) of mice maintained on low-
fat control chow (LF), diet enriched in saturated fat (SFA) or each diet supplemented with nutraceutical garlic extract-aged (+GEA), alpha-lipoic
acid (+ALA), niacin (+Niacin) or nicotinamide (+NA) for nine months. One-way ANOVA followed by Tukey’s post hoc test was used to analyze the
statistical significance at P <0.05. Data were analyzed in the cortex and hippocampal formation separately, however they are shown as combined
since the statistical significance was identical. (a) Significant difference between LF and SFA; (c) Significant difference between SFA and each
nutraceutical treatment. (B and E) show the correlation between parenchymal IgG extravasation and GFAP or COX-2 expression in all groups.
Pearson’s correlation coefficient is indicated. For GFAP and parenchymal abundance of plasma proteins (B and E) and for COX-2 versus IgG and
apoB (C and G).
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was markedly greater in the SFA treatment group
suggesting the heightened cerebrovascular inflammation.
In addition, our previous study also showed elevated
peri-cerebrovascular CD68 immunoreactivity in SFA-fed
mice [39]. Although markers of systemic inflammation
were not measured in the present study, glutathione
reductase, which serves to recycle glutathione by redu-
cing its oxidized form (glutathione disulfide), was not
significantly different in SFA mice, suggesting that
this pathway for minimizing oxidative stress was not

compromised in SFA-fed mice [49]. Many studies pro-
vide evidence that redox (reduction-oxidation) homeo-
stasis is associated with vascular integrity via an axis of
exposure to potentially toxic peroxides and free radicals
[50-52]. Relevant to the findings described, a study by
Kumar et al. reported that elevated plasma malon-
dialdehyde and nitrate/nitrite were positively associated
with increased BBB permeability in subjects with peri-
natal asphyxia [50]. A recent study reported that a high-
fat diet (58% fat of total energy) significantly increased

Figure 6 Plasma anti-oxidant status. The plasma total anti-oxidant status (A) and activity of glutathione reductase (D) were measured with
commercially available colorimetric kits in mice maintained on low-fat control chow (LF), diet enriched in saturated fat (SFA), or each diet
supplemented with nutraceutical garlic extract-aged (+GEA), alpha-lipoic acid (+ALA), niacin (+Niacin), or nicotinamide (+NA) for nine months.
One-way ANOVA followed by Tukey’s post hoc test was used to analyze the statistical significance at P <0.05. (a) Significant difference between
LF and SFA; (c) Significant difference between SFA and each nutraceutical treatment. (B and E) show the correlation between parenchymal IgG
extravasation and total anti-oxidative status or glutathione reductase activity in all groups. The correlation coefficient was analyzed by Pearson’s
analysis. Similarly, (C and F) show Pearson’s correlation coefficient between parenchymal apoB extravasation and total anti-oxidative status or
glutathione reductase activity in all groups.
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BBB permeability concomitant with compromised anti-
oxidative status [7].
A clinical study by Williams et al. showed that GEA

improved endothelial function in subjects with cardio-
vascular disease without altering plasma lipid homeosta-
sis [53]. In insulin resistant subjects, ALA reduced the
systemic oxidative stress and improved vascular endo-
thelial function whilst having no effect on plasma lipids
or lipoproteins [54]. ALA is transported through the
BBB and reported to suppress cerebral and peripheral
inflammation and oxidative stress [55]. Animal studies
report that GEA attenuates systemic and central inflam-
mation through increased hemoxygenase-1 activity and
superoxide scavenging, and through decreased super-
oxide production both in vivo and in vitro [56,57]. In
rats with subarachnoid hemorrhage, ALA supplementa-
tion completely suppressed the BBB disturbances,
reduced parenchymal neuroinflammation, and increased
plasma anti-oxidative status [58]. In three alternate ani-
mal models of systemic inflammation, ALA was shown
to reduce cerebral reactive oxygen species and GFAP
expression via increased cerebral superoxide dismutase,
glutathione, and glutathione peroxidase activity [59-61].
Collectively, the studies suggest that GEA and ALA are
likely to protect BBB function by suppressing systemic
and central oxidative stress and inflammatory pathways.
In this study, supplementation of niacin or NA signifi-

cantly reduced plasma cholesterol concentration in SFA-
fed mice. These two agents also reduced the plasma
concentration of NEFA in the LF-control group. Main-
tenance of BBB function in mice given niacin or NA
may have in part reflected diminished vascular exposure
to plasma lipids; however, this is unlikely given that the
SFA fed group of mice were normolipidemic. Both niacin
and NA at the dose rates indicated were equipotent to
GEA and ALA in suppressing cerebral neuroinflammation
(GFAP and COX-2) and oxidative homeostasis (plasma
oxidative status). Ganji et al. showed in vascular endothe-
lial cells in vitro, that niacin significantly increased cellular
NADPH and glutathione levels, and reduced reactive oxy-
gen species production and low-density lipoprotein oxida-
tion [62].
A modest increase in cerebral extravasation of plasma

IgG and apoB was observed in the LF-treatment group at
nine months. The findings are consistent with an aging
effect on BBB function recently reported in the same
model, commencing at 30 weeks of age [12]. We extend
on those findings and show that the supplementation of
anti-oxidative nutraceutical agents did not prevent these
aging-related alterations to BBB function. This finding is
perhaps not unexpected in the context that TAS was simi-
lar to the LF control group. The findings suggest that the
aging-related alterations in BBB function may occur inde-
pendent of oxidative stress pathways [63-65].

Conclusions
The primary findings of this study showed that com-
promised systemic anti-oxidative status induced by
chronic SFA diet ingestion was associated with BBB
dysfunction and neurovascular inflammatory responses.
The provision of the anti-oxidants GEA, ALA, niacin,
and NA prevents disruption of the BBB in high SFA-fed
mice, concomitant with an improved redox state.
However, the indicated nutraceuticals had no beneficial
effects on aging-related disturbance in BBB function.
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