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Toll-like receptor stimulation increases
phagocytosis of Cryptococcus neoformans by
microglial cells
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Abstract

Background: Toll-Like receptors (TLRs) belong to the family of pattern-recognition receptors with a crucial function
of recognising pathogen-associated molecular patterns (PAMPs). Cryptococcal meningitis is a potentially fatal
disease with a high mortality and risk of neurological sequelae.

Methods: We studied the ability of microglial cells to increase the phagocytosis of cryptococci after stimulation
with agonists of TLR1/2, TLR3, TLR4 and TLR9.

Results: Stimulation of murine microglial cells with these TLR agonists for 24 h increased the phagocytosis of
encapsulated Cryptococcus neoformans. Stimulation increased the release of TNF-α, CXCL1 (KC), IL-6, IL-10 and MIP-2,
which indicated the activation of microglial cells. Unstimulated and TLR agonist-stimulated MyD88-deficient cells
showed a reduced ability to phagocytose cryptococci compared to their wild-type counterpart. Intracellular killing
of cryptococci was also increased in TLR-stimulated cells compared to unstimulated microglial cells.

Conclusion: Our observation suggests that stimulation of microglial cells by TLR agonists can increase the
resistance of the brain against CNS infections caused by Cryptococcus neoformans. This may be of interest when an
immunocompromised patient is unable to eliminate Cryptococcus neoformans despite antifungal therapy.
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Background
Cryptococcus neoformans (C. neoformans) is an encapsulated
yeast which causes life-threatening infections in immuno-
compromised individuals, especially in patients with AIDS
who are often unable to eliminate cryptococci completely
from the cerebrospinal fluid (CSF) in an advanced stage of
disease [1-3]. Cryptococcosis primarily affects these patients,
but recently it has also been observed in immunocompetent
individuals [4-8]. C. neoformans can be found worldwide
particularly in bird guano, or in guano-contaminated soil.
Upon inhalation of spores or yeast cells, it causes pulmonary
infections. From the lung C. neoformans can disseminate
into the skin and to the brain [9]. There it presents as
meningoencephalitis or meningitis, which is fatal without
antifungal therapy. The polysaccharide capsule is one of

the most potent virulence factors of cryptococci and can
inhibit phagocytosis [10]. After phagocytosis C. neoformans
can survive and replicate in the acidic environment of the
phagosome by increasing the pH [11].
Microglia, the resident phagocytes of the central ner-

vous system (CNS), together with perivascular and men-
ingeal macrophages constitute the first line of defense of
the brain tissue in CNS infections [12,13]. In the resting
state, they are scanning the CNS parenchyma by means
of motile processes and will be activated when the
microenvironment is changed. Microglial cells express
Toll-like receptors (TLRs) which can identify pathogen-
associated molecular patterns (PAMPs) and thereby play
an important role as regulators of the innate immune
response [14,15]. While bacterial lipoproteins and zymosan,
a component of Saccharomyces cerevisiae (S. cerevsiae),
are recognized by TLR2, lipopolysaccharide (LPS) from
Gram-negative bacteria and glucuronoxylomannan, the
major capsular polysaccharide of C. neoformans, are ligands
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of TLR4, and bacterial and also fungal DNA activates TLR9
[16-19]. Upon TLR stimulation, the ability of microglia to
phagocytose Gram-positive and Gram-negative bacteria is
increased [20,21]. We hypothesized that this mechanism
could be a therapeutic option in fungal CNS infections.
Therefore, we studied the phagocytosis of C. neoformans by
microglial cells after TLR stimulation.

Materials and methods
Primary mouse microglial cell cultures
Primary mixed glial cultures were prepared from brains of
newborn wild-type C57BL/6 mice (postnatal day 0, p0-p2),
or myeloid differentiation factor (MyD)88-deficient mice
(p0-p2) with the same genetic background [22]. After
removal of the meninges, cells were treated with
trypsin (Sigma-Aldrich, Taufkirchen, Germany) for 10
minutes to isolate the cells, and afterwards with DNAse
(Sigma-Aldrich). After centrifugation cells were suspended
in DMEM (Gibco, Karlsruhe, Germany) supplemented
with 10% heat-inactivated FCS, 100 U/ml penicillin and
100 μg/ml streptomycin. Cells were plated at a density
of two brains per T75 culture flask (Corning Costar,
Wiesbaden, Germany) and incubated at 37°C with 5% CO2.
After 10 to 14 days, microglial cells were isolated from the
confluent astrocyte layer by shaking 200 times/minute
for 30 minutes and plated in 96-well plates at a density
of 50,000 cells per well.

Microglia stimulation with TLR agonists Pam3CSK4, poly (I:C),
LPS and CpG
Microglial cells from wild-type C57BL/6 and Myd88-
deficient mice were exposed for 24 h to 0.1 μg/ml
tripalmitoyl-S-glyceryl-cystein (Pam3CSK4; 910.5 Da;
EMC Microcollections; Tübingen,Germany), 0.01 μg/ml
LPS from Escherichia coli (E. coli) serotype O26:B6
(Sigma-Aldrich) or 1 μg/ml CPG oligodesoxynucleotide
(ODN) 1668 (TCC ATG ACG TTG CTG ATG CT;
molecular mass 6,383 Da, TIB Molbiol, Berlin, Germany),
for TLR1/2, 4 and 9 stimulation, respectively. In experi-
ments with MyD88-deficient mice, microglia were also
exposed to 30 μg/ml of the TLR3 agonist polyinosine-
polycytidylic acid (poly (I:C), 1.5 to 8 kb, InvivoGen, San
Diego, CA, USA). TLR agonists were used at the lowest
concentration that induced maximum stimulation as
assessed by nitric oxide production [23]. A control
group with unstimulated microglial cells was included in
all experiments. For the measurement of cytokine release,
supernatants from microglial cells stimulated for 24 h
were collected and kept frozen at −20°C until assaying.

Yeast strains and culture conditions
The encapsulated C. neoformans strain 11959 (ATCC 90112)
was cultured in YPG medium (1% yeast extract,1% pep-
tone, 2% glucose) at 30°C for 2 days. The cell suspension

was mixed with glycerine and kept at −80°C. In each
experiment, C. neoformans from the glycerine stock was
grown on Sabouraud agar plates at 37°C. Colonies from the
Sabouraud agar plate were resuspended in DMEM and
counted in a Neubauer-hemocytometer to determine the
concentration of fungi in the inoculum.

Phagocytosis assay
After stimulation, microglial cells from either C57BL/6
wild-type or MyD88-deficient mice were co-incubated
with the encapsulated C. neoformans resuspended in
DMEM for 120 minutes at a number of 6 × 106 colony-
forming units (CFU)/well, with a ratio of approximately
120 yeast cells per phagocyte. After co-incubation with
C. neoformans, microglial cells were washed with PBS
and incubated with DMEM containing amphotericin B
(2.5 μg/ml, Sigma-Aldrich) for 1 h to kill extracellular
cryptococci. We confirmed amphotericin B activity by
plating supernatants of each experiment after 1 h of
incubation with amphotericin B. Thereafter, microglial
cells were washed twice with PBS and lysed with distilled
water. The ingested C. neoformans CFU were counted by
quantitative plating of serial 1:10 dilutions on Sabouraud
agar plates.

Intracellular survival assay
TLR-stimulated or unstimulated microglial cells from
wild-type C57BL/6 mice were incubated with C. neoformans
for 120 minutes. Thereafter, cells were washed with PBS
and incubated in DMEM containing amphotericin B
(2.5 μg/ml) for up to 3 h to kill extracellular cryptococci.
At different time points (60, 120 and 180 minutes), cells
were washed with PBS and lysed with distilled water. The
intracellular cryptococci were counted by quantitative
plating of serial 1:10 dilutions on Sabouraud agar plates.

Cytokine measurements
TNF-α, chemokine (C-X-C motif ) ligand 1 (CXCL1)
(also KC, or growth-regulated oncogene α (GROα)), IL-6,
IL-10 and macrophage inflammatory protein (MIP)-2 were
used to characterize microglial activation. DuoSet ELISA
development kits (R&D Systems, Wiesbaden, Germany)
were used for the cytokine measurements. The color
reaction was quantified at 450 nm on a microplate
reader (Bio-Rad, Munich, Germany).

Measurement of cell viability
To measure the metabolic activity of viable cells, the WST-1
cell proliferation reagent (Roche Applied Science,
Mannheim, Germany) was used. Microglial cells were
incubated with 2.5 μg/ml amphotericin B for 3 h.
Thereafter microglial cells were incubated with WST-1 for
3 h. Then, the produced formazan salt was measured by an
increase of the optical density at 490 nm using a Genios
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multiplate reader (Tecan, Crailsheim, Germany). After 3 h
of incubation, there was no toxic effect of amphotericin B
on microglial cell viability (data not shown).

Statistics
Statistical analysis and graphical presentation was performed
by using GraphPad Prism 5 Software (GraphPad Software,
San Diego, CA, USA). Data were expressed as the median
with the 25% and 75% interquartile range, and were
compared using the Kruskal-Wallis test followed by
Dunn’s multiple comparison test for selected columns
to correct for repeated testing. P <0.05 was considered
statistically significant.

Results
Stimulation with Pam3CSK4, LPS or CpG increased the
phagocytosis of C. neoformans by microglial cells
The phagocytic rates of C. neoformans after 120 minutes
of phagocytosis are shown in Figure 1. The number of
intracellular cryptococci found in unstimulated microglia
(12844 ± 6608 CFU/well expressed as mean ± SD) was con-
sidered to be 100%. Unstimulated cells ingested cryptococci
at a lower rate compared to cells stimulated with TLR
agonists. Pre-stimulation of microglial cells with different
TLR agonists caused an increase in the uptake of cryp-
tococci. Pre-stimulation with 0.1 μg/ml Pam3CSK4 and
0.01 μg/ml LPS increased the phagocytic rate approximately

15-fold (P <0.001) and 19-fold (P <0.001), respectively.
The phagocytic rate after pre-stimulation with 1 μg/ml
CpG was increased more than 36-fold (P <0.001).
Additionally, we tested the extracellular amphotericin
B activity in the cell culture medium after 1 h of incu-
bation with amphotericin B by plating supernatants.
The number of CFU was below the level of detection
(10 CFU/ml) in each experiment.

Enhanced phagocytosis required a functional MyD88
signaling cascade
Microglial cells from C57BL/6 wt and MyD88-deficient
mice were stimulated with 0.1 μg/ml Pam3CSK4, 30 μg/ml
poly (I:C), 0.01 μg/ml LPS and 1 μg/ml CpG. Phagocytosed
cryptococci (CFU/well) were converted into percentage,
and the median number of intracellular cryptococci found
in unstimulated wild-type C57Bl/6 cells was considered to
be 100% (Figure 2). Unstimulated MyD88-deficient micro-
glia tended to phagocytose lower amounts of cryptococci
than their wild-type counterpart (P-value not significant).
After Pam3CSK4, poly (I:C), LPS and CpG stimulation,
MyD88-deficient microglial cells also had reduced ability to
phagocytose C. neoformans compared to their wild-type
counterparts (P <0.05 for Pam3CSK4, P <0.01 for LPS, and
P < 0.01 for CpG). The highest phagocytic rate of MyD88-
deficient cells compared to the wild-type cells was seen
after poly (I:C) stimulation (P-value not significant).
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Figure 1 Phagocytosis of C. neoformans by unstimulated and stimulated microglial cells. Microglia were either unstimulated or stimulated
with Pam3CSK4 0.1 μg/ml, lipopolysaccharide (LPS) 0.01 μg/ml or CpG 1 μg/ml for 24 h (n ≥20 wells/group from five independent experiments).
In each experiment, the mean number of bacteria ingested by the control group was considered to be 100%. Phagocytic rates of the stimulated
groups are presented as percentages of phagocytosis by the unstimulated control group. Data are given as medians with interquartile ranges.
Data were analyzed by Kruskal-Wallis test followed by Dunn’s multiple comparison test to correct for repeated testing; ***P<0.001.
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Intracellular killing of Cryptococcus neoformans was
enhanced after stimulation with Pam3CSK4, LPS and CpG
The absolute numbers of intracellularly killed cryptococci
after 3 h were higher in microglial cells after 24 h of
Pam3CSK4, LPS and CpG stimulation than in unstimu-
lated cells. The median number of cryptococci killed by
TLR-stimulated microglial cells was 53,000 CFU/well
(Pam3CSK4), 14,750 CFU/well (LPS) and 92,000 CFU/well
(CpG) compared to 8,300 CFU/well by unstimulated
microglial cells (Figure 3). Stimulation of microglia

with Pam3CSK4 or CpG resulted in significantly higher
intracellular killing of cryptococci in comparison to
unstimulated cells (P <0.05).

Stimulation of microglia by TLR agonists induced TNF- α,
CXCL1, IL-6, Il-10 and MIP-2 release
To confirm microglial activation by the TLR agonists,
we measured the concentration of TNF-α, CXCL1, IL-6,
IL-10 and MIP-2 in the supernatants of microglial cultures
after stimulation with Pam3CSK4, LPS and CpG (Figure 4).
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Figure 2 Phagocytic rates of C. neoformans in stimulated wild-type and MyD88-deficient microglial cells after 120 minutes of phagocytosis.
Microglia were either unstimulated or stimulated with Pam3CSK4 0.1 μg/ml, polyinosine-polycytidylic acid (poly (I:C)) 30 μg/ml, lipopolysaccharide (LPS)
0.01 μg/ml or CpG 1 μg/ml for 24 h. Phagocytosed cryptococci (colony-forming units (CFU)/well) were converted into percentage, and the median
number of intracellular cryptococci from wild-type cells was considered to be 100% (n ≥12 wells/group from three independent experiments). Data
are given as medians with interquartile ranges. Data were analyzed by Kruskal-Wallis test followed by Dunn’s multiple comparison test to correct for
repeated testing; *P <0.05, **P <0.01; n.s., not significant; wt, wild-type.
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Figure 3 Intracellular killing of C. neoformans by unstimulated and Toll-like receptor (TLR)-stimulated microglial C57BL/6 cells.
Intracellular killing was expressed as the number of cryptococci (median with interquartile ranges) recovered at the different time points
(n ≥8 wells/group from two independent experiments). The absolute numbers of cryptococci killed after 3 h were higher in Pam3CSK4- and
CpG-stimulated microglia than in unstimulated microglial cells; *P <0.05.
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The limit of detection was 15 pg/ml for TNF-α, 62 pg/ml
for CXCL1 and 31 pg/ml for IL-6, IL-10 and MIP-2.
In the supernatants of unstimulated microglial cells
after 24 h the median cytokine concentrations were
below the detection limit for all cytokines and chemokines.
Microglial stimulation with 0.1 μg/ml Pam3CSK4,
0.01 μg/ml LPS and 1 μg/ml CpG induced the release
of high amounts of TNF-α, CXCL1, IL-6, IL-10 and
MIP-2. Except for the IL-10 release after Pam3CSK4

stimulation, for all TLR agonists versus the control
group the P-value was <0.05.

Discussion
Current antifungal treatment of cryptococcal meningitis
consists of amphotericin B plus flucytosine followed by
fluconazole for a long period of time [24]. In clinical
practice, AIDS patients show a reduced response to
amphotericin B and flucytosine and often need lifelong
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Figure 4 Cytokine and Chemokine release of unstimulated and stimulated microglial cells. Tumor necrosis factor (TNF)-α (A), chemokine
(C-X-C motif) ligand 1 (CXCL1) (B), macrophage inflammatory protein (MIP)-2 (C), interleukin (IL)-6 (D) and IL-10 (E) concentrations (in pg/ml) in
the supernatant of microglial cell cultures after 24 h of stimulation with 0.1 μg/ml Pam3CSK4, 0.01 μg/ml lipopolysaccharide (LPS) and 1 μg/ml
CpG. Data are given as medians with interquartile ranges. Data were analyzed by Kruskal-Wallis test followed by Dunn’s multiple comparison test
to correct for repeated testing; *P <0.05, **P <0.01, ***P <0.001.
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prevention of relapses with fluconazole. For these immuno-
compromised individuals it would be highly beneficial
to identify new therapeutic approaches helping the
host to eliminate cryptococci from the CNS.
In vitro experiments have demonstrated that phagocytosis

is dependent on the influence of opsonins [25]. TLRs
play a crucial role in recognition of PAMPs and the
pathogen-triggered inflammatory response [26]. We
found that stimulation of microglial cells by different
TLR agonists significantly increased the phagocytosis
of fungi (present data) and bacteria [20,21]. This suggests
that stimulation of microglial cells enhances the cellular
innate immune response thereby increasing phagocytosis
of invading bacteria or fungi and acts as an endogenous
protective factor of the brain and myelon. The adaptor
protein MyD88 is involved in the signaling cascade leading
to the activation of nuclear factor-κB. All TLRs except
TLR3 use the MyD88-dependent pathway. A mediator
of the MyD88-independent pathway is the adaptor,
TIR-domain-containing adapter-inducing interferon-β
(TRIF), which relays signals of TLR3 and TLR4 [15].
We have shown that the increase of phagocytosis of C.
neoformans by the different TLR agonists requires the
functional MyD88 signaling cascade. After stimulation
with Pam3CSK4, LPS and CpG, the phagocytic rate of
MyD88-deficient microglial cells was strongly dimin-
ished compared to wild-type microglia. Conversely the
difference of phagocytosed cryptococci was not signifi-
cant different in poly (I:C)-stimulated wild-type and
MyD88-deficient microglia.
Intracellular survival, expulsion of the yeast by phagocytic

cells, intracellular replication and cell-to-cell spread
of C. neoformans play an important role in the patho-
genesis of infection in immunosupressed patients
[27,28]. Conversely, macrophages can phagocytose and
kill C. neoformans in immunocompetent individuals
[29]. When studying intracellular survival, intracellular
replication of C. neoformans is a very important issue
that has to be considered. It has been observed that
cryptococci replicate faster intracellularly than extracellu-
larly [30,31]. In our intracellular survival experiment
over 3 h, we found a decrease of intracellular crypto-
cocci in microglial cells and a higher absolute number
of C. neoformans killed in Pam3CSK4-, LPS- and CpG-
stimulated microglial cells compared to unstimulated
cells. Extracellular amphotericin B was necessary for
the whole incubation time to avoid migration of viable
cryptococci from the interior of the microglial cells to the
medium, and subsequent extracellular growth. Microglia
activated by TLR agonists produce proinflammatory cyto-
kines (for example, TNF-α, IL-1 and IL-6) and nitric
oxide, which can cause neuronal injury [32-36]. For this
reason, the approach described here will have to be
tested in vivo for efficacy and with respect to the possible

induction of unintended neuronal injury. It may be ne-
cessary to design milder strategies for microglial acti-
vation in order to increase the infection resistance of
the CNS without causing neuronal injury. In conclu-
sion, our results suggest that the administration of
TLR agonists is of potential therapeutic interest in the
prevention and adjunctive treatment of C. neoformans
meningitis and meningoencephalitis in high-risk groups
such as patients with AIDS, or organ transplant recipients.
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