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Abstract

Objective: Converging lines of evidence point to the existence of immune dysfunction in autism spectrum
disorder (ASD), which could directly affect several key neurodevelopmental processes. Previous studies have shown
higher cytokine levels in patients with autism compared with matched controls or subjects with other
developmental disorders. In the current study, we used plasma-cytokine profiling for 25 discordant sibling pairs to
evaluate whether these alterations occur within families with ASD.

Methods: Plasma-cytokine profiling was conducted using an array-based multiplex sandwich ELISA for simultaneous
quantitative measurement of 40 unique targets. We also analyzed the correlations between cytokine levels and
clinically relevant quantitative traits (Vineland Adaptive Behavior Scale in Autism (VABS) composite score, Social
Responsiveness Scale (SRS) total T score, head circumference, and full intelligence quotient (IQ)). In addition, because
of the high phenotypic heterogeneity of ASD, we defined four subgroups of subjects (those who were non-verbal,
those with gastrointestinal issues, those with regressive autism, and those with a history of allergies), which
encompass common and/or recurrent endophenotypes in ASD, and tested the cytokine levels in each group.

Results: None of the measured parameters showed significant differences between children with ASD and their related
typically developing siblings. However, specific target levels did correlate with quantitative clinical traits, and these were
significantly different when the ASD subgroups were analyzed. It is notable that these differences seem to be attributable
to a predisposing immunogenetic background, as no other significant differences were noticed between discordant
sibling pairs. Interleukin-1β appears to be the cytokine most involved in quantitative traits and clinical subgroups of ASD.

Conclusions: In the present study, we found a lack of significant differences in plasma-cytokine levels between children
with ASD and in their related non-autistic siblings. Thus, our results support the evidence that the immune profiles of
children with autism do not differ from their typically developing siblings. However, the significant association of cytokine
levels with the quantitative traits and the clinical subgroups analyzed suggests that altered immune responses may affect
core feature of ASD.

Introduction
Autism spectrum disorders (ASDs) are a heterogeneous
group of severe neurodevelopmental disorders character-
ized by atypical social interactions, impaired communica-
tion, and tendency to engage in idiosyncratic, repetitive, or

restrictive behaviors, with onset before 3 years of age.
ASDs include autistic disorder, Asperger’s syndrome, and
pervasive developmental disorder-not otherwise specified
(PDD-NOS) [1]. Although significant progress has been
made in the identification of genes and copy-number vari-
ants associated with syndromic autism (approximately 10%
of the total number of cases with ASD) [2], little is cur-
rently known about the etiology of idiopathic non-
syndromic autism. The clinical heterogeneity of ASD
probably reflects the complexity of its genetic underpin-
nings, involving multiple contributing loci, genetic hetero-
geneity, epistasis, and gene-environment interactions [3].
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In addition to the results from neurobiological re-
search in ASD, highlighting the pathways involved in
neural development, synapse plasticity, structural
brain abnormalities, cognition, and behavior, conver-
ging evidence point to the existence of altered im-
mune function in ASD, which directly affects some
or all these neurological processes [4]. Several im-
mune abnormalities have been reported in ASD, in-
cluding familial autoimmune disorder clustering and
ASDs [5], altered gene expression, resulting in dys-
functional natural killer (NK) cells [6], immune tran-
scriptome alterations in the temporal cortex of
subjects with autism [7], and the presence of auto-
antibodies to the cerebellum in children with autism
[8]. Indeed, children with ASD were reported to have
higher levels of auto-antibodies (including anti-
myelin basic protein [9], anti-myelin-associated glyco-
protein [10], anti-ganglioside [11], anti-neuronal [12],
and anti-mitochondrial [13] antibodies) compared
with healthy children. Despite the extensive research
linking immune irregularities to ASDs, there are no
salient findings that have significantly advanced the
understanding of the pathogenesis of ASD.
Previous studies [14-25] have reported altered cyto-

kine levels in subjects with autism with inconclusive
results, perhaps attributable to different types of
study design, but also probably reflecting the wide
heterogeneity of ASD. In addition, one study found
no difference in cytokine levels between young ASD
children and normotypic controls [26]. Moreover,
relatively few cytokines have been examined to date,
and recent technologies have opened higher through-
put means for quantitatively surveying 10s to 100s of
unique cytokines per sample on an array. Previous
studies have shown that patients with autism have
higher cytokine levels in cases of autism compared
with controls or subjects with other developmental
disorders [14-25]. In the current study, we evaluated
whether these alterations occur within families with
ASD by performing a comprehensive plasma-cytokine
profiling in 25 sibling pairs discordant for ASD. We
also analyzed the correlations between cytokine levels
and clinically relevant quantitative traits (Vineland
Adaptive Behavior Scale in Autism (VABS) composite
score, Social Responsiveness Scale (SRS) total T score,
head circumference, and full intelligence quotient
(IQ)). In addition, because of the high phenotypic
heterogeneity of ASD, we divided the patients into
four defined subgroups (those who were non-verbal,
those with gastrointestinal (GI) issues, those with re-
gressive autism, and those with a history of allergies),
which encompass common and/or recurrent endo-
phenotypes in ASD, and tested the cytokine levels of
these groups [27-30].

Materials and methods
Ethics approval
The study protocol was approved by the Western Insti-
tutional Review Board (WIRB; number 20071224). All
parents received a comprehensive description of the
study, and gave written informed consent for their chil-
dren’s participation.

Subjects
The study, entitled ‘DNA, RNA, and Proteomics Case–
control Study of Individuals with Autism’, was carried
out in collaboration with the Translational Genomics
Research Institute (TGen, Phoenix, AZ, U.S.A.). Recruit-
ment was carried out by the Southwest Autism Research
and Resource Center (SARRC) (Phoenix, AZ, USA) The
study targeted whole families in which at least one child
had a clinical diagnosis of autism according to the cri-
teria of the DSM-IV (Diagnostic and Statistical Diagnos-
tic and Statistical Manual of Mental Disorders, Fourth
Revision) [1]. To minimize confounding genetic factors,
only male discordant sibling pairs younger than 15 years
of age were selected for cytokine analysis. In total, 25
sibling pairs were enrolled.
Briefly, the psychiatric, medical, and family histories of

all participants were obtained, and the participants under-
went behavioral, sensory, and cognitive questionnaires and
assessments. All the recruited subjects were free of any ac-
tive treatment with pharmacological or other agents. To
further characterize the disorder in each proband, the Aut-
ism Diagnostic Observation Schedule (ADOS) [31] and the
Autism Diagnostic Interview-Revised (ADI-R) [32] were
used by research reliable raters. Adaptive functioning was
assessed using the VABS, behavior impairments were de-
termined using the SRS [33], and the IQ was evaluated
using the Stanford-Binet Intelligence Scales (fifth edition).
Head circumference (occipital frontal circumference)
was measured using a flexible non-stretchable meas-
uring tape graded in millimeters.

Cytokine analysis
Peripheral blood samples were collected from each sub-
ject for plasma analysis before any experimentation was
carried out. Whole blood was collected into EDTA-
coated collection tubes (K2EDTA Vacutainer; BD,
Franklin Lakes, NJ, USA). The tube was inverted 10
times to mix the blood with the EDTA, and stored on
ice until further processing. Each tube was processed
within 4 hours of collection. In all cases, the duration
from collection to freezing was noted. Blood was sepa-
rated by centrifugation at 1,000 × g in a swinging
bucket centrifuge pre-chilled to 4°C. The plasma was
harvested, divided into 200 μl aliquots, and stored at −80°C
until cytokine analysis (no freeze-thaw cycles occurred be-
fore analysis).
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Cytokine analysis was conducted using an array-based
multiplex sandwich ELISA system (QuantibodyW Human
Inflammation Arrays; QAH-INF-3, RayBiotech, Inc.
Norcross, GA, USA) for simultaneous quantitative
measurement of 40 unique inflammatory cytokines/
chemokines (B-lymphocyte chemoattractant (BLC; also
known as CXCL13), eotaxin, eotaxin-2, granulocyte
colony-stimulating factor (G-CSF), granulocyte–macro-
phage colony-stimulating factor (GM-CSF), I-309, intercel-
lular adhesion molecule (ICAM)-1, interferon (IFN)-γ,
interleukin (IL)-1α, IL-1β, IL1 receptor antagonist (IL-1ra),
IL-2, IL-4, IL-5, IL-6 and its soluble rceptor (IL-6sR), IL-7,
IL-8, IL-10, IL-11, IL-12p40, IL-12p70, IL-13, IL-15, IL-16,
IL-17, monocyte chemotactic protein (MCP)-1, macro-
phage colony-stimulating factor (M-CSF), monokine
induced by gamma interferon (MIG), macrophage inflam-
matory protein (MIP)-1α, MIP-1β, MIP-1δ, platelet-
derived growth factor (PDGF)-BB, regulated on activation
normal t cell expressed and secreted (RANTES), tis-
sue inhibitor of metalloproteinase (TIMP)-1, TIMP-2,
tumor necrosis factor (TNF)-α, TNF-β, and soluble
receptors TNF-sRI and TNF-sRII).
Samples were tested according to the manufacturer’s

instructions. Briefly, one array was run to optimize
the plasma dilutions at which the majority of cyto-
kines would be quantified within the array’s limit of
detection (LOD). All plasma samples were diluted 1:1
using sample diluent, then 50 μl of each of diluted
samples and prepared standards were incubated on
the arrays at 4°C overnight with gentle shaking. After
several washes, the detection antibody cocktail was
added and the arrays incubated at room temperature
for 2 hours with gentle shaking. After another series
of washes, streptavidin conjugated to a Cy3 equivalent
dye was added, and the arrays incubated for 1 hour
with gentle shaking. After a final washing step, the ar-
rays were imaged using a microarray scanner (Agilent
Microarray Scanner; Agilent, Santa Clara, CA, USA)
and the fluorescence data was extracted using the ac-
companying software (Agilent Feature Extraction
software; Agilent). Raw fluorescence data was ana-
lyzed using the Q-Analyzer software for the QAH-
INF-3 arrays (RayBiotech, Inc., Norcross, GA, USA),
which was used to calculate cytokine concentrations
in pg/ml based on a seven-point linear regression of
the standard curves.

Statistical analysis
The quantitative data were not normally distributed, as
assessed by Kolmogorov linear regression, and are thus
presented as median ± interquartile range (IQR; that is,
25th to 75th percentile) or semi-interquartile range (IQR/
2), and contrasted using non-parametric statistics. Differ-
ences between discordant sibling pairs were evaluated by

the Wilcoxon rank sum test. The Mann–Whitney test
was used to compare variables between unpaired groups.
Correlations between cytokine levels and quantitative
clinical variables were performed by Spearman’s rank
correlation (ρ). Statistical significance was set at P<0.05.
Nominal P values are presented, because the cytokine
levels were non-independent variables and, under similar
conditions, correction for multiple testing remains
controversial [34,35]. All analyses were performed
using the SPSS statistics software, (version 18.0; SPSS
Inc., Chicago, IL, USA).

Results
Subjects
The demographic and clinical characteristics of all
participants are summarized in Table 1. There was no
significant difference in age distribution between chil-
dren with ASD and their healthy siblings (z = 1.232,
P = 0.218). As expected, all VABS and SRS scores
were significantly different between the two groups
(Table 1). The subjects with ASD group had a sig-
nificantly lower total IQ than did the healthy sibling
group (z = −2.201, P = 0.028). Head circumference
was not significantly different between subjects with
ASD and the healthy siblings (z = −0.805, P = 0.421);
however, using the Moses Test for extreme reactions,
significant differences in range between the two
groups were noticed (P = 0.040). There was a higher
incidence of macrocephaly (that is, occipitofrontal
circumference >97th percentile or +2 SD) in the
group with ASD than in their related siblings (30.0%
vs. 23.8%). Notably, this percentage is in the range
previously reported for the ASD population [36].
The percentage of children with ASD who were non-

verbal (defined as the complete absence of intelligible
words at time of diagnostic assessment of autism) was
28.0%. The same percentage was found for children with
ASD displaying GI issues (presenting at least one of the
following symptoms: 1) constipation, 2) diarrhea, 3) ab-
dominal bloating, discomfort, or irritability, 4) gastro-
esophageal reflux or vomiting, 5) feeding issues or food
selectivity). Regressive autism (when a child appears to
develop typically but then starts to lose speech and so-
cial skills, typically between the ages of 15 and 30
months, and is subsequently diagnosed with autism [28])
was seen in 32% of the study group, while 20% had a his-
tory of allergies.

Cytokine profiles of discordant sibling pairs
The differences in cytokine/chemokine levels between
discordant sibling pairs were analyzed (see Additional
file 1: Table S1). None of the measured parameters
showed significant differences between children with
ASD and their related healthy siblings. Further, we
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performed a post hoc analysis to detect possible changes
in T helper (Th)1 (IL-2 + IFN-γ + TNF-α), Th2 (IL-4 +
IL-5 + IL-6 + IL-10 + IL-13), and Th17 (IL-6 + IL-17)
cytokine levels and their related ratios, but no significant
differences were detected (data not shown).

Correlations between cytokine levels and quantitative
traits
Correlations between cytokine levels and clinically rele-
vant quantitative traits (VABS composite score, SRS
total T score, head circumference, and full IQ) were
performed for the 25 children with ASD, using Spearman’s
ρ. We also evaluated correlations between the cytokines
and the quantitative trait being examined (see Additional
file 2: Table S2). GM-CSF (ρ = −0.535, P = 0.007), IL-1α
(ρ = −0.622, P = 0.001), IL-1β (ρ = −0.509, P = 0.011),
IL-2 (ρ = −0.426, P = 0.038), IL-6 (ρ = −0.501, P =
0.013), IL-16 (ρ = −0.450, P = 0.031) and MCP-1 levels
(ρ = −0.533, P = 0.013) were inversely correlated with
VABS composite score, while MIP-1δ levels were directly

correlated with VABS composite score (ρ = 0.475, P =
0.019). Almost all the cytokines showed significant corre-
lations with each other (Additional file 3: Table S3).
IL-6sR (ρ = −0.502, P = 0.040), MIP-1β (ρ = −0.524,
P = 0.031) and MIP-1δ (ρ = −0.516, P = 0.034) levels
inversely correlated with SRS total T score. IL-6sR
levels displayed significant correlation with MIP-1δ
(ρ = 0.418, P = 0.038).
BLC (ρ = −0.474, P = 0.035) and TIMP-2 (ρ = −0.702,

P = 0.001) significantly correlated with head circumference.
GM-CSF (ρ = −0.590, P = 0.026), IL-1β (ρ = −0.709,

P = 0.005), IL-6 (ρ = −0.672, P = 0.009), IL-7 (ρ = −0.670,
P = 0.009), IL-11 (ρ = −0.891, P = 0.00002), IL-12p70
(ρ = −0.722, P = 0.005) IL-13 (ρ = −0.816, P = 0.0004),
IL-16 (ρ = −0.790, P = 0.001), IL-17 (ρ = −0.798, P =
0.001), M-CSF (ρ = −0.570, P = 0.033), and TNF-sRII
(ρ = −0.604, P = 0.029) all correlated with full IQ. Al-
most all the cytokines showed significant correlations
with each other (see Additional file 4: Table S4), ex-
cept for TNF-sRII.

Table 1 Demographic and clinical characteristics of study participants

Children with ASD, n = 25 Healthy siblings, n = 25 Z score P value

Ethnicity, n (%)

Caucasian 21 (88.0) – –

Hispanic 1 (4.0) – –

Caucasian-Hispanic 1 (4.0) – –

Asian 1 (4.0) – –

Age, years, mean ± SD 8.11 ± 3.65 7.44 ± 3.12 1.232 0.218

VABS scores, median ± IQR/2

Communication 54.5 ± 14.3 100.0 ± 10.5 −3.945 3.9 × 10-5

Daily living skills 55.5 ± 12.8 95.0 ± 11.5 −3.875 5.3 × 10-5

Motor skills 75.0 ± 12.5 103.0 ± 8.5 −3.180 7.4 × 10-4

Composite 53.5 ± 10.8 94.0 ± 11.0 −3.920 4.4 × 10-5

SRS scores, mean ± SD

Social awareness 75.3 ± 11.0 46.8 ± 10.3 3.516 2.2 × 10-4

Social cognition 80.8 ± 11.4 46.2 ± 7.7 3.516 2.2 × 10-4

Social communication 82.9 ± 11.7 47.1 ± 13.1 3.516 2.2 × 10-4

Social motivation 76.6 ± 10.7 49.8 ± 15.8 3.258 5.6 × 10-4

Mannerisms 85.8 ± 12.6 49.1 ± 14.0 3.516 2.2 × 10-4

T score, total 85.8 ± 11.8 47.3 ± 12.8 3.516 2.2 × 10-4

Head circumference, median percentile ± IQR/2 82.0 ± 16.0 84.0 ± 10.0 −0.805 0.421

Full IQ, median ± IQR/2 71.0 ± 12.0 105.5 ± 10.0 −2.201 0.028

Subgroups, n (%)

Non-verbal 7 (28.0) NA – –

GI issues 7 (28.0) NA – –

Regression 8 (32.0) NA – –

Allergy history 5 (20.0) NA – –

Abbreviations: GI, gastrointestinal; IQR/2, semi-interquartile range; NA, not assessed; SD, standard deviation. Significant differences are shown in bold.
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Cytokine profiles and clinical subgroups
The analyses of cytokine profiles in the four clinical
subgroups, 1) children with ASD who were non-verbal,
2) children with ASD presenting with GI issues, 3) chil-
dren with ASD exhibiting regression, and 4) children
with ASD with a history of allergies, were conducted
using the Mann–Whitney test (to compare the cyto-
kine levels between children with ASD presenting and
those not presenting the clinical variable), and the
two paired sample signed Wilcoxon rank sum test (to
compare the cytokine levels between discordant sib-
ling pairs according to the clinical subgroup of the
subject with ASD).
Non-verbal children with ASD displayed higher levels

of GM-CSF (z = 2.330, P = 0.020), IL-10 (z = 2.290, P =
0.022) and M-CSF (z = 1.970, P = 0.049) than did verbal
children with ASD (Figure 1). Notably, GM-CSF signifi-
cantly correlated with IL-10 (ρ = 0.782, P = 1.062 × 10-5)
and M-CSF (ρ = 0.585, P = 0.002) levels, whereas IL-10
significantly correlated with M-CSF (ρ = 0.565, P =
0.005) levels.
Children with ASD with GI issues had higher levels of

IL-1β (z = 2.870, P = 0.004), IL-2 (z = 1.970, P = 0.049)
and IL-6 (z = 2.000, P = 0.046) than did children with
ASD with no GI issues (Figure 2). IL-1β significantly
correlated with IL-2 (ρ = 0.455, P = 0.022) and IL-6 (ρ =
0.556, P = 0.004) levels, and IL-2 significantly correlated
with IL-6 (ρ = 0.643, P = 0.001) levels.
IL-1β (z = 2.420, P = 0.016), IL-5 (z = 2.060, P = 0.039)

and IL-17 (z = 2.130, P = 0.033) levels were higher in chil-
dren with ASD with regression than in those with no re-
gression (Figure 3). IL-1β significantly correlated with IL-5
(ρ = 0.523, P = 0.009) and IL-17 (ρ = 0.497, P = 0.012)

levels, while IL-5 significantly correlated with IL-17
(ρ = 0.484, P = 0.017) levels. Interestingly, levels of Th2
(z = 1.990, P = 0.047) and Th17 (z = 2.040, P = 0.041)
cytokines were significantly higher in children with re-
gressive ASD than in children with ASD who had no re-
gression. No significant difference was seen in cytokine
levels between children with ASD who had a history of al-
lergies and those who had no history of allergies.

Discussion
Despite the great wealth of data on autism gained to
date, and the possible involvement of the immune sys-
tem in ASD, the results are still inconclusive. This is
probably attributable to the large phenotypic and genetic
heterogeneity of ASD [37]. In an attempt to identify the
complex immune pathogenetic components underlying
ASD, we carried out a comprehensive analysis of cyto-
kines and chemokines in discordant sibling pairs. We
explored the hypothesis that the use of discordant sib-
ling pairs may reduce heterogeneity and facilitate the
identification of immune underpinnings in ASD.
We did not find any significant differences in cytokine

levels between children with ASD and their related
healthy siblings. This is in line with a previous study by
Saresella et al. [38] which showed that the immune pro-
files of children with autism did not differ from their
typically developing siblings. That study indicated the
presence of an ‘autism endophenotype’ that expands im-
mune dysfunction to family members who are seemingly
unaffected by the core symptoms of autism. Moreover,
anti-brain antibodies were found both in children with
autism and in their unaffected siblings [39]. Notably,
healthy siblings are characterized by subtle neurologic

Figure 1 Cytokines were increased in non-verbal children with autism spectrum disorder (ASD). Non-verbal children with ASD (n = 7) and
their siblings (n = 7), and verbal children with ASD (n = 18) and their siblings (n = 18). The boxes stretch from the 25th to the 75th percentile,
the lines across the boxes indicate the median values, and the lines stretching from the boxes indicate extreme values. Statistical significance
(P<0.05) is reported.
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impairment [40-43], and there is evidence of atypical so-
cial and communication development during infancy
[44]. Recent studies also described ASD as the quantita-
tive extreme of a neurodevelopmental continuum in the
general population [45], with moderate genetic herita-
bility and a substantial shared twin environmental
component [46]. Moreover, the high percentage of
macrocephaly we found among the healthy siblings
(23.8%) compared with that reported for general popula-
tion (around 3%) [47] concurs with the evidence of an
extended familial endophenotype. Thus, the lack of sig-
nificant differences between sibling pairs discordant for

ASD found in our study is in line with the results of pre-
vious studies. It is possible that a common immunoge-
netic background shared by siblings might eventually
lead to different clinical outcomes when an environmen-
tal stress (for example, prenatal exposure to environ-
mental toxins, viral and bacterial infections, parental
microchimerism, etc.) occurs during development.
However, the cytokine/chemokine levels in our sub-

jects did correlate with the quantitative clinical traits,
and these were significantly different when the clin-
ical subgroups were analyzed (Figure 4). It is notable
that these differences seem to be attributable to a

Figure 2 Cytokine increased in children with autism spectrum disorder (ASD) with gastrointestinal (GI) issues. We assessed children with
ASD with GI issues (n = 7) and their siblings (n = 7), as well as children with ASD with no GI issues (n = 18) and their siblings (n = 18). The boxes
stretch from the 25th to the 75th percentile, the lines across the boxes indicate the median values, and the lines stretching from the boxes
indicate extreme values. Statistical significance (P<0.05) is reported.

Figure 3 Cytokine increased in children with autism spectrum disorder (ASD) with regression. We assessed children with ASD (n = 8) and
their siblings (n = 8), as well as children with ASD without regression (n = 17) and their siblings (n = 17). The boxes stretch from the 25th to the
75th percentile, the lines across the boxes indicate the median values, and the lines stretching from the boxes indicate extreme values. Statistical
significance (P<0.05) is reported.
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predisposing immunogenetic background, as no other
significant differences were noticed between discord-
ant sibling pairs.
IL-1β appears to be the cytokine most involved in the

quantitative traits and clinical subgroups of ASD
(Figure 4). Involvement of IL-1β in the physiopathology
of autism is generally supported by several studies
reporting higher levels of this cytokine in the plasma of
children with ASD, high-functioning children with ASD,
and adults with severe ASD compared with unrelated
controls [48]. It has been shown that peripheral blood
cells from subjects with ASD produced higher levels of
IL-1β both at baseline and after stimulation with Toll-
like receptor (TLR)2 or TLR4 [48]. Moreover, plasma
levels of IL-1β were found to correlate with regressive
onset [20], a finding consistent with the current results.
Ashwood et al. [20] also showed that increased cytokine
levels occurred predominantly in children who had a re-
gressive form of ASD. In line with this, we also found in-
creased levels of IL-1β, IL-5, and IL-17, together with
total Th2 and Th17 cytokine levels, in children with re-
gressive ASD compared with children with ASD who
had no regression. All these findings are compatible with

the established evidence that levels of immunomodula-
tory factors are altered in children with regressive ASD
compared with children with non-regressive ASD
[49-52]. It is notable that we found increased levels of
IL-5 in children who had a regressive form of ASD. Not-
ably, high levels of IL-5 in mid-gestation maternal serum
samples were significantly associated with a 50% in-
creased risk of ASD in the offspring, and especially of
regressive autism [53]. Further, an increased level of IL-5
has been reported in male subjects with high-
functioning ASD/Asperger’s disorder [17,25]. IL-5 is
produced by Th2 cells and mast cells [54]. Its functions
are to stimulate B-cell growth and increase immuno-
globulin secretion. An IL-5 transgenic mouse model has
two predominant features: 1) a marked increase in B-1
cells, resulting in enhanced serum antibody levels, and
2) an expansion of eosinophil numbers in the blood and
eosinophil infiltration into various tissues [55]. The pres-
ence of maternal auto-antibodies specific for fetal brain
proteins has also been shown to be strongly associated
with regressive autism [56].
We found the levels of several cytokines (GM-CSF, IL-

1α, IL-1β, IL-2, IL-6, IL-16, and MCP-1) to be inversely
correlated with the VABS composite score. Increased
levels of IL-1β, IL-6, and MCP-1 had previously been
shown to be associated with more aberrant behaviors or
impairments in cognitive and adaptive function of pa-
tients with ASD [20,48,57]. The level of MCP-1 was
found to be increased in astrocytes in the anterior cingu-
late gyrus, and also in the cerebellum and in brain tissue
homogenates in patients with ASD [58]. Moreover, a 12-
fold increase in MCP-1 was also noted in the cerebro-
spinal fluid of children with ASD children compared
with controls [58]. Notably, it has also been shown that
MCP-1 expression is induced by IL-1 [59]. Thus, it is
conceivable that increased levels of the two pro-
inflammatory cytokines IL-1α and IL-1β might trigger
the expression of MCP-1. It should be noted that IL-6
has a crucial role in the development and plasticity of
the central nervous system, and it was shown to be sig-
nificantly increased in the cerebellum of subjects with
ASD [60]. Furthermore, IL-6 overexpression in granule
cells causes impairments in the adhesion and migration
of these cells, possibly altering neural-cell adhesion and
migration, and causing an imbalance of excitatory and
inhibitory circuits. Moreover, IL-6 exerts a striking nega-
tive effect through maternal immune activation on fetal
brain development during pregnancy [61]. In addition, a
significantly higher level of IL-6 was previously found in
the plasma of children with ASD compared with that of
typically developing children [20]. Overall, it should be
noted that all the cytokines that inversely correlated with
the VABS composite score in our study exert a pro-
inflammatory function. This finding supports the view

Figure 4 Summary table of cytokines associated with
quantitative traits and clinical subgroups analyzed. P value
ranges for association/correlation are given.
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that increased levels of pro-inflammatory cytokines can
contribute to greater impairments in behavior, character-
istic of the core features of ASD, particularly deficits in
social interaction and communication [4]. IL-6sR, MIP-
1β, and MIP-1δ were inversely correlated with the SRS
total score, suggesting a positive beneficial role for
higher levels of these cytokines in autism-related social
behavior. However, these results should be interpreted
with caution, because the role of these cytokines in ASD
is still unclear.
We also found a correlation of two cytokine/chemokines

(BLC/CXCL13 and TIMP-2) with head circumference,
which is the first such report, to our knowledge. Head cir-
cumference represents one of the most reliable, consistent,
and easily detectable endophenotypes in autism research.
Macrocephaly has been consistently recorded in approxi-
mately 20% (range 14% to 37%) of patients with autism
[36]. Excessive neurite outgrowth and reduced terminal
pruning during infancy is believed to play a crucial role in
the establishment of macrocephaly [36]. It has been shown
that TIMP-2 [62] affects neurite outgrowth, making its
strong correlation with head circumference in this study
highly plausible. The effect of BLC/CXCL13 on head cir-
cumference might result from its interaction with the IL-7
receptor pathway [63], which significantly affects neurite
outgrowth [64,65].
We also found associations between plasma levels of

several cytokines (GM-CSF, IL-1β, IL-6, IL-7, IL-11, IL-
12p70, IL-13, IL-16, IL-17, M-CSF, and TNF-sRII) with full
IQ. It is currently unclear how cytokines might affect IQ
during childhood in ASD, thus these data should be treated
with caution until further validation can be performed.
Language impairment is a common feature of ASD,

and some individuals with ASD never acquire language
[27]. Studies conducted on the FOXP2 gene, which is re-
lated to the speech-language disorder, unveiled the cru-
cial role of the cerebellum and Purkinje cells in the
pathogenesis of speech-language disorders [66]. Foxp2
(R552H) knock-in mice showed severe ultrasonic
vocalization, motor impairment, and immature Purkinje
cells with poor dendrites and fewer synapses [66]. We
found increased levels of GM-CSF, M-CSF, and IL-10 in
non-verbal children with ASD compared with verbal
children with ASD. Purkinje cells express receptors for
both GM-CSF [67] and M-CSF [68], thus it is possible
that altered levels of these two growth factors influ-
ence the maturation of the Purkinje cells, leading to
language impairment. Notably, IL-10 is known to in-
hibit the action of GM-CSF [69], and also to act in
synergy with M-CSF [70], thus, its involvement in
non-verbal ASD, together with that of GM-CSF and
M-CSF, seems highly conceivable.
We found that children with ASD with GI issues

displayed significantly higher levels of IL-1β, IL-2, and

IL-6. The relatively high frequency and variable spectrum
of GI symptoms, reported by many parents of autistic
children, could conceivably stem from a complex com-
bination of abnormal gut microbiome, excessive intes-
tinal permeability, local immune dysreactivity, and
possibly pleiotropic roles of autism genes in nervous and
gut tissue [71]. In this context, it should be notes that in-
creased concentrations of IL-1β and IL-2 have been
reported in endoscopic mucosal biopsy specimens from
patients with inflammatory bowel disease [72]. It has also
been shown that IL-1β and IL-2 production is signifi-
cantly increased in active ulcerative colitis and is signifi-
cantly correlated to its activity index [73]. Increased level
of IL-6 may result from high levels of IL-1β and IL-2,
two cytokines that stimulate IL-6 expression in human
monocytes by independent mechanisms [74].
Correlation and association do not imply causation.

Even assuming that pathophysiological mechanisms do
link cytokines to the quantitative traits and clinical sub-
groups analyzed in this study, the nature of these mech-
anisms remains open to interpretation. Nonetheless, our
results provide important clues pointing toward possible
mechanisms, which will deserve closer scrutiny in future
investigations.
Whereas previous studies on plasma/serum cytokine

profiling in ASD used bead-based suspension arrays
[17,20,25,26,57], we used a planar array. Planar micro-
array comprises reagents for individual tests immobilized
as an ordered array or grid of discrete reagent areas
(spots) on a flat surface (for example, a microscope slide)
[75]. The bead-microarray format comprises encoded
microbeads (for example, each with a unique fluores-
cence signature), and each type of bead is coated with a
different reagent [75]. Our planar array is based on sand-
wich ELISA-based technology, which achieves higher
sensitivity and specificity, and is the method of choice
for low-abundance proteins [76]. Overall, most studies
to date have reported good correlation between bead-
based and planar cytokine arrays and between multi-
plex assays and traditional ELISA (comparable relative
changes), thus recommending the continued and ex-
panded use of multiplexing systems in high-throughput
screening applications [77].

Limitations
The present study has several limitations. First, our
findings should be viewed as preliminary, owing to our
small sample size. Nonetheless, the adoption of strict
inclusion criteria for patient enrollment and the careful
assessment of clinical variables ensured specificity and
should enhance the reproducibility of the present re-
sults. Secondly, several cytokines previously found to
be associated with ASD, including IL-23, transforming
growth factor (TGF)-β1, growth-regulated oncogene-α,
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and macrophage inhibitory factor), are not measurable
by the array-based multiplex assay we used ([4,25]).
Further, both IL-23 and TGF-β1 are essential compo-
nents of the Th17-based immune response. Conse-
quently, our data on Th17 cytokine subset are limited
and should be viewed with caution.

Conclusion
Overall, the present study reports the lack of significant
differences in plasma-cytokine levels between children
with ASD and in their related non-autistic siblings.
Thus, our results support the evidence that the immune
profiles of children with autism do not differ from their
typically developing siblings [38]. However, the signifi-
cant association of cytokine levels with the quantitative
traits and the clinical subgroups analyzed suggests that
altered immune responses may affect core features of
ASD [20]. Because ASD may encompass several distinct
phenotypes, the potential partition of ASD subgroups
based on immunological parameters and/or associations
with worsening behavior may have important implica-
tions for diagnosis, and for the design and monitoring of
therapeutic treatments of ASD [20]. Clearly, further
studies are warranted to confirm and extend the associa-
tions found in the present study, and should also include
analysis of other relevant inflammatory molecules, such
as auto-antibodies [9-13].

Additional files
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